
IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 3, NO. 1, MARCH 2004 187

Fault-Tolerance in Nanocomputers:
A Cellular Array Approach

Ferdinand Peper, Member, IEEE, Jia Lee, Fukutaro Abo, Teijiro Isokawa, Member, IEEE, Susumu Adachi,
Nobuyuki Matsui, and Shinro Mashiko

Abstract—Asynchronous cellular arrays have gained attention
as promising architectures for nanocomputers, because of their
lack of a clock, which facilitates low power designs, and their reg-
ular structure, which potentially allows manufacturing techniques
based on molecular self-organization. With the increase in integra-
tion density comes a decrease in the reliability of the components
from which computers are built, and implementations based on
cellular arrays are no exception to this. This paper advances asyn-
chronous cellular arrays that are tolerant to transient errors in up
to one third of the information stored by its cells. The cellular ar-
rays require six rules to describe the interactions between the cells,
implying less complexity of the cells as compared to a previously
proposed (nonfault-tolerant) asynchronous cellular array that em-
ploys nine rules.

Index Terms—Cellular array, computer architecture, error cor-
rection, fault-tolerance, homogeneous structure, nanocomputing.

I. INTRODUCTION

THE successful construction and manipulation of devices
on nanometer scales ([1]–[7]; short review in [8]) has re-

sulted in increasing interest in building computers from them,
even though the technology is still far from the stage of mass-
production. In the debate about the architecture most suitable for
such nanocomputers, there is a growing consensus that a regular
structure of locally connected elements will facilitate efficient
physical implementations and manufacturing methods in which
parts are put together in a self-organized way using chemical
synthesis ([9]–[14]).

Promising in this respect are Cellular Arrays. Consisting
of a large number of simple identical cells organized as two-
(2-D) or three-dimensional (3-D) arrays, they have been widely
studied as models of computation. Interactions between cells
are modeled by a small number of transition rules that act on a
local level, involving only the direct neighbors of a cell and the
cell itself. Most cellular array models assume a global timing
scheme according to which all cells undergo transitions at each
time step. Alternative models, called asynchronous cellular
arrays [13], [15]–[18], assume a timing model according to
which the state transitions of each cell take place at random
times, independently of other cells. An asynchronous mode of
timing may benefit physical implementations of cellular arrays
in the same way it benefits asynchronous circuits (e.g., [19]):

Manuscript received August 1, 2003; revised October 17, 2003.
F. Peper, J. Lee, S. Adachi, and S. Mashiko are with the Communications

Research Laboratory, Nanotechnology Group, Kobe 651-2492, Japan.
F. Abo, T. Isokawa, and N. Matsui are with Himeji Institute of Technology,

Division of Computer Engineering, Hyogo 671-2201, Japan.
Digital Object Identifier 10.1109/TNANO.2004.824034

the absence of a central clock eliminates the need to distribute
its signals to all elements, and it may also result in faster circuits
consuming less power and, related to the latter, dissipating
less heat. These advantages may be especially important with
alternative technologies, like molecular electronics [20], [21],
RSFQ superconducting technology [22], [23], quantum dot
cellular automata [24], [25], etc. Efficient schemes to compute
on asynchronous cellular arrays [13], [16]–[18] are based on the
simulation of delay-insensitive circuits, a type of asynchronous
circuit of which the correctness of operation is robust to delays
of signals (e.g., see [19]). In this approach, configurations of
cells are designed such that they implement a set of primitive
circuit elements from which any arbitrary delay-insensitive
circuit can be built [13]–[18] (see also [26]).

Robustness to errors is an important design consideration for
nanocomputers in the light of the noise and instabilities that
affect the reliability of nanometer-scale devices. Heath et al.
[27] distinguish two types of robustness to errors: Fault Toler-
ance, the ability to recover from transient errors during com-
putations—the main topic of this paper—and Defect Tolerance,
the ability to operate flawless in the presence of permanent hard-
ware errors that emerged in the manufacturing process—a topic
only briefly discussed in the last section of this paper. The study
of reliable computation by unreliable elements originates with
von Neumann [28]. In his Multiplexing technique, each wire in a
circuit is replaced by a bundle of wires on which a majority vote
is conducted to establish its value. Dobrushin and Ortyukov,
formalizing this technique, show in [29] that a function com-
puted by fault-free elements can be reliably computed by

unreliable elements with a high probability. This
is further improved in [30], [31] to unreliable elements.
Another method, -fold modular redundancy [32], achieves tol-
erance to faults by employing copies of a unit (preferably an
odd number), of which the majority establishes the most likely
output the unit would have were it flawless, in accordance with
an operation conducted by a majority gate. If , this tech-
nique is called triple modular redundancy (TMR). Combining
the outputs of three TMR units by a majority gate on a second
level and so on in a hierarchy of levels, we obtain Cascaded
Triple Modular Redundancy (CTMR) [33], a model with in-
creased reliability higher in the hierarchy. In the context of nan-
otechnology, the merits of TMR, CTMR, and von Neumann’s
multiplexing technique have been found to be limited [34]: to
make a chip with devices work with a probability of 90%,
an unrealistically small device fault rate for nanometer-scale
implementations and a large hardware redundancy is required.
For example, when employing the multiplexing technique, an

