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Crossbar Demultiplexers for Nanoelectronics
Based on n-Hot Codes

Greg S. Snider and Warren Robinett

Abstract—Demultiplexers are expected to be key components
in interfacing submicrometer-scale and nano-scale electronic
circuits. Designing them is challenging because most nanoarchi-
tectures are limited to simple regular structures, such as crossbars,
and nanoelectronic circuits in general are likely to be plagued with
relatively high hard-defect and soft-error rates. Previous work
has shown how linear codes can be used to design defect-tolerant
demultiplexers using resistor or diode crossbars. We extend
those results with nonlinear codes, constructing resistor and
diode crossbar-based demultiplexers that have better electrical
characteristics and defect tolerance for a given area of the nano
substrate, at the cost of more complex address encoding circuitry.

Index Terms—Demultiplexing, encoding, fault tolerance, nan-
otechnology.

I. INTRODUCTION

DEMULTIPLEXERS have been proposed as a mecha-
nism for interfacing conventional, submicrometer-scale

electronic circuits to nanoelectronic circuits [1]–[4]. They are
appealing since they allow a small number of submicrom-
eter-scale wires (microwires) to control a larger number of
nano-scale wires (nanowires), thus providing a mechanism
for a CMOS circuit on a silicon substrate to interrogate and
configure a nanoelectronic “chip” residing on its surface.
Demultiplexers fit in well with many proposed nanoelectronic
architectures since they can be implemented in simple crossbar
structures.

A crossbar implementation of a demultiplexer uses a single
type of component, such as a field-effect transistor (FET), diode,
or resistor, configured in a subset of the crosspoints within the
crossbar [5]–[8]. Although appropriately configured FET and
diode crossbars might, in principle, provide excellent approxi-
mations to ideal demultiplexer behavior, they carry certain dis-
advantages with existing fabrication technology: limited cur-
rent density, forward-biased voltage drops, high impedance of
semiconductor nanowires (compared to metal nanowires), dif-
ficulty of configuration, and so on. Resistor crossbars are cur-
rently easier to fabricate and configure and offer the potential
of building demultiplexers with lower output impedances since
they can be built using metal nanowires, but present the chal-
lenge of approximating the nonlinear demultiplexer function
with linear components. In any case, nanoelectronic circuits will
likely contain a higher rate of hard defects and be more suscep-
tible to soft errors than CMOS circuits implemented with cur-
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rent technology, so we desire a certain amount of defect toler-
ance in our demultiplexers as well.

Linear coding theory [9] has been used as a foundation for cre-
ating defect-tolerant demultiplexers out of both diode crossbars
[10] and resistor crossbars [11], [12]. This paper explores using
nonlinear error-correcting codes as a foundation for building
both diode and resistor-based crossbar demultiplexers. We find
that such codes yield demultiplexers that better approximate
ideal demultiplexer behavior and that have a higher degree of
defect tolerance; the downside is that they require more complex
address encoding circuitry. While this encoding complexity
might make the approach unattractive in some scenarios, such as
memory bank design, there are other scenarios, particularly chip
configuration, where the complexity can be amortized by sharing
the address encoding circuitry among several demultiplexers.
All of the demultiplexer designs, whether based on linear or
nonlinear codes, require the designer to make trade-offs. Which
one is “better” for a specific application depends, of course,
on the application’s objectives. The nonlinear demultiplexers
presented here require more address encoding logic than those
based on linear codes, but provide better electrical performance,
particularly in the presence of defects.

II. IDEAL DEMULTIPLEXER

A demultiplexer is a logic component that uses a small
number of input address lines to select exactly one of output
data lines. For each output line, there must be at least one
pattern of voltages applied to the address lines that will cause
it to be selected while leaving the remaining lines unselected.
The properties of an ideal demultiplexer include the following.

1) A fixed output impedance (preferably zero) for all lines
when they are in the “selected” state; similarly, one would
hope for a single output impedance value for unselected
lines as well.

2) Defect tolerance, such that a few defective components
within the demultiplexer have no impact on correct func-
tioning.

3) Simple address encoding. Defect-tolerant, crossbar de-
multiplexers require simple, consecutive binary addresses
to be encoded into a larger, sparser address space. Since
this encoding requires additional circuitry, one desires this
to be as simple as possible to minimize area.

