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ABSTRACT 
An FPGA switch box is said to be universal (hyper-universal) if 
it can detailed route all possible surrounding 2-pin (multi-pin) net 
topologies satisfying the global routing density constraints. A switch 
box is optimum if it is hyper-universal and the switches inside is 
minimum. It has been shown that if the net topology is restricted to 
2-pin nets, then a 2-D (4-way) switch box can be built to be univer- 
sal with only 6W switches, where W is the global routing channel 
density. As the routing resource is relatively expensive in FPGA 
chips; study of the optimum switch box designs is clearly a topic 
with theoretical and commercial value of reducing silicon cost. A 
previous work has constructed a formal mathematical model of this 
optimum design problem for switch boxes with arbitrary dimen- 
sions, and gave a scheme to produce hyper-universal designs with 
less than 6.7W switches for 4-way FPGA switch boxes. In this pa- 
per, we will further investigate this most common4-way switch box 
case, and will give new theoretical results followed by extensive ex- 
perimental justification. The results seem to be quite attractive. We 
show that such an optimum switch box can be built with a very 
low number of additional switches beyond 6W for today’s practical 
range of low W’s (e.g. just 6W plus 1 or 2 additional switches 
for W’s up to 7). Even for arbitrary large W’s, the bound can be 
shown to be under 6.34W. To make experimental comparison, we 
run today’s published best FPGA router VPR on large benchmarks 
for the popular Disjoint structure and our proposed designs. The 
results are quite encouraging. 
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1. INTRODUCTION 
Field Programmable Gate Array (FPGA), a kind of Very Large 

Scale Integrated (VLSI) circuit, consists of an array of pre-fabricated 
functional blocks and wire segments with user-programmability of 
logic and routing resources. Because of their fast turn-around time 
and economic manufacturing cost for low volume designs, FPGAs 
have been used in a great amount of digital equipments. FPGA 
technologies are commonly classified into three major categories: 
(1) Look-Up-Table (LUT), SRAM based (2) multiplexer, channel 
organized and anti-fused, and (3) PLD, EPROM based. In this 
paper, we will study the optimum routing structure problems for 
the popular LUT and SRAM based two-dimensional (2-D) FTGAs. 
The architecture of an industrial product of this type is described in 
[I ,  2,4, 61. 

The importance of routing resource issues in FPGAs is never 
over-emphasized. In commercial FPGA products, the routing re- 
source consumes most of the chip area, and is responsible to most 
of the circuit delay. A typical 2 0  FPGA architecture is shown in 
Fig. 1. The functional blocks (or logic cells) are marked by L, 
which are separated by vertical and horizontal channels. There are 
W (called channel density) prefabricated parallel wire segments 
running between each pair of adjacent L-cells in both vertical and 
horizontal channels. The wire segments in a vertical (or horizon- 
tal) channel are aligned into W vertical (or horizontal) tracks; each 
track within a channel is assigned an integer in (1, . . . , W }  as its 
track ID. There are C-boxes in the channel between adjacent L- 
cells. A Switch Box (S-box), located at each intersection of a ver- 
tical and horizontal channels, contains programmable switches to 
connect wire segments running from its surrounding C-boxes. 

When an FPGA is used to realize a specified Boolean function, 
the pins used to realize the Boolean function are partitioned into 
groups (called nets). Then the pins in each group are connected 
together to form a real net by using available wire segments and 
switches in both C-boxes and S-boxes; different nets are discon- 
nected. The latter process is referred to as a routing. Convention- 
ally, the routing process is divided into two subsequent steps, global 
routing and detailed routing, although there is no absolute need for 
doing routing in these two phases. In this paper, we simply use 
the term of global routing to specify the connection topologies for 
all nets. The detailed routing decides the exact assignment of wire 
segments and switches used to materialize the complete routing. 
As the connectivity within C-boxes is complete, the routability of 
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Figure 1: The architecture of a 2D FPGA. 

the entire chip is fully dependent on the structure and connectivity 
of the S-boxes [1,4,5, 6,9,  10, 11, 12, 13, 141. As the routing re- 
source is relatively expensive in FPGA chips, it is clearly desirable 
to design switch boxes (S-boxes) with maximized routability and 
minimum number of programmable routing switches. 