1536-125X/04$20.00 © 2004 IEEE

188 IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 3, NO. 1, MARCH 2004

error rate of per device requires a redundancy of almost
a factor . Such a high redundancy would down grade the
chip to one effectively having only devices, which is hardly
an improvement over current technology. For the TMR tech-
nique, the situation is even worse. In [35] an improvement to
a redundancy factor from 100 to 1000 is given. These results
are further improved upon in [36], whereby von Neumann’s
multiplexing technique is applied in a hierarchical way in com-
bination with reconfiguration techniques. The claim is that a
redundancy factor of 10 would suffice in this design, even with
a device error rate of up to 0.01.

The fault-tolerant construction of von Neumann and its
follow-up by others is basically an error correcting code (e.g.,
[37]). Error correcting codes provide a way to cope with the
corruption of bits by encoding messages as codewords that
contain redundant information. This information is used to
reconstruct the original codeword in case errors occur. Error
correcting codes are a more systematic way to deal with errors,
as compared to methods like TMR, and they tend to require
less redundancy. Von Neumann’s construction boils down to
the use of a so-called repetition code, a code (but not a very
efficient one at that) in which each symbol of a message is
repeated many times to create redundancy. Computation in this
scheme can then be considered as taking place in the encoded
space, whereby errors are corrected locally, and encoding
and decoding is only necessary at the beginning and the end,
respectively, of the computation. This line of thought is also
followed in [38], but then with generalized Reed–Solomon
codes (e.g., [37]) used, rather than repetition codes, to realize a
fault-tolerant computing model with improved reliability.

In the context of cellular arrays, early work on fault-tolerance
is reported in [39]. This model can correct at most one error in
19 cells, but to this end each cell needs read access to the states
of 49 cells in its neighborhood, which is much higher than the
four cells usual in cellular arrays (von Neumann neighborhood).
The increased complexity of cells suggests that they will be very
error-prone in physical implementations, and thus that this work
is mainly of theoretical value. The model in [40] suffers from
similar problems. Better fault-tolerance is obtained in [41]–[43]
with synchronous cellular arrays, and in [44], [45] with asyn-
chronous cellular arrays simulating synchronous cellular arrays:
the idea is to organize cells in blocks that perform a fault-tolerant
simulation of a second cellular array, which on its turn is also or-
ganized in blocks, simulating even more reliably a third cellular
array, and so on. This results in a hierarchical structure with high
reliability at the higher levels, like with the CTMR technique.
The cells in these models are too complicated to be suitable for
physical implementations, however, since they contain informa-
tion regarding the hierarchical organization, such as block struc-
ture, address within a block, programs selecting transition rules,
and timing information. In [46] a fault-tolerant asynchronous
cellular array based on Bose–Chaudhuri–Hocquenghen (BCH)
codes (e.g., [37]) is proposed, but computation on this model is
inefficient, since only one signal at a time is allowed.

This paper contains two main results. First, an asynchronous
cellular array is proposed that conducts computations efficiently
by simulating delay-insensitive circuits, whereby only six tran-
sition rules are required to describe the functionality of the cells.

This compares to nine transition rules required by the asyn-
chronous cellular array in [13]. The substantial reduction in the
number of transition rules is due to the use of a novel type of
delay-insensitive circuit [47]. In the second part of this paper,
we make this cellular array fault-tolerant to arbitrary errors in
up to asymptotically one third of the bits representing the infor-
mation in the cellular array. We do so by encoding the state in-
formation of each cell as codewords in an error correcting code,
like in [46], and show that our scheme is superior to schemes
employing a repetition code. Moreover, we achieve tolerance to
many error patterns of which up to almost half of the bits is cor-
rupted. Finally, it is shown that the mechanism for conducting
transitions in each cell can be divided into small units, each of
which operates independently on a part of the bits representing
the state information of a cell. Errors caused by faults in part of
the units can be corrected by the proposed scheme.

