
1

Application of Parallel Processors to Real-Time Sensor Array Processing1

David R. Martinez
MIT Lincoln Laboratory

dmartinez@ll.mit.edu

1 This work is sponsored by DARPA/ETO, under Air Force Contract F19628-95-C-0002. Opinions, interpretations, conclusions, and

recommendations are those of the author and are not necessarily endorsed by the United States Air Force.

Abstract

Historically, most radar sensor array processing has
been implemented using dedicated and specialized
processing systems. This approach was necessary
because the algorithm computation requirements were
several orders of magnitude higher than any commercial
supercomputer could provide in an acceptable size,
weight and power. Most recently, with the interest by the
military to employ commercial-off-the-shelf (COTS)
technology, and the rapid advances in computation
throughput by COTS supercomputers, we are able to
meet the present algorithm requirements with COTS
massively parallel processors (MPPs). However, there
are still many issues to be overcome to get the most out
of a parallel processor for our application. Some of the
important issues are the balance between high
computation throughput and total exchange
communication over the processor network, message
passing or shared memory access with high
communication throughput for small message sizes, and
the scalability of these machines to more demanding
algorithm and application requirements. In this paper we
present the application requirements, review the
important computational kernels, and conclude with our
experiences in evaluating representative MPPs.

1. Introduction

The next advances in electronically phased-array
radars will be in the implementation of adaptive signal
processing algorithms [1],[2]. Many of today’s military
assets implement very conventional signal processing
techniques. As the need for battlefield superiority
increases, many of the present military platforms will
undergo major upgrades in COTS computing
technology. Supercomputers will play a very important
role in these upgrades because of the cost-to-
performance ratio advantage provided by COTS parallel

processors relative to an all custom solution, and also
because of the flexibility provided by a programmable
system in being able to download different types of
sensor array processing algorithms. There will still be
sections in the processing chain that can not be
economically solved with COTS programmable
processors. In these instances, we will employ COTS
interfaces but the processing will be performed using
very large scale integration (VLSI) circuits, designed for
application-specific functions.

Sensor array processing demands very high
computation throughput in real-time. The example used
throughout this paper describes representative
requirements of space-time adaptive processing. The
typical computation throughput requirement ranges from
100 to 1000 billion operations per second (GOPS). This
operation throughput results from the aggregate of
operations performed for digital filtering, fast Fourier
transforms, adaptive matrix inversion and matrix
multiplies on multiple sensor data channels. One can
reach these levels of throughput by concatenating a large
number of processors in a pipeline fashion. The problem
with this approach is that the demands are not just in
computation throughput, but also in latencies, on the
order of a few seconds. This application is well matched
to parallel processors to meet both the computation and
latency requirements.

Parallel computers, organized with a number of low-
cost, off-the-shelf microprocessors, offer a very
attractive solution. However, there are a number of
challenges faced by parallel computers to reach the high
computation rates demanded by the application. One
important challenge is the ability to break up the
application problem into enough degrees of parallelism
(DOP) such that the processing tasks can be performed
concurrently [3].

Another important challenge for these parallel
computers is the ability to do a total exchange of the data
within a minimum latency and a maximum bandwidth.
This all-to-all communication is particularly important

2

for sensor array processing because the sequence of
operations must be performed on multiple dimensions of
the input sensor data. For example, digital data filtering
is normally performed on a channel-by-channel
independent basis. However, the matrix inversion is
performed by combining multiple sensor channels.
Therefore, a large bisection bandwidth, balanced with
the total computational power of the machine, is needed
to reach the requisite performance.