In [6] a so called Universal Switch Module (USM) structure, 
which is a 4-way S-box of density W with 6W switches, has been 
proposed. However, this model only accommodates 2-pin nets, 
therefore designing a general S-box for all kinds of nets is im- 
portant and necessary. An FPGA switch box is said to be hyper- 
universal if it can detailed route all possible multi-pin net topolo- 
gies satisfying the global routing density constraints. It is optimum 
if it is hyper-universal and the number of switches inside is mini- 
mum. 

It has been shown that if the net topology is restricted to 2-pin 
nets, then a 2-D (4-way) switch box can be built to be universal 
with only 6W switches, where W is the global routing channel den- 
sity. As the routing resource is relatively expensive in FPGA chips, 
searching for optimum switch box designs is clearly a topic with 
both theoretical challenges and immense commercial silicon reduc- 
tion values. In [8] a formal mathematical model of this optimum 
switch box design problem for arbitrary dimensions has been con- 
structed. It gave a scheme to produce hyper-universal designs with 
less than 6.7W switches for 4-way FPGA switch boxes. In this 
paper, we will further investigate this most common 4-way switch 
box case, and give new theoretical results followed by extensive 
experimental justifications. The results seem to be quite attractive. 
We show that such an optimum switch box can be built with a very 
low number of additional switches beyond 6W for today’s practi- 
cal range of low W’s. If we represent the number of switches of 
an optimum 4-way switch box with a density of W to be e(4, W), 
then e(4, W)  = 6W for W being 2,3, or 5: e(4, W) = 6W + 1 for 
W = 4; e(4,6) <= 6W + 2, and e(4,7) <= 6W + 1. For arbi- 
trary large W’s, the bound can be shown to be under 6.34W. To 
make an even experimental comparison, we run W R  [15], today’s 
published best FPGA router, for large benchmarks on the popular 
Disjoint FPGA switch box structure and our proposed designs. The 
results are quite encouraging. 

This paper is organized as follow. Section 2 gives definitions and 
various graph design problems associated with the switch box de- 
signs. For completeness, some basis previous results on S-box de- 
signs and a decomposition property of global routings will also be 
mentioned. In Section 3, we provide our new results for optimum 
or hyper-universal S-boxes. Section 4 shows our experimental re- 
sults and we give our conclusions in Section 5. 

2. PRELIMINARIES 
The terminology and symbols of graphs are referred to [3]. Let 

G = (V(G),  E(G)) be a simple graph with vertex set V(G)  and 
edge set E( G). We denote by I V (  G) I (or IGl) and I E(G) I the num- 
ber of vertices and edges in G, respectively. Let S c V(G).  G[S] 
denotes the induced subgraph of G by S. We use ui ,  v i 2  . . . v i ,  to 
denote the path with consecutive vertices vil  , ui l ,  . . . , U,,  . 

Let W and k be positive integers with k 2 2. In [SI, we have rep- 
resented a (k, W)-global routing as a collection GR = {Ni l i  = 
‘1,. . . , 1 }  of non-empty subsets of {I, . . . , k} such that each ele- 
ment of {1,2, .  . . , k} belongs to exactly W subsets of GR. W is 
called the density of the global routing, and a (k, W)-global rout- 
ing is also called a k-way global routing With density W. Each 
Ni in GR is referred to as a net of the global routing. We note 
that a global routing GR is a multiple set; two equal sets in GR 
represent two different nets in the global routing. Note also that 
a net of cardinality n corresponds to an n-pin net. For simplicity, 
1-pin nets are allowed to ensure that each element of {1,2, . . . , k} 
appears exactly W subsets of GR. 

Let GR1 and GR2 be global routings and m a positive integer. 
The union of GRI and GR2 as multiple set is denoted by GRI + 
GR2, and mGR1 is the union of m GRl’s. 

Having given a global routing a local and mathematical view, we 
further view the track with ID j on the i-th side of an S-box as a 
vertex v i , j  and a switch connecting the track with ID j on the i-th 
side and the track with ID m on the h-th side is an edge V i , j V h , m .  

Therefore, any k-way S-box of density W can be represented as a 
k-partite graph G on uf=;=,K, where V, = { u , , j I j  = 1,. . . , W} 
and each V, is an independent set in G for i = 1,. . . , k. We call 
such a graph G a (k, W)-design. In particular, a 4-way S-box of 
density W is a (4, W)-design. 

