CS295-6 Introduction to Nanocomputing The Emergence of Nanotechnology John E Savage

How Small is a Nanometer?

- In PhD thesis Einstein estimated size of sugar molecule to be about one nanometer (nm).
- One hydrogen atom has diameter of 0.1 nm (one angstrom).
- A bacterium has a length of about 1,000 nms.

• A nanometer is very small!

What is Nanotechnology?

- Materials have at least one dimension that is one to 100 nms in length.
- They are designed through processes that exhibit fundamental control over the physical and chemical attributes of molecular-scale structures.
- They can be combined to form larger structures.

Mihail C. Rocco NSF

"There's Plenty of Room at the Bottom" Richard Feynman, 1959

- Richard Feynman gave a <u>talk</u> at 1959 APS meeting arguing for exploration of the nanometer world.
- Envisioned vast amounts of data in small space
 - 120,000 Caltech volumes on a library card
- Forecast tiny machines manufacturing even tinier ones through multiple stages.
 - Is his vision realistic?

The Drexlerian Vision

- In <u>Engines of Creation</u>. K. Eric Drexler, 1986, extended Feynman's vision.
 - "Molecular assemblers will bring a revolution without parallel ..." and "... can help life spread beyond Earth ..."
 - "These revolutions will bring dangers and opportunities too vast for the human imagination to grasp ..."
- These ideas are the source of controversies.
 - Nobelist Smalley and Drexler <u>debate</u> molecular manufacturing.
 - Drexler's forecasts trouble <u>Bill Joy</u> of Sun Microsystems.

New Science and Technology Emerge

- Nanotechnology operates at new scale.
- "Nanotechnology" coined by Tokyo Science University Professor <u>Norio Taniguchi</u> in <u>1974</u>.
- Objects are so small that their properties lie between classical and quantum physics.
- Placement of such objects can be done either
 - Deterministically but very slowly e.g., with the atomic force microscope (AFM).
 - Nondeterministically and fast using processes that introduce randomness.

Examples of New Nano Materials

- Carbon nanotubes
 - Used to make strong, light materials
- Silicon nanowires
 - Proposed for use in crossbar memories and ultra-sensitive detection of antibodies.
- Porous materials with nanometer-sized pores
 - Useful in filtration of micro-organisms.
- Nanometer-sized Zinc Oxide particles
 - Used in transparent sunscreens.

Computational Nanotechnology

• The goals:

- To make ever smaller computing components.
- To understand computing under uncertainty and with faults.
- The challenge:
 - To model and analyze non-deterministic assembly
 - To cope with faults
 - To communicate with physical nanotechnologists

Moore's Law Clashes with Murphy's Law

- **Moore's Law**: The number of transistors on a chip approximately doubles every two years.
- Murphy's Law: If something can wrong, it will.
- As chip densities increase, it is inevitable that chip designs are no longer predictable.
- Chip assembly becomes stochastic!

Emerging Models of Computation

- Nanoelectronic Computing
- DNA Computing and Templating
- Synthetic Biology
- Quantum Computing

Most Exciting Research Results

- Nanoelectronic device development
- Device integration into simple architectures
- Architectural and performance analysis

Most Exciting Open Research Areas

- Fault tolerance
- Stochastic Assembly
- New emerging models

Overview of the Course

- Focus primarily on nanoelectronic computing
 - Crossbars, related technologies and analysis

- Exposure provided to
 - DNA Computing and Templating
 - Synthetic Biology
 - Quantum Computing
 - Basic introduction
 - Schor's theorem

A Brief History of Computer Technologies

• Let's look at some of the key signposts in the development of computer technology.

Early Computers

- Jacquard Loom 1746
 - Punched cards control weaving

- Babbage's Analytical Engine 1834
 - Mechanical computer, punched-card data input
 - Mill is shown above

Early Computers

- Hollerith electric tabulator/sorter
 - Punched-card sorter collated 1890 census data that was forecast to take more than 10 years!

Computers in the 20th Century

• Turing machine

• Two-way tape for data input and storage and finitestate machine for reading/writing on tape.