In addition to raw power in processing and
communication, we are very interested in standards for
communication and signal processing software libraries.
The message passing interface standard (MPI) [4] was a
significant step forward in formulating a set of
communication libraries that the parallel processing
community could implement to maintain portability
across machines, that comply with a distributed memory
architecture. More recently, a number of computer
manufacturers have put forward another standard,
referred to as OpenMP, perhaps better suited to shared
memory architectures [5]. We are also starting to see
efforts in standards for signal processing software
libraries targeted at real-time implementations. The
Defense Advanced Research Projects Agency (DARPA)
has started an effort to standardize vector signal and
image processing (VSIP) library functions [6]. The VSIP
standardization has been principally focused, so far, on
functions operating on a single microprocessor. The
communication standards, like MPI or OpenMP, are
mostly limited to nonreal-time applications. DARPA has
also started to extend MPI into real-time [7]. These
standards are very important to maintain portability in
legacy code, and therefore to minimize the software
investment.

In this paper we describe the application of
supercomputing systems to the very challenging problem
of real-time sensor array processing, and present our
experiences in prototyping a class of MPP systems. The
remainder of the paper is organized as follows. Section 2
presents an overview of the sensor array processing
algorithms. In Section 3, we formulate the architecture
best suited for our application, and also address the
CPUs and interconnection networks used in typical
implementations. Section 4 describes experiences in
benchmarking a class of sensor array processing
algorithms on different types of parallel processor
systems. Section 5 summarizes our conclusions.

2. Sensor array processing algorithms

The computational requirements in radar sensor array
processing arise from the need to cancel unwanted
interference and improve the information signal-to-noise
ratio [8]. The mainbeam clutter (ground clutter coming
through the mainbeam of the sensor antenna) and the

sidelobe clutter (ground clutter interfering with the signal
of interest through the antenna sidelobes) are typically 50
to 60 dB higher than the signal. Therefore, the digital
processing algorithms must be able to null the interfering
signals and gain in signal relative to residual noise to a
point that a small target can be detected and tracked.
Many sets of adaptive antenna weights (ranging from
100 to 1000) must be computed in real-time. Each
adaptive computation requires a matrix inversion within
a latency of less than milliseconds to seconds.

However, prior to the computation of the adaptive
weights, the input sensor data must be conditioned to
meet the interference cancellation requirements stated
earlier (50–60 dB). The data conditioning is performed
by filtering the data using a combination of finite or
infinite impulse response filters (FIR and IIR filters) and
fast Fourier transform (FFT). These computations must
be completed in milliseconds. The aggregate in
operations, for data conditioning, adaptive weight
computation and application, imposes computation
throughputs ranging from 100 to 1000 GOPS/sec, within
a latency of less than a few seconds. Parallel processors
are well matched to these requirements. In the next
sections, we address each processing stage and the key
computational kernels in more detail.

2.1 Signal processing functions

Figure 1 illustrates the order of magnitude in data and
computation throughput requirements, in parametric
form, at each processing stage. This signal processing
flow is typical of space-time adaptive processing. Data
arrive from the ADCs at a rate commensurate with the
output sampling rate and the number of channels. For
example, for an ADC with a sampling rate of 100 million
samples per second (two bytes per sample), and the
number of channels ranging from 10 to 100, we are faced
with an input data rate in the range of 2 to 20 billion
bytes per second (GBytes/sec).

This large data rate must be processed first through a
set of FIR filters. Data filtering is necessary, as the first
step in the processing flow, to convert the incoming real
data to complex in-phase and quadrature samples, and to
pre-condition the data for subsequent processing. The
FIR filtering, in computation throughput, is proportional
to the output data bandwidth, the number of sensor
channels and the length of the filter (number of taps).
The output bandwidth is commonly a factor less than the
input data rate. A typical decimation factor ranges from 2
to 4. Therefore, the data output from the FIR filtering
ranges from 500 MBytes/sec to 10 GBytes/sec. For this
example with tens to hundreds of channels, and a number
of taps equal to 256, we can reach a computation
throughput ranging from tens to hundreds of sustained
GOPS/sec. Clearly for the upper range in computation

3

(TERAOPS/sec), it is most effective, in size, weight,
power, and cost, to employ dedicated VLSI, constructed
to perform very specific functions. However, as the
processing capability increases for off-the-shelf
programmable microprocessors, we can bring more and
more COTS parallel processing towards the front-end of
the processing flow.