Let G be a (k, W)-design on (VI , .  . . , v k ) .  A detailed (k, W)- 
routing (or shortly detailed routing) of a (k, W)-global routing 
{ N i  I i = 1, . , . , 2) in G is a set of mutually vertex disjoint sub- 
graphs {‘T(Ni)li = 1.. . ,Z} of G satisfying: (1) T ( N , )  is a tree 
of (Nil vertices, and (2) IV, n V(T(Ni))I = 1 if j E N ; ,  for 
i = 1, . . . , 1. T(  N , )  is called a detailed routing of Ni.  

A hyper-universal (k, W)-design on (VI , .  . . , v k )  is a (k, w ) -  
design on (VI, . . . , v k )  such that it contains a detailed routing for 
each (k, W)-global routing. For example, the complete k-partite 
graph on (VI ,  . . . , Vk) (in which, there is an edge joining each pair 
of vertices u i , j  and u i l , j l  with il # i) is a hyper-universal (k, W)- 
design. A hyper-universal (k, W)-design represents a k-way S-box 
of density W (also called a (k, W) S-box) which can accommo- 
dates any (k, W)-global routings. 

An optimum (k, W)-design is a hyper-universal (k, W)-design 
with the minimum number of edges. Clearly, the number of edges 
in an optimum (k, W)-design is uniquely determined by k and W, 
which is denoted by e ( k ,  W). 

A global routing is called primitive if it does not contain two un- 
equal nets of size 1. If a (k, W)-global routing GR is not primitive, 
then we can combine the unequal nets of size 1 into nets of size 2 to 
obtain a primitive (k, W)-global routing GR’. Any detailed global 
routing of G R’ will induce a detailed global routing of G R by sim- 
ply deleting the edges of those one edge trees representing the nets 
of size two in GR‘ which are obtained by combining the unequal 
nets of size 1 in GR. Therefore, to verify that a (k, W)-design is 
hyper-universal, we need only to show that each primitive global 
routing is detailed routable. 
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Our approach depends on a very nice decomposition property 
of global routings. Let G R  be a ( k ,  W)-global routing and GR’ 
be a sub-collection of GR. If GR’ is a ( k ,  n)-global routing with 
n < W, GR‘ is called a sub-global routing of GR. GR is said to 
be minimal if it does not contain subglobal routings. The following 
result was proved in [7] .  

LEMMA 1. For any integer k with k 2 2, there exists an integer 
f ( k )  such that any k-way global routing G R  could be decomposed 
into minimal k-way subglobal routings with densities at most f ( k ) .  
Moreover, f ( k )  = k - 1 fork  = 2,3,4. 

In [SI, we have developed a general reduction technique for de- 
signing ( k ,  w )  S-boxes. 

I. Find f ( k )  and all k-way minimal global routings. The existence 
of f ( k )  and the finiteness of the number of minimal k-way 
global routings are guaranteed by Lemma 1 .  

II. Determine p and Y- such that W = pq + Y-, p and r are as small 
as possible so that any ( k ,  W)-global routing is a union of 
q subglobal routings of density p and a subglobal routing of 
density r. (Note that as k is fixed, each W corresponds to 
a unique r, we may have more than one r as W varies but 
there are finitely many such r’s for all W). 

111. Design a hyper-universal ( k , p )  S-box S1 and a ( k ,  r) S-box 
Sz with the number of switches as small as possible. Then 
a disjoint union of q copies of S l s  and an Sz is a hyper- 
universal ( k ,  W )  S-box. 

For Step 111, [SI gave a hyper-universal (4, W)-design F ( W )  
with less than 6.7W switches. 

Our goal in this paper is to further investigate Step I11 to obtain 
better (4, i)-designs for i = 3 ,4  and 6 and hence obtain a better 
(4, W)-design than the (4, W)-design F ( W )  constructed in [SI. 

The following result was proved in [SI which will be used in this 
paper. 