4) Fixed “selected” and “unselected” output voltages that are
widely separated so that they are easily distinguished and
that do not vary with different input addresses.

For simplicity, we will assume that our ideal demultiplexer
drives a voltage of 1.0 V on the selected output line and 0.0 V
on the remaining unselected lines. To measure the deviation of
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Fig. 1. Small resistor crossbar demultiplexer that selects one of six output
lines. The unencoded address is transformed to a larger encoded address which
drives the four address lines. The selected output data line (top horizontal line)
has the largest output voltage, while the remaining unselected lines have a
range of voltages spanning 0–0.5 V. The difference between the selected output
voltage and the largest unselected output voltage is called the margin. In an
ideal demultiplexer, the margin would be 1, while here it is only 0.5.

any particular demultiplexer from this ideal, we use the concept
of margin, which is defined to be the difference between the
worst (lowest) voltage ever driven on any selected output line
and the worst (largest) voltage ever driven on any unselected
line. For an ideal demultiplexer the margin would be 1; for the
demultiplexers we consider here, this value will range between
0 and 1. Fig. 1 illustrates a small, nonideal demultiplexer using
a resistor crossbar that has a margin of 0.5. We desire a high
margin; a circuit with zero margin would be unusable since one
could not distinguish between selected and unselected lines.

Depending on the nature of the target technology and the
usage envisioned for the demultiplexer, the relative importance
of the ideal multiplexer properties will vary. Insufficient margin,
for example, might cause burn-out or misconfiguration of cross-
point cells in some nanoelectronic technologies but not others.
Simple address encoding might be very important for imple-
menting the “row select” lines in memory banks so as to min-
imize support circuitry overhead, while encoding complexity
may not matter much for a chip configuration application if
the encoding hardware can be shared by multiple configuration
blocks within a chip (Fig. 2).

III. CODING THEORY FOR DEMULTIPLEXER DESIGN

This section gives the briefest of overviews of the parts of
coding theory relevant to demultiplexer design, and ties in
the theory with some concrete examples. We start with a few
definitions.

• A codeword is an ordered sequence of bits with a fixed
length. For example, “0001” and “1011” are both code-
words of length 4.

• The weight of a codeword is simply the number of 1’s in
that codeword. The codeword “1001” has weight 2, the
codeword “0000” has weight 0, and the codeword “1111”
has weight 4.

• The distance between equal-length codewords (known as
the Hamming distance) is the number of corresponding

Fig. 2. Sharing an address encoder among several crossbar demultiplexers.
This is useful for configuring nanoelectronic chips, which will likely contain a
large number of regions that need to be separately addressed and configured.

bit positions in which the two codewords differ. The code-
words “1001” and “1000” are a distance 1 apart since they
differ only in their final bit, while “1100” and “1011” are
separated by a distance of 3.

• A code is a set of codewords. The length of a code is
the number of bits in each codeword—all codewords
in a code must have the same length. An example
of a code with length 4 is .
We will call the code dense if it consists of all
possible codewords for that length, e.g., the code

is dense.
• The distance of a code (which we denote by ) is

the smallest distance between any two codewords in
the code. If all pairs of codewords have exactly the
same distance, the code is “equidistant.” The code

has a distance of 2 and also
happens to be equidistant. Dense codes always have a
distance of 1.

• A constant weight code consists of codewords
that all have exactly the same weight. The code

is a constant weight code,
while is not.

To be useful, nondense codes are generally constructed with
a distance greater than one. This makes it possible to detect
small numbers of bit errors which might occur when transmit-
ting a codeword from one place to another. For example, the
equal weight code has a distance of
two; taking any codeword from the code and altering one of its
bits produces a new codeword that is clearly not in the code
(since its distance from the original codeword is only 1)—and
we can therefore detect the fact that an error has occurred. If the
distance of a code is , we can detect up to bit errors
in a single corrupted codeword. Note that, for a dense code, the
distance is 1, and it is not possible to detect any bit errors. We
continue with definitions.

• An encoder maps the elements of a dense code onto
the elements of a sparser code whose distance is
usually greater than 1. For example, the encoder

maps
the codeword 00 onto 1000, 01 onto 0100, and so on. The
mapping is one-to-one and onto.
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Fig. 3. Encoding a dense code to a sparser code of greater length and distance.
The decoder recovers the original unencoded values.