Figure 1. Signal processor system
complexity.

Doppler filtering follows FIR filtering, as shown in
Figure 1. The data throughput is on the same order of
magnitude as the output of the FIR filtering function
(500 MBytes/sec to 10 GBytes/sec). The computation
throughput is about one to two orders of magnitude less
than FIR filtering, because of the FFT being proportional
to Log2 of the number of pulses transmitted by the sensor
system (CPI x PRF). Therefore, the computation
throughput at the Doppler filtering stage ranges from one
to tens of sustained GOPS/sec. However, in contrast to
the FIR filtering function where we normally operate in
the range dimension, for Doppler filtering we have to
operate on a cumulative set of radar pulses. If these
operations are mapped to parallel processors, we are
required to perform either an in-place corner turn or a
global corner turn. The choice depends on whether there
is enough memory at the nodes containing each sensor
channel to facilitate an in-place data transpose. Further
discussion related to algorithm mapping to a parallel
architecture is presented in the next subsection.

After completing the data pre-conditioning through
the FIR and Doppler filtering operations, we are now
ready to perform the jamming and ground clutter
interference suppression. As shown in Figure 1, there are
two fundamental steps. We first compute adaptive
weights and then apply the weights to the data to form
output beams.

The computing of the adaptive weights consists of
inverting a covariance matrix R constraint to the steering
vectors V. The computation of the adaptive weights is

proportional to DOF3; where DOF represents the number
of rows in the matrix. For the sensor array to adapt to the
changing environment in real-time, many sets of
adaptive weights must be computed concurrently over a
time commensurate with a coherent processing interval
(CPI). This time interval ranges from tens to hundreds of
milliseconds. The data input rate into the adaptive weight
computation stage depends on the number of samples
used to train the weights. The training samples (i.e.,
columns in a training data matrix) range from 2xDOF to
5xDOF. The computation throughput, because of the
DOF3 growth, can be on the order of tens to hundreds of
sustained GOPS/sec. The parallel processor peak
throughput will range from 10 to over 1000 GOPS/sec,
depending on the algorithm parameters.

The adaptive weights must then be applied to the
sensor data to cancel the jamming and clutter
interference. This operation is often referred to as
beamforming. Typically, there is a data word length
growth, from the ADC 14 bits to 32-bit words by the
time the adaptive weights are computed and applied.
This word length growth is due to the signal-to-noise
ratio gain achieved through the front-end Doppler
filtering. The data bandwidth, into the adaptive
beamformer, ranges from 1 GBytes/sec to 20
GBytes/sec. The computation throughput for the
adaptive weight application is proportional to the data
bandwidth, the DOF and the number of beams to form
(BT). For the parameters chosen earlier, 1 GBytes/sec to
20 GBytes/sec, 100 DOF, and a few beams, the
computation throughput at this stage can range from
hundreds to thousands of sustained GOPS/sec.

A very important requirement of the parallel
processor for effectively implementing both the weight
computation and application is the ability to do a global
corner turn. This total exchange transformation stresses
the bisection bandwidth of the machine. Techniques
discussed by Sundar, et al. [9] are suited for the global
corner turn. Ideally, we desire to hide this
communication time relative to the total latency
available for the computation. We also desire a parallel
processor that has a bisection bandwidth that grows at a
constant rate as its available computational throughput is
increased. Teitelbaum [10] presented a thorough analysis
of bisection bandwidth for a class of processors with a
crossbar interconnect topology.

The last step, shown in Figure 1, is referred to as post-
nulling processing. At this stage the data input has been
decimated to the few beams of interest. The data
throughput is reduced to less than a few GBytes/sec. The
computation throughput is proportional to the input
bandwidth and the number of beams of interest. The
computation throughput is in the range of a few
GOPS/sec. For this last processing stage, COTS MPPs
can easily meet the computational requirements.