LEMMA 2. Let G = ((VI , Vz , K ,  V, ) , E )  be a hyper-universal 
(4, W)-design. Then I El 2 6W. G restricting on any two parts 
gives a hyper-universal ( 2 ,  W)-design, and G restricting on any 
three parts gives a hyper-universal (3, W)-design. The optimum 
( 2 ,  W)-design is ape$ectmatching, andan optimum (3 ,  W)-design 
is a Hamilton cycle. Moreover, the optimum (3,4)-design must be 
a Hamiltonian cycle. 

3. AN HYPER-UNIVERSAL (4, w ) - D E S I G N  
To design a hyper-universal (4, W)-design, we need to proceed 

Step I11 of the reduction design technique mentioned in Section 2. 
Fig. 3 provides afamilyof (4, i)-designs Hi for z = 1 ,2 ,3 ,4 ,5 ,6 ,7  
in which the label K, j  follows the labeling rule of S-box in Fig. 1. 
These Hi’s are needed in the designing of a (4, W)-design for all 
W according to our technique. In [SI, we have shown that Hi 
is an optimum (4, i)-design for i = 1,2. The following lemmas 
claim that Hi’s are hyper-universal or optimum (4, i)-designs for 
z = 3,4 ,5 ,6 ,7 .  We will prove these lemmas later in this section. 

LEMMA 3. Hi is an optimum (4, i)-design for i = 3,4,5. 

LEMMA 4. Hi is a hyper-universal (4, i)-design for i = 6, 7. 

Now define G( W )  as the following graph: 

G ( W )  = 

disjornt mion of h H 6 . s  
disjointunionof (h - 1) H e ’ s a n d a  H7 
disjoint union of h He’s and a HZ 
disjoint union of h He ‘S and B Ha 
disjoint unionof h H e ’ s  anda H 4  
disjoint unionof h H e ’ s  anda H g  

if W = 6h. 
d W = 6h + 1. 
if W = 6h + 2, 
if W = 6h + 3, 
if W = 6h + 4, 
i f W  = 6h + 5 .  

By the definition of G,, i = 1,. . . ,7 ,  it is easy to see that the 
number of edges of F ( W )  for W > 1 is 

19 W d W = O ( m o d  6 ) .  

AW-* # f W = l ( m o d 6 ) ,  
B w  - 9 n f w  = a(mod6) .  

W - ? If W = 3(mod 6). 
A W - 1 If W = 4(mod 6 ) .  9%’-3 i f W = S ( m o d 6 ) .  

THEOREM 5. For W > 1, G(W) is a hyper-universal (4, W)- 
design. 

PROOF. If W = 6h + 1, then h 2 1 and any (4,6h + 1)-global 
routing G R  can be decomposed into a union of ( h  - 1) (4,6)- 
global routings and a (4, 7)-global routing. (sometimes, G R  can be 
decomposed into h (4,6)-global routings and a (4,1)-design. But 
this does not always happen.) Now it is easy to see that G(6h + 1) 
contains a detailed routing of G R  as G( W )  is a disjoint union of 
( h  - 1) Ha’s and an H7, and H6 and H7 are hyper-universal (4,6)- 
design and (4,7)-design, respectively by Lemma 4. 

Let W = 6h + z where i # 1. Since the densities of minimal 
4-way global routings are 1 , 2  or 3, any (4,6h + i)-global routing 
G R  can be decomposed into h (4,6)-global routings and a (4,z)- 
global routing for 2 5 i 5 5. Since G(6h + z )  is a disjoint union 
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Figure 2: A family of hyper-universal 4-way designs. 

of h Hs's and an H,, and Hs and H,  are hyper-universal (4,6)- 
design and (4,z)-design, respectively by Lemma 3, then G(6h + z) 
contains a detailed routing of GR. U 

Next we divide the proofs of the lemmas 3 and 4 into subsections. 
For simplicity, we will label each vertex of Hi by only the side 
label, where the corresponding track belongs to. 

3.1 H3 is an optimum (4, a)-design 
We note that H3 has 18 edges which is the lower bound. There- 

fore, we need only to show that H3 is hyper-universal. It is suf- 
fice to show that H3 contains all possible (4,3)-global routings ob- 
tained by combining the primitive minimal global routings in Table 
1. Notice that the permutation U = (1,4) (2,3) is an automor- 
phism of H3. and therefore, we only need to detailed-route GR in 
H3 where GR is a union of those global routings in Table 1 which 
are not isomorphic to each other under 6. These global routings are 

GR: 1 GR:,, 1 GR:,,? @,,a, GR;,,,GR;,,? 
GR:,,, GR:,,, GR:,3,GR?,,, GR;,,, GR;,,, 
GR;,,, G q , , ,  GR&, GR&,, GR;,, , GR;,,, 

GR;, GR;,l 7 GR;,3. 