• A decoder does the inverse operation, mapping a sparse
code onto a denser one, e.g.,

.

One important difference between an encoder and decoder is
that a decoder can be a many-to-one mapping. It is this property
that allows us in certain cases to detect and correct errors. A
typical scenario (Fig. 3) involves the encoding of data into a
sparser redundant code transmitting the encoded values over a
noisy channel and then decoding the possible corrupted received
values. If the noisy channel is not too noisy, and we are clever in
the way we construct the code and implement the decoder, the
decoder can correct a small number of errors introduced by the
transmission.

A. Relevance to Demultiplexers

An ideal demultiplexer maps a dense code onto a
sparse, weight-1 code, such as

. We want to build such an encoder,
but we are forced to do so using a limited palette of
components—either resistors or diodes—a fraction of which
may be defective. We break the demultiplexer into two parts:
a front-end address encoder that produces an intermediate
code, and a back-end (built out an array of “recognizers”) that
transforms the intermediate code into the final sparse code.

Each recognizer will compute a single output bit of the overall
encoder, mapping from the intermediate code onto the code

. Even though we want the recognizers to be independent
to make their implementation easier, we still want them to col-
lectively act like a demultiplexer, namely that exactly one output
wire will have a 1 output while the remaining wires have a 0
(Fig. 4).

We assume that the front-end encoder can be built out of
perfect components (implemented in CMOS on a silicon sub-
strate, for example) and that output recognizers are built out
of possibly defective nanocomponents. This is a slightly dif-
ferent model than usual one found in coding theory (perfect en-
coder, noisy channel, perfect decoder) since we are lumping the
noisy channel and recognizers together to create “defective rec-
ognizers.” The idea is to be clever in the design of the interme-
diate code, introducing enough redundancy into it that the output
recognizers are self-correcting, compensating for bit corruption
that they themselves introduce.

Fig. 4. Split-implementation of a demultiplexer using CMOS and
nanocrossbars. The CMOS is used to implement an address encoder which
maps a dense code to a sparser, redundant code that is fed to the inputs of an
array of (possibly defective) “recognizers.” Each recognizer recognizes a single
codeword of the intermediate code produced by the address encoder. Even
though each recognizer is independent, collectively the recognizers implement
the demultiplexer outputs, preserving the single-active-output property of the
demultiplexer as long as the defect rate of the nano crossbar is not too high.

Fig. 5. Diode and resistor recognizers. The diode recognizer (a) implements
an AND gate that outputs a logic 1 when all address inputs are 1. The resistor
recognizer (b) averages the address inputs (ignoring output loading) to
approximate an AND gate.

B. Defective Recognizers

We wish to design demultiplexers which can be fabricated on
nano-crossbars using simple processes, and this limits our im-
plementation possibilities for the recognizers. The two designs
that we consider here, one for diode crossbars and one for re-
sistor crossbars, are shown in Fig. 5.

The diode recognizers implement AND gates. Each recognizer
connects to a subset of “encoded address lines” (carrying the in-
termediate code from the front-end address encoder) and “trig-
gers” a 1 output when all of the address lines carry a logical
1 value. But note that a logic 0 output voltage of a diode rec-
ognizer is offset from zero output voltage by the forward bias
voltage drop across one of the diodes. The resistor recognizers
are simple summing networks that take a subset of the address
lines and compute an average of the voltages applied to those
lines (this neglects any loading on the output of the demulti-
plexer)—they also provide an approximation of AND gates.

These recognizers can fail from transient glitches in both ad-
dress and data lines. But here we’ll only consider static defects,
where a diode or resistor that we had expected to be present
in the implementation is missing. We call this a “stuck-open”
defect. It is also possible to have static defects that result from
additional resistors or diodes appearing in the crossbar that we
didn’t want (“stuck-closed” defects), but we will not consider
those in this paper.
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Fig. 6. Using a code to create a resistor-crossbar demultiplexer. Each
codeword corresponds to a row in the resistor crossbar. A “1” in a codeword
signifies the presence of a resistor at the corresponding crosspoint, while a “0”
signifies the absence of a resistor.