W1

W2

W3

WN

= Weights
= Covariance Matrix
= Steering Vector

W
R
V

Beamforming
Weights

Estimation

W = R-1V

E
q

u
al

iz
ed

 C
h

an
n

el
s

Target
Reports

FIR
Filtering

Doppler
Filtering

Beamforming Post-Nulling
Processing

Adaptive
Weights

Bandwidth
No. of Sensors
Taps

Degrees of Freedom
Total Beams

BW =
N =
T =

DOF =

Definitions

Radar
Data

O(BW • B T)O(BW • DOF • BT)

O(DOF 3/CPI)

O(BW • N • LOG2 (CPI • PRF))O(BW • N • T)

O(BW A/D • N)

Data
Rate

Σ
Beam
Output

307196a

MIT Lincoln Laboratory

BT =

4

However, the software programming is more complex
than earlier processing stages.

In a modern adaptive signal processor we begin with a
very large data input rate (GBytes/sec) and high
computation throughput (TERAOPS/sec). We enhanced
the signal of interest over the background noise by
applying advanced signal processing techniques. The
resulting output data rate is on the order of hundreds of
MBytes/sec. However, the data throughput, computation
throughput, and interconnect network bandwidth, for the
front-end digital filtering, adaptive weight computation
and application, can stress the capability of the most
advanced supercomputer systems. The parallel processor
chosen, for embedded array signal processing
applications, will also need to meet stringent
ruggedization and form factor requirements.

2.2 Algorithm mapping and computational
kernels

The sensor array processing algorithms can be
mapped to a parallel processor by exploiting several
DOP available in the data. McMahon [11] presented
several examples of mapping a class of adaptive sensor
array processing algorithms in to an embedded signal
processor. McMahon demonstrated the required
balancing between the DOP available in the data and the
available computation and memory at the node. The
DOP available in the data vary significantly from
application to application. Unfortunately, the algorithm
mapping today is a task done by hand since there are no
automated tools to effect this mapping directly with little
intervention by the user.

In the digital filtering stage, the data arrive from the
ADC on a channel-by-channel parallel format and all of
the filtering is done in either a range swath or a set of
pulses. Therefore, one can subdivide the computational
tasks in a channel parallel form by distributing the data
to multiple nodes; each node contains all of the range
and pulse data for that channel. The key computational
kernels to be performed are FIR or IIR filters and/or
FFTs. If we take, for example, typical communication
and computation throughputs, 2000 MBytes/sec and 100
GOPS/sec, respectively, the data can be broadcasted to a
set of nodes to operate on each respective channel in
parallel. For example, a system with 48 nodes requires
each node to hold several MBytes of data (for a few
hundreds of milliseconds in latency) and to sustain a
computation throughput of 2 GOPS/sec. In today’s
supercomputers, over 64 MBytes per node is sufficient to
store data, the application program, and the local
operating system and library functions. The problem is in
computation. Today a single CPU is not able to reach a
sustained floating point throughput of 1 GOPS/sec.

Therefore, depending on the delivered efficiency2 from
the node, we are forced to split the computational kernels
across several microprocessors. This problem is
exacerbated when we are required to meet the upper end
of the data and computation requirements (several
GBytes/sec and TERAOPS/sec). It is important to
remember that at this stage of the processing, the
maximum latency allowed is on the order of tens to
hundreds of milliseconds (a radar coherent processing
interval, or CPI) to meet real-time.

Once we completed the digital filtering, we must do a
global corner turn. In real-time we must do a global
corner turn commensurate with the real-time data
throughput. For example, over a time interval of 100
milliseconds, the total data exchange would be 100
MBytes (for the low end of the data rate, 1 GBytes/sec).
If we want to distribute these data across, for example,
96 nodes, we would need to transfer a message of about
1 MByte per node. This small size message begins to
stress the communication network to a point where the
startup latency can dominate the achievable
communication throughput. Thus, we need high
bisection bandwidths (on the order of several
GBytes/sec), but with the ability to achieve a sustainable
bandwidth close to the maximum hardware
communication throughput for small message sizes. As
we increase the data throughput to 20 GBytes/sec, we
also demand more computation and higher bisection
bandwidth. The ability of a processor to scale with a
balanced architecture between bisection bandwidth and
aggregate computational speed is very desirable for
sensor array processing. The work by Zhang and Xu [12]
presents techniques for quantifying the scalability of a
multiprocessor system.