Table 2. Primitive minimal 4-way global routings 
which are not 0 isomorphic. 

Let GR be a (4,3)-global routing which is a union of global 
routings from Table 2. 
Case 1. GR E (GR:, GR&, GR;,,). Fig. 3(1)-(3) show the 
detailed routings of GR. 
Case 2. GR consists of three density 1 global routings. Suppose 
GR contains h copies of GR:,3. Then 0 5 h 5 3. 

When h = 0. We partition H3 into three subgraphs G I ,  G2 
and G3: GI consists of the lower level, G2 consists of the left 
of the top and second levels and G3 consists of the right of top 
and second level. Each of these subgraphs can detailed-route any 
of GR:, GR;,,, GR:,,,GR;,, and GR;,,. Therefore, we can 
detailed-route GR in H3. 

When h = 3. GR = 3Gfi ,3 .  Fig. 3(4) gives the detailed 
routing of G R. 

When h = 1. If GR contains GR;,, + G%,2, then we detailed- 
route it as in Fig. 3(5), and if GR contains GR:J + GR;,2, we 

,211 on:..n 122) on:,,* R 

Figure 3: Detailed routings for H3 and Hd. 
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detailed-rout GR:,, U GRi,2 as shown in Fig. 3(6). We note that 
the unused part in Ha can detailed-rout any 
R E {GR: , GR; GRi,2 ). This proves that GR 
is routable in H3. 

For those GR’s which do not contain GR:,, and GRi,2, detailed 
routings in H3 are shown in Fig. 3(7)-(9). 

Finally when h = 2. If we detailed-route 2GR:,3 as shown 
in Fig. 3(10), then the unused top level can detailed-rout any of 
(GR;,GR:,,,GR:,,). For GR = 2GR:,3 + GRi,2 or GR = 
2GR:,, + GR:,2, a detailed routing is given by Fig. 3(11),(12). 
Case 3. GR contains a minimal global routing of density 2. 

Fig. 3(13)-(24) show all detailed routings of density 2 global 
routings in H3. Then the lower level of H2 which is not used in 
all this diagrams can be used to detailed-route and 
R E (GR:, GR:,,,GR;,2, GR:,I,GR:,~). 

When GR is a union of density 2 global routing and GR:,3. A 
detailed routings of GR in H3 are given in Fig. 3(25)-(36). 

This completes the verification that it is detailed routable in H B  
for all (4,3)-global routings, and hence H3 is hyper-universal. 

We note that only when GR E (2GR:,3 + GR;,,, 2G@,3 + 
GRi,2, GR;,,} we need the top level edge {1,4} in our detailed 
routing. This fact will be used in the verification of H6. 

GR: , 2 ,  G RA 

3.2 H4 is an optimum (4, +design 
We first show that Hq is hyper-universal. Let GR be any (4,4)- 

global routing which is a union of global routings from Table 1. 
If GR is a union of a minimal (4,3)-global routing and a (4 , l ) -  
global routing from Table 1, we can detailed-route the five minimal 
(4,3)-global routings as in Fig. 3(a). Note that the unused part in 
H4 is a cycle 1 , 2 , 4 , 3  which can be used to detailed-route all the 
(4,1)-global routings except GR:,3 fromTable 1. If GR contains 
a GR:,, , a detailed routing of GR in H4 is given in Fig. 3(b). 

Now assume that GR is a union of two (4,2)-global routings, 
then GR is routable in H4 as H4 contains two disjoint H2’s. 

This proves that H4 is hyper-universal. The fact that H4 is an 
optimum design follows from the following result which also indi- 
cates that the lower bound 6 W given in Lemma 2 is not achievable 
in general. 

THEOREM 6. There is no 3-regular hyper-universal (4,4)-design. 
An optimum (4,4)-design must have a t  least 25 edges. 