C. Mapping Codes to Crossbars

The intermediate code that we will design can easily be
mapped onto a demultiplexer implementation as illustrated in
Fig. 6. Each codeword corresponds to a single recognizer in
the recognizer array. The significance of this is that a single
recognizer can be viewed as a pattern matcher for that particular
codeword: if the recognizer senses that the address lines equals
its pattern (or is close to it in a Hamming distance sense) then
it outputs a 1, otherwise it outputs a 0. Note that for resistor
decoders, the voltage levels corresponding to logic 1 and logic
0 are necessarily voltage ranges, and we will need to find an
appropriate threshold separating the two.

IV. RESISTOR DEMULTIPLEXERS

Designing a demultiplexer from a resistor crossbar entails de-
termining a desired size for the crossbar (in terms of the number
of output data lines to be driven and the desired number of en-
coded address lines) and then figuring out which crosspoints
within the crossbar to configure with resistors. Next, an address
encoder needs to be designed to generate the voltages on the ad-
dress lines. Once that is all done, the demultiplexer can be eval-
uated for its cost, defect-tolerance, and deviation from ideal be-
havior, for example, and compared with other possible designs.
The evaluation function is strongly application-dependent. In
this section, we will simplify matters by focusing our evalua-
tion primarily on margin and defect-tolerance and ignore ad-
dress encoder complexity and output impedance considerations
(actually, the output impedance for each of the resistor-based
designs explored here is constant in the absence of defects).

A. Strategy

The design space for resistor crossbar-based demultiplexers is
enormous. In principle, any pattern of resistor populations in the
crossbar could be evaluated as a potential candidate for building
a demultiplexer (Fig. 6). However, even for a small crossbar
of, say, dimensions 8 8, the number of possible patterns is
2 , so exhaustive searching is not feasible. One must somehow
severely limit the search to areas of the design space that are
“likely to be good,” or at least “not likely to be too bad.”

Fig. 7. Constant-weight codes create demultiplexers with a fixed output
impedance for all output lines, selected or unselected.

Fig. 8. High-weight codes generate demultiplexers with better defect
tolerance. A single failing resistor (“stuck-open”) has less impact on the output
voltages on data lines.

The heuristics we use to narrow the search are derived from
the ideal demultiplexer properties mentioned in Section II. The
desire for constant output impedance (along with the desire for
some symmetry in the behavior of the outputs) suggests that
constant-weight codes (where the number of 1’s in each code-
word is the same) might be a good region to explore (see Fig. 7).
These are also known as “ -hot” codes [3]. Since, as we shall
see, margin is determined by the minimum Hamming distance
between all codewords within a code, we can simply skip eval-
uating codes where that distance would yield a margin falling
below a minimum acceptable threshold. The desire for maximal
margin also suggests that the number of resistors on any output
data line not exceed half the total number of address lines (oth-
erwise encoded addresses will exists that produce at least one
selected line that has an output voltage less than 1.0 V). Defect
tolerance suggests that the weight of the codes be as high as pos-
sible (Fig. 8). Address encoding complexity, though, is difficult
to evaluate without actually synthesizing and optimizing an en-
coder design, so we do not use that to prune the search space, but
instead use it to evaluate the designs produced by that search.

It is possible that these search-space pruning heuristics
miss potentially good demultiplexer designs and that cleverer
pruning would rout them out. It is also possible that some of
the codes found with this strategy could actually be linear—it
would certainly be fortuitous if that occurred since it would
imply a simple address encoder implementation.

B. Search Algorithm

The search algorithm requires the following input parameters:
• minimum number of data lines to be driven by the demul-

tiplexer outputs ;
• maximum number of address lines which the user wishes

to consider ;
• smallest value of acceptable margin .
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From these inputs, additional constraints on the search space
can be deduced. Since we are addressing output lines, we
must have at least address lines in order to be able
to distinguish each output line. This implies a lower bound on
the number of address lines, .

The number of codewords in a full constant-weight code of

weight with bits per codeword is

. This places a lower bound on acceptable values for ,
, since, if this value is less than , the code cannot

drive all of the desired output lines and therefore cannot possibly
be a candidate for the demultiplexer.

The lower bound on acceptable margin also constrains the set
of acceptable codes. Since the margin for a given code is

and since the user constraint requires this to be greater
than or equal to , we then only need examine codes where
d satisfies the equation . Furthermore, the
distance between any pair of codewords in an equal weight code
is even, so that we may also ignore odd values of . The distance
between any two codewords in a constant weight code can never
exceed , which places an upper bound on . These
constraints prune a large number of codes from consideration.