In the adaptive beamforming stage (including both
weight computation and application) for each Doppler,
we compute a set of adaptive weights and apply the
weights to the same Doppler data. Thus, at this stage of
processing the operations are Doppler parallel. Let us
take the example with the low end of the data
communication and computation throughputs (1
GBytes/sec and 100 GOPS/sec, respectively). We
assume a time interval of 100 milliseconds. The number
of available processing nodes is assumed to be 96 (same
as the DOP available in the data). Typical memory size
of greater than 64 MBytes at the node in today’s
supercomputers is sufficient to hold the distributed
sensor data and other ancillary data. The problem is
again with the computation per node. For this example
each node must perform about 1 GOPS/sec of sustained
floating point throughput. Therefore we are forced to
divide the problem into a level of medium-grain

2 Efficiency is defined as the ratio of delivered processing

throughput over the peak throughput.

5

partitioning across several microprocessors. For the
upper end of the communication and computation
requirements, we would be forced to go into a fine-grain
mapping of the algorithm across multiple
microprocessors. Today’s parallel processors are dismal
in the implementation of fine-grain partitioning, resulting
in efficiencies of less than 10%.

The key computational kernels at the adaptive
beamforming stage are matrix inversions for the adaptive
weight computation, and matrix multiplies for the weight
application. QR factorization techniques are often
employed in the matrix inversion. The efficiency
achieved for a QR factorization kernel varies depending
on the specific QR algorithm used and the particular
microprocessor (RISC or DSP based).

3. Application of parallel processing systems

The supercomputing industry is undergoing a
significant resurgence in the development of parallel
processing systems. We are beginning to see
architectures derived from commodity microprocessors
and off-the-shelf DRAM chips. Companies like IBM,
SGI/Cray, and HP/Convex are putting significant effort
into systems with the capability to grow from the “laptop
to teraflops.” Other important players in the parallel
processor market are Sun Microsystems and COMPAQ
computers. One main distinguishing difference among
these systems is in their high speed interconnection
networks.

The future military upgrades will benefit from the
availability of COTS parallel processor systems, and the
implicit cost advantages over more custom solutions.
Some of these systems are able to meet the low end of
the requirements matrix. They are far from meeting
several GBytes/sec and tens of TERAOPS/sec of
sustained throughput requirements, discussed in the
previous sections, within an affordable form factor. In
this section, we address the architecture, classes of CPU,
and interconnect topology best suited for our application.

3.1 Processor architecture taxonomy

A complete analysis of processor architectures is
beyond the scope of this paper. Instead we like to adopt
the terminology and taxonomy presented by Kumar [13],
then proceed to identify the characteristics, within this
taxonomy, best matched to our sensor array processing
problem. Kumar classifies the taxonomy of a parallel
architecture by separating the different elements of an
architecture into the following attributes:

•Control mechanism
•Address-space organization
•Processor granularity

•Interconnection networks

As for the processor control mechanism, we can opt
for a single instruction stream, multiple data stream
(SIMD) architecture, or choose a multiple instruction
stream, multiple data stream (MIMD) architecture. For
the sensor array processing application, the architecture
best matched to the problem is MIMD. There are several
reasons for this choice. First, even though the application
is highly data parallel, typical SIMD processors have
very anemic microprocessor engines resulting in a need
for thousands of microprocessors to meet the latency
requirements. Processor efficiencies catastrophically
drop when the problem is partitioned among those many
processors since the data set does not have that many
degrees of parallelism (thousands). The second important
reason for selecting a MIMD architecture is the ability to
implement a different processing function in one part of
the parallel processor while concurrently performing a
separate processing stage on another section of the
processor. For example, we could allocate a set of
processors to perform adaptive beamforming on earlier
data, while another set of processors are performing
digital filtering on more recent incoming data.