Proof: Suppose that there is a 3-regular hyper-universal (4,4)- 
design G. Then G is a 4-partite graph on (VI,  V2, V3, K);  there 
is a 4-matching between each pair of V,,  V, for i # j and the in- 
duced subgraph of G on each set V, U V, U V, (i # j # m) is a 
cycle (see Lemma 2). Based on these facts, we construct all such 
3-regular graphs and verify that they are not hyper-universal. We 
delete the detailed verification here. 

3.3 Hi is a hyper-universal (4,Z)-design for i = 
5 , 6  and 7 

Note that any (4,5)-global routing is a union of a (4,3)-global 
routing and a (4,2)-global routing, and H5 contains an H3 and 
a disjoint H z ,  therefore, H5 is hyper-universal. Also note that H5 
has 30 edges which is the lower bound of an hyper-universal (4,5)- 
design. Therefore, H5 is an optimum design. 

H7 is a hyper-universal (4,7)-design is similarly proved. 
To show that He is a hyper-universal S-box, we need to show 

that H6 contains a detailed routing for every (4,6)-global routing. 

Again, we note that the permutation m = (1,4)(2,3) is an auto- 
morphism of Hs,  and therefore, we only need to check those global 
routings which are union of global routings from Table 2. Let GR 
be such a global routing. 
Case 1 GR = GR1+ GR2, where both GR1 and GR2 are (4,3)- 
global routings. 

contains a detailed routing of GR as HS 
contains two disjoint H3’s. 

Case 2 GR = GR1 + GR2 + GR3, where each GR; (i = 1,2 ,3)  
is a primitive minimal global routings from Table 2. 

Let K( i ,  i+l) be the subgraph of H6 which consists of the levels 
i and i + 1. We have three disjoint subgraphs K( l ,2) ,  K(3,4)  
and 1<(5,6) of H6. By Fig. 3(13)-(24), we see that K(1,2)  and 
K(5,6)  can detailed-route any minimal (4,2)-global routings in 
Table 2. All detailed routing of minimal global routing in K(3,4)  
are routable. Therefore, there is a detailed routing for GR in He, 
and hence H6 is hyper-universal. 

It is easy to see that 

4. EXPERIMENTAL RESULTS 
From our combinatorial analysis shown above, it seems quite 

surprising that an optimum (hyper-universal) S-box can actually 
be built by using only very few more switches beyond the widely 
believed lower bound of 6W. It is also interesting to see that there 
exist HUSBs with switch density of only 6W for some W’s and the 
construction of optimum HUSBs seem to hardly possess regular 
scalability which can be observed in the construction of some 4- 
way USB family. Besides the theoretical analysis, in order to get 
some experimental justification, we choose to adopt the currently 
known best FPGA router VPR [15], which is available on the Web, 
for our experiment. The logic block structure for our VPR runs is 
set to consist of one 4-input LUT and one flip-flop. The input or 
output pin of the logic block is able to connect to any track in the 
adjacent channels, F, = W. Inside the switch box, each input wire 
segment can connect to three other output wire segments of other 
channels, F, = 3. 

In order to have an even comparison (partially is also due to the 
limitation of VPR router limiting F, to 3) with the well-known Dis- 
joint structure, we deliberately eliminate the ”additional” switches 
of our HUSBs to make our H’USBs have density of 6W, which 
is the same as Disjoint S-boxes. Fig. 4(b) and Fig. 5 show the 
structure of a hyper-universal S-box and a routing result of our ex- 
periments. 

In table 3, we show the comparing results of the number of tracks 
required to route some larger MCNC benchmark circuits [ 161 by 
Disjoint and our H’USB FPGAs. Overall, the H’USB FPGAs use 
about 10% less tracks than the Disjoint FPGAs. (Beware that since 
the VPR is a simulated annealing based non-deterministic router, 
the results we produced for Disjoint FPGAs could be a bit different 
to their other reported results.) 

5. CONCLUSION 
In this paper, we have again applied the reduction design tech- 

nique developed in [8] in 4-way S-box designs. The new (4, W )  
S-box has at most 6:gW switches compared with our previous one 
which has about 6.6W switches. We note that, according to our 
new design, we could have a complete database for detailed rout- 
ings in Hi for i  = 2,3 ,4 ,5 ,6  and 7 and hence have an efficient de- 
tailed routing algorithm to detailed-route any (4, W)-global rout- 
ing in the S-box G( W ) .  
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apex4 
bigkey 

des 

misex3 13 12 
seq 
spla 16 14 
tseng 
e64 

Total 156 141 (-9.62%) 

Table 3. Channel widths required for different 
benchmark circuits FC = W ,  FS = 3 

(a) Disjoint S-Box, W=l l  (b) An H’USB(4, l l )  

Figure 4: Structures of S-boxes. 