Thousands of "computers" existed in 1940s

Computers in the 20th Century

• The von Neumann model

- Stored programs
- Fetch-execute cycle

20th Century *Programmable* Computers

- Atanasoff (1940) linear eqn. solver, tube-based
- Zuse's Z3 (1941) relay-based computer
- Colossus (1943) broke Enigma code, tube-based
- Mark I (1944) general-purpose, relay-based
- ENIAC (1946) general-purpose, tube-based

The Computer Revolution Begins

- Transistor invented at Bell Labs in 1947
 - Semiconductor switch replaced vacuum tube.

• By 1958 IBM was selling the 7070, a transistorbased computer.

The Integrated Circuit

- Integrated circuits invented independently in 1959 by Jack Kilby and Robert Noyce
 - Transistors and wires combined on a chip through photolithography.
 - "What we didn't realize then was that the integrated circuit would reduce the cost of electronic functions by a factor of a million to one, nothing had ever done that for anything before" -Jack Kilby

Photolithography

• This is the process of transferring a pattern to the surface of a chip using light.

The VLSI Revolution

- Intel 4004 CPU placed on a chip 1969
- By late 1970s very complicated chips were being assembled.
- New challenges were encountered:
 - Specifying large chip designs simply
 - Simulating the electronics
 - Laying out chips
 - Designing area efficient algorithms
 - Understanding tradeoffs through analysis

VLSI Emerges as an Academic Area in Late 1970s

- Publication of Introduction to VLSI by Carver Mead and Lynn Conway in 1980.
- Specifying large chip designs
 - Hardware design languages invented
- Simulating the electronics
 - Electronic simulators, such as Spice, developed
- Laying out chips
 - Computer-aided design emerges
- Area-efficient algorithms and theory
 - VLSI layouts and AT² lower bounds developed

The VLSI Model

- Wires have width, gates have area.
 - The **feature size** of a VLSI technology is the size of the smallest feature (wire width/separation)
- The area of gates is comparable to the square of feature size
 - The area occupied by wires often dominates the area of gates.

The VLSI Crisis

- Moore's Law doubling of # transistors/chip every 18 months – coming to an end.
- Chip factories now cost \$3-5 billion to construct!
- Devices are so small that electronic models are no longer accurate; expensive redesign needed to meet systems requirements.

What's Next?

- Nanotechnology of course!
- Nanotechnology is a broad term that includes biological elements, molecular electronics, and quantum computing.
- We give an overview of these technologies but focus primarily on the systems issues arising from nano-electronics.

Emergence of Nanotechnology

- Bucky balls (C₆₀) discovered at Rice in 1985
- lijima discovers carbon nanotubes in 1991

Lecture 01 Overview

Properties of Nanotechnologies

- Methods of assembly are either very slow and precise or fast and non-deterministic.
- Fast assembly is good at creating fairly regular structures.
- There is hope that through DNA templating non-regular structures will be possible

The Crossbar – A Promising Nanotechnology

• Two sets of parallel wires with switches at their intersections.

Crossbars are used as routers and memories today.

NRAM – Nonvolatile RAM Crossbars of Carbon Nanotubes

 Electrostatic attraction used to make contacts, repulsion breaks them.

• Nantero's claims:

- Permanently nonvolatile memory
- Speed comparable to DRAM/SRAM
- Density comparable to DRAM
- Unlimited lifetime
- Immune to soft errors

• No behavioral models yet presented

Many Other Examples of Computational Nanotechnology

- Crossbars realized with silicon nanowires (NWs).
- Many issues concerning controlling NWs with mesoscale wires (MWs).
- Reliable computation with unreliable elements.

Goals of the US <u>National</u> <u>Nanotechnology Initiative</u>

- Maintain a world-class research and development program aimed at realizing the full potential of nanotechnology;
- Facilitate transfer of new technologies into products for economic growth, jobs, and other public benefit;
- Develop educational resources, a skilled workforce, and the supporting infrastructure and tools to advance nanotechnology; and,
- Support responsible development of nanotechnology.

CS Seminar Monday on Molecular Self-Assembly

Efficient Discrete-Event Simulations of Molecular Self-Assembly by Russell Schwartz

Monday Sept 12, 4-5pm in CIT 368