The best address-space organization for our
application is not as easy a choice as the selection of the
control mechanism. There are fundamentally two classes
of address-space organizations: a message-passing
architecture and shared-address-space organization.
Message-passing architectures require that the
programmers manage the sending and receiving of
messages across the network. In contrast, the shared-
address-space architecture provides the programmers
with the hardware mechanism for accessing variables
across a single memory address space; the memory
might be physically located within a cluster of memory
banks, or physically distributed at each of the processor
nodes.

In the case of memory physically distributed at each
of the processor nodes, when the time to access a remote
memory location is more than the time to access a local
memory location (typically the case), the architecture is
referred to as nonuniform memory access (NUMA). If in
addition to NUMA, the parallel processor also supports
cache coherence to make sure that copies of the same
variables, present in different remotely located caches,
are updated as modifications are made by the
microprocessors, then the architecture is categorized as
cache coherent-NUMA (CC-NUMA). Programmers tend
to favor a CC-NUMA architecture over a message
passing architecture, because of the ease in
programming. The best architecture for the sensor array
processing problem is one with the lowest startup latency
for small messages and the highest communication
bandwidth. This way we would devote most of the

6

sensor timeline to computation, instead of spending a
major portion of this timeline communicating data.

A MIMD control mechanism is found in several of
today’s MPPs using a message-passing organization
(e.g., Mercury, Sky, CSPI, or Intel Paragon computers),
or with a shared-address-space organization (e.g.,
SGI/CRAY or HP/Convex computers). Examples of CC-
NUMA architectures are the SGI/CRAY Origin 2000 or
the HP/Convex Exemplar.

3.2 Classes of microprocessors

Microprocessors fall into the class of either complex
instruction set computer (CISC) like the Intel Pentium
microprocessor, the reduced instruction set computer
(RISC) like the DEC Alpha microprocessor, or digital
signal processors (DSP) like the Analog Devices
SHARC microprocessor. For the last several years, all of
these microprocessors have enjoyed the advances in
integrated circuits, resulting from reduction in
lithography feature size, as predicted by Gordon Moore
of Intel (known as Moore’s law). Figure 2 illustrates a
trend in microprocessor evolution [14],[15]. Yu predicts
that by the year 2006, we will have microprocessors with
over 350 million transistors operating at 4 GHz clock
speeds. The limiting factor will be memory speed in and
out of the microprocessor. This limitation is one of the
reasons why more of the microprocessor transistors are
being dedicated to on-chip memory as shown in Figure
2.

1000

100

10

1

0.1

0.01

0.001

10

1

0.1

0.01

10,000

1,000

100

10

1

10

8

6

4

2

0

A
L

P
H

A
 2

11
64

H
P

 P
A

-7
30

0L
C

P
O

W
E

R
P

C
 6

20

M
IP

S
 R

10
00

0

P
E

N
T

IU
M

 P
R

O

H
P

 P
A

-8
00

0

U
L

T
R

A
S

P
A

R
C

P
O

W
E

R
P

C
 6

04
e

M
IP

S
 R

50
00

M
IC

R
O

S
P

A
R

C
-2

T
R

A
N

S
IS

T
O

R
 C

O
U

N
T

 (
M

ill
io

n
s)

LOGIC

OTHER

1971 1976 1981 1986 1991 1996 2001 2006 2006199819901982197419661971 1981 1991 2001 F
O

U
N

D
R

Y
 F

A
B

R
IC

A
T

IO
N

 C
O

S
T

(R
el

at
iv

e
to

 1
99

5
$M

)

L
IN

E
 W

ID
T

H
 (

µm
)

T
R

A
N

S
IS

T
O

R
 C

O
U

N
T

(M
ill

io
n

s)