Routing succeeded with a channel width laclor of 8. 

Figure 5: Routing result of e64 by using H’USB S-Box, W=8 

We have also provided one example to  show that 6W is  not a 
lower bound of the number of switches in an optimum (4, W )  S- 
box for some W while which is  widely believed to  be. This  sug- 
gests that our newly design G ( W )  is very close to  an optimum. 
We are currently working on applying our combinatorial analysis 
models for other FPGA routing architecture designs. 

6. REFERENCES 

[ l ]  M.J. Alexander and Gabriel Robins, “New Performance FPGA 
Routing Algorithms,” Proceedings DAC, pp. 562-567. 1995. 

[2] Altera Corp., The Maximalist Handbook, 1990. 
[3] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications. 

[4] S. Brown, R. J. Francise, J. Rose and Z.G. Vranesic, 
London: Macmillan Press 1976. 

Field-Programmable Gate Arrays, Kluwer-Academic Publisher, 
Boston MA, 1992. 

[5] S. Brown, J. Rose and Z.G. Vranesic, “A detailed router for 
field-programmable gate arrays”, IEEE Trans. Computer-Aided 
Design, vo1.l I ,  pp.620-628, May 1992. 

modules for FPGA design”, ACM Trans. on Design Automation of 
Electronic Systems, l(1):SO-101, January 1996. 

[7] H. Fan, P. Haxell, and J. Liu, “The global routing-a combinatorial 
design problem,” (submitted). 

[SI H. Fan, J. Liu, and Y. L. Wu, “General Models for Optimum 
Arbitrary-Dimension FPGA Switch Box Designs,” Proc. IEEE 
International Conference on Computer-Aided Design (ICCAD). pp. 
93-98, Nov. 2000, San Jose. 

Router for FPGAs Considering Path Delays,” Proceedings DAC, pp. 

[6] Y. W. Chang, D. F. Wong and C. K. Wong, “Universal switch 

[9] Y.S. Lee and Allen C.H. Wu, “A Performance and Routability Driven 

557-561,1995, 
[lo] J.F. Pan, Y.L. Wu, C. K. Wong and G. Yan, “On the Optimal 

Four-Way Switch Box Routing Structures of FPGA Greedy Routing 
Architectures,” Integration, the VLSI Journal. Vol. 25, pp. 137-159, 
1998. 

[ 111 Y.L. Wu and D. Chang, “On NP-Completeness of 2-D FPGA Routing 
Architectures and a Novel Solution,” Proceedings of International 
Conference on Computer-Aided-Design 1994, pp. 362-366. 

FPGAs,” IEEE Trans. on Computer-Aided Design of Integrated 
Circuits and Systems, Vol. 16, No. 5 ,  pp. 506-518, May 1997. 

[13] Y.L. Wu, S. Tsukiyama and M. Marek-Sadowska, “On computational 
complexity of a detailed routing problem in two-dimensional 
FPGA’s”, in Proc. 4th Great Lakes Symp. VLSI, Mar. 1994. 

[14] Y.L. Wu, M. Tsukiyama and M. Marek-Sadowska, “Graph based 
analysis of 2-D FPGA routing,” IEEE Trans. Computer-Aided 
Design 15(1)(1996) 33-44. 

[15] Vaughn Betz and Jonathan Rose, “A New Packing, Placement and 
Routing Tool for FPGA Research,” Seventh International Workshop 
on Field-Programmable Logic and Applications (Available for 
download from http://www.eecg.toronto.edu/-jayar/software.html), 

[12] Y.L. Wu, and M. Marek-Sadowska, “Routing for Array Type 

1997, pp. 213-222. 
[I61 S. Yang, “Logic Synthesis and Optimization Benchmarks, Version 

3 . 0  Tech. Report, Microelectronics Centre of North Carolina, 1991 

208 

http://www.eecg.toronto.edu/-jayar/software.html