Searching then proceeds by generating a sequence
of candidate codes that fit within the constraints of

. Given a number of address
lines and code weight , we generate the corresponding
constant-weight code. Each codeword in the code contains
bits, one for each address line, with exactly bits within that
word set to 1. Each codeword represents a single row in the
resistor crossbar, such that a “1” in the codeword represents the
presence of a resistor at a crosspoint while a “0” represents the
absence of a resistor (as was shown in Fig. 6).

This generated code will likely not meet the constraints
on derived from the margin, so we look for a subset of the
generated code that does. This is accomplished using a “sieve”
technique that compares every codeword in the code with every
other, eliminating codewords that have insufficient distance
from others. This algorithm produces a subset of codewords
constituting a smaller code that does meet the distance con-
straints, but it may not be an optimal subset in the sense that
there may be other subsets also meeting the constraints that
contain more codewords. Since the number of codewords in
this smaller code must at least be equal to in order to
implement a demultiplexer, we can eliminate the code from
further consideration if it does not.

C. Resistor Demultiplexer Results

As an example, the search algorithm was used to explore de-
multiplexers capable of driving at least 64 data lines

with no more than 22 address lines and a
margin of at least 0.5 . The results, shown in
Table I, illustrate some of the tradeoffs available to the designer.
If minimizing address lines is essential, it is possible to meet
the margin requirement with as few as 12 address lines (the first
code listed at the top of the table). Note, however, that the small
distance for that particular code implies that the resulting demul-
tiplexer would not be defect-tolerant—a single defective resistor
would cause the data line on which it appeared to malfunction.

TABLE I
CODES WITH (M = 0:5; D = 64; A = 22)

Fig. 9. Comparing “linear” and “nonlinear” encoded demultiplexers. Defects
are “stuck-open” (missing resistor) only. The demultiplexers generated from
nonlinear codes have better margin that that produced by the best linear code.

A much more robust code utilizing 22 address lines and
driving up to 77 data lines appears near the bottom of the table.
Not only does the margin of this particular code exceed that
of the others (0.666), but its distance of eight implies a high
degree of defect tolerance.

Fig. 9 compares the robust “nonlinear code” demultiplexer
just described with the best “linear code” demultiplexer found
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to date using linear coding theory [11]. Both demultiplexers
are capable of driving 64 data lines, and both require 22 ad-
dress lines as inputs, but the “nonlinear” demultiplexer has sig-
nificantly better margin and tolerance of “stuck-open” defects,
while having increased address encoding complexity.

V. DIODE DEMULTIPLEXERS

Due to their nonlinearity, diode-based demultiplexers do not
have a “margin” that needs to be considered; the search al-
gorithm for resistor-based demultiplexers can be used here as
well. When diode demultiplexers fail (due to defective, stuck-
open diodes), it is because a diode decoder lacks enough in-
puts to distinguish the codeword with which it is associated.
The number of stuck-open diodes that any given decoder can
tolerate is , where is the distance of the code used
to design the demultiplexer. For example, using the same 22 ad-
dress line demultiplexer considered in the last section, and re-
placing the resistors with diodes, we can tolerate up to 3 diode
failures on each data line without losing any demultiplexer func-
tionality. The simplest diode demultiplexer that can be built for
addressing 64 data lines can be implemented with only 12 ad-
dress lines and only two diodes per data line, but would lack any
defect tolerance at all since the distance of the generating code
is only two.

VI. SUMMARY

Nonlinear error-correcting codes can be used to design
defect-tolerant resistor or diode demultiplexers for nanoelec-
tronics, and they produce more compact crossbar implementa-
tions than linear codes, although at the cost of increased address
encoder complexity. Resistor crossbars require the designer
to consider the effects of margin in the presence of defectss,
but have the advantage of being easier to implement with
existing technology and might have lower output impedances
since they can be fabricated using metal nanowires. Diodes
are more robust in the presence of stuck-open defects, but are
currently more difficult to fabricate; they also have the problem
of forward bias voltage drop across the diodes that offset the
demultiplexer output voltages from their ideal values.
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