YEAR YEAR YEAR

PENTIUM
PRO

PENTIUM
PRO

PENTIUM
PRO

PENTIUMS
PENTIUM

i386
i486

i486

i386

i386

80286

80286

8086

8086

8085

8080

8008

8080

4004

4004

MOORE'S LAW
(×2 /18 Months)

TODAY'S TRANSISTOR COUNT

• GOOD NEWS (2006 Projections)
 – 350 M TRANSISTORS
 – 0.1 µm LINE WIDTH
 – 4 GHz CLOCK SPEED

• BAD NEWS
 – COMMUNICATION SPEEDS
 WILL LIMIT SYSTEM PERFORMANCE

IMPORTANT MESSAGE

SOURCE OF DATA: IEEE MICRO, "CELEBRATING THE MICROPROCESSOR," DECEMBER 1996

INTEL'S MICROPROCESSOR FAMILY — AN EXAMPLE

318988-4B

Figure 2. Trends in microprocessor evolution.

We can arrange these commodity microprocessors in
different configurations supported by the interconnection
network (discussed later). The granularity of the
programming implementation will depend on how
efficiently we can concurrently utilize several
microprocessors. For example, if the computational
kernel (FIR, FFT, or matrix inversion) is partitioned such

that for every one or few instructions a data word is
communicated in the network, from and to other
microprocessors, then this program partitioning is
referred to as fine-grain. On the other hand, if the
computational kernel is partitioned such that many
program instructions are executed before a data word is
accessed, from one to another microprocessor, then this
program partitioning is referred to as course-grain.
Categorically, we have found that approaching coarse-
grain algorithm partitioning is the preferred choice for
the sensor array processing problem. This result is a
direct outcome of a degrading network communication
bandwidth as the message size is decreased. For a small
message size, the communication is dominated by startup
latencies. Therefore, we prefer very few but powerful
microprocessors per node. Based on the typical sensor
parameters presented earlier, microprocessors with
greater than 1 GOPS/sec of sustained floating point
throughput at the node.

3.3 High speed interconnection networks

As alluded to by Kumar, message-passing address-
space organization or shared-address-space memory
architectures can be interconnected via different types of
interconnection networks.

The most appropriate network topology must result in
a low latency (low startup cost) and high communication
bandwidth for a small message size. In some of our
prototype demonstrations, we require to move KBytes of
data across hundreds of MBytes/sec links. The
performance of the interconnection network will be
influenced by not just the startup hardware latency or the
communication bandwidth over a hardware link, but also
by the communication functions used to set up and
transfer a message (software latency). In several of our
measured results, we have been unable to achieve greater
than 50% of the available total peak bandwidth for a few
KBytes in data size. This result is one example showing
why the sensor array processing algorithms are best
matched to a coarse-grain partitioning, with limited
communication across the network.

4. Benchmark results

For the last six years, MIT Lincoln Laboratory has
been engaged in benchmarking several representative
classes of parallel processor architectures. We concluded
that an architecture based on a MIMD control
mechanism resulted in the highest levels of
multiprocessor efficiency ranging from 21% to 43%. The
efficiency varied depending on how much assembly code
was used in the implementation of compute intensive
functions.

7

Another important lesson learned was the
demonstration that a medium to coarse-grain mapping
was more suitable to our application than a fine-grain
mapping approach. From these results we also concluded
that a 25% parallel processor efficiency was acceptable
as an overall figure of merit. The total effort of
implementing the benchmark suite on a single parallel
processor system ranged from 12 to 15 man-months.
Another benchmark suite containing a similar set of
algorithms for evaluating embedded processors have
been developed by MITRE [16].

5. Conclusions

The application of supercomputers to a real-time
sensor array processing problem is very demanding. We
require tens of GBytes/sec of data I/O and similar order
of magnitude in bisection bandwidth. The computation
throughput ranges from hundreds of GOPS/sec to over
several TERAOPS/sec, depending on the specific
algorithm parameters. Memory is not as severe a
requirement as communication and computation, because
we distribute the data across tens to hundreds of nodes.

Fortunately, the sensor array processing problem has
several degrees of parallelism inherent in a multi-
dimensional data. We exploit these DOP to achieve
concurrency across the processor architecture. This
feature makes the application very well matched to a
parallel processor system to meet the throughput within
the sensor’s allowed latency (milliseconds to seconds).

Through many benchmark experiments, we have
found that a MIMD architecture is best matched to the
application. The software programmers also favor a CC-
NUMA class of memory organization because of the
ease in programming. The main challenge for the
interconnection network is in the ability to sustain a large
percentage of peak bandwidth for a message size less
than 1 MByte. Today, the low communication bandwidth
leads us to a coarse-grain algorithm partitioning. Finally,
the ideal processor architecture for the application would
have powerful microprocessors at the node capable of
sustaining over 1 billion floating point operations per
second.

References

[1] A. Farina, Antenna-Based Signal Processing Techniques

for Radar Systems, Artech House, Inc., 1992.
[2] D. Martinez, F. Lee, and M. Davis, “Space-Time

Adaptive Technology Applied to Airborne Early Warning
Radars,” 41st Annual Tri-Service Radar Symposium, June 27–
29, 1995.

[3] K. Hwang, Advanced Computer Architecture:

Parallelism, Scalability, Programmability, McGraw-Hill, Inc.,
1993.

[4] W. Gropp, E. Lusk, and A. Skjellum, Using MPI:
Portable Parallel Programming with the Message-Passing
Interface, The MIT Press, 1994.

[5] OpenMP: A Proposed Industry Standard API for Shared
Memory Programming, October 1997, http://www.openmp.org.

[6] D. Schwartz, “VSIP: A Standard API for Vector Signal
and Image Processing,” Proceedings of the High Performance
Embedded Computing Workshop, Lincoln Laboratory,
Massachusetts Institute of Technology, September 17–18,
1997, http://www.vsipl.org.

[7] A. Skjellum and A. Kanevsky, “Design and
Development of the Real-Time Message Passing Interface
(MPI/RT) Standard,” Proceedings of the High Performance
Embedded Computing Workshop, Lincoln Laboratory,
Massachusetts Institute of Technology, September 17–18,
1997, http://www.mpirt.org.

[8] J. Ward, “Space-Time Adaptive Processing for Airborne
Radar,” Lincoln Laboratory Technical Report #1015, 13
December 1994.

[9] N. Sundar, D. Jayasimha, D. Panda, and P. Sadayappan,
“Hybrid Algorithms for Complete Exchange in 2D Meshes,”
Proceedings of the 10th ACM International Conference on
Supercomputing, May 25–28, 1996.

[10] K. Teitelbaum, “Scalability of Crossbar Tree
Architectures,” Proceedings of the High Performance
Embedded Computing Workshop, Lincoln Laboratory,
Massachusetts Institute of Technology, September 17–18,
1997.

[11] J. McMahon and M. Sexton, “Mapping Analysis of
Advanced Processing on a Parallel Architecture,” Proceedings
of the High Performance Embedded Computing Workshop,
Lincoln Laboratory, Massachusetts Institute of Technology,
September 17–18, 1997.

[12] X. Zhang and Z. Xu, “Multiprocessor Scalability
Predictions Through Detailed Program Execution Analysis,”
Proceedings of the 9th ACM International Conference on
Supercomputing, July 3–7, 1995.

[13] V. Kumar, A. Grama, A. Gupta, and G. Karypis,
Introduction to Parallel Computing, The Benjamin/Cummings
Publishing Company, Inc., 1994.

[14] M. Slater, “The Microprocessor Today,” IEEEMicro,
Vol. 16, No. 6, December 1996.

[15] A. Yu, “ The Future of Microprocessors,” IEEEMicro,
Vol. 16, No. 6, December 1996.

[16] C. Brown, M. Flanzbaum, R. Games, and J.
Ramsdell, “Real-Time Embedded High Performance
Computing: Application Benchmarks,” MTR
94B0000145, MITRE, 1994.