This paper is organized as follows. Section II describes the
asynchronous cellular array model used, and Section III gives
a short explanation of delay-insensitive circuits. Section IV de-
scribes the construction of the asynchronous cellular array based
on six transition rules, and it shows how a delay-insensitive
NAND-gate and 1-bit memory can be implemented on the cel-
lular array. Fault-tolerant versions of the cellular array are given
in Section V. Section VI describes how the mechanism for state
transitions in a cell can be divided into independent units, the
output of which is operated upon by the error correcting mech-
anism. We finish with conclusions and a discussion.

II. ASYNCHRONOUS CELLULAR ARRAYS

A cellular array is a 2-D array of identical cells, each of which
has four neighboring cells, at its north, its east, its south, and its
west. A 3-D version is also possible, but is not considered here.
Each side of a cell has a memory of a few bits attached to it,1 as
in Fig. 1. The four memories at the side of a cell are said to be as-
sociated with the cell. The state of a memory is the value stored
in it. The assignment of a particular combination of states of the
memories associated with a certain set of cells in the cellular au-
tomaton is called a configuration. A cell may change the states
of the four memories associated with it according to an opera-
tion called a transition. The transitions a cell may undergo are
expressed by a table of transition rules. A transition rule applies
to a cell if its left-hand side matches the combination of states
of the memories associated with the cell. The right hand side
of the rule describes into what states the memories are changed
if the rule is applied (Fig. 2). As a memory is shared between
two cells, it may be updated by a transition acting on either of
these cells. Certain desired behavior of a cellular array can be
obtained by setting its memories in proper states and defining
transition rules that lead to state changes corresponding to this
behavior. For example, one may design a cellular array that can
conduct the same class of computations as those possible on a
conventional computer [13].

Cellular arrays in which all cells undergo transitions at the
same time are called synchronous. They are the most widely

1Though cellular arrays may have different forms [48], [49], we only con-
sider the type in this paper, because it requires few transition rules, which is a
prerequisite for simple cells. The cellular arrays in this paper resemble so-called
partitioned cellular automata [50].

PEPER et al.: FAULT-TOLERANCE IN NANOCOMPUTERS: A CELLULAR ARRAY APPROACH 189

Fig. 1. Cellular array consisting of cells (the big squares with fat borders, one
of which is shaded), each having access to four memories (the small squares).
Shared by two cells, a memory stores a few bits of information. The cells operate
on these memories with a small number (six in this paper) of transition rules.

Fig. 2. Transition rule describing a transition the memories associated with a
cell can undergo. If the memory states of a cell match the states n; e; s, and w

in the left hand side of the rule, the rule may be applied to the cell, as a result
of which the states are changed into the states n ; e ; s , and w , respectively,
depicted on the right-hand side.

studied type. When transitions of the cells occur at random
times, independent from each other, we obtain asynchronous
cellular arrays, the type employed in this paper. In an asyn-
chronous cellular array, a cell may undergo a transition when
its memory states match the left hand side of a transition rule,
and this operation is randomly timed. If there is no transition
rule whose left hand side matches a cell’s combination of
memory states, the cell remains unchanged. Though transitions
of cells are timed randomly and independently of each other,
they are subject to the condition that two neighboring cells
never undergo transitions simultaneously. This ensures that two
neighboring cells will not attempt to set the memory shared
between them to different states at the same time—a write
conflict that could lead to an undefined state of the memory.
Possible mechanisms to avoid the simultaneous update of two
neighboring cells can be found in [13].2

The asynchronous cellular array in the first part of this paper
has memories of two bits each, a model also known under the
name self-timed cellular automaton (STCA) [13], [53]. Intercon-

2This scheme can be interpreted as an asynchronous version of a checker-
board updating scheme based on the Margolus neighborhood [51], [52],
whereby the cellular array is subdivided in cells in an alternative way, i.e., by
drawing diagonal lines through the corners of the cells and interpreting the
resulting diagonal squares as cells. Each newly obtained cell then contains
one of the original memories. The four memories associated with an original
cell then correspond with a block of 2� 2 cells, to be used as a Margolus
neighborhood.

nection lines in this model take the form of straight continuous
areas of cells, called paths. When there are no signals on a path,
its cells have all their memories in state 0, that is, all bits in each
of the memories are 0. A signal on a path is represented as a cell
with a combination of memory states, in which three of the cell’s
memories are in state 0, and the remaining memory contains one
1-bit and one 0-bit. Fig. 3(a) shows an example of a transition
rule that, operating on a signal, moves the signal’s 1-bit toward
the memory one cell in the northern direction. Applied twice,
the transition rule gives rise to the sequence of configurations
in Fig. 3(b) in which the 1-bit propagates in the northern direc-
tion along a path of cells. The rotation-symmetric and reflec-
tion-symmetric equivalents of transition rules may also serve as
transition rules. This allows the above transition rule to be used
for transmitting signals in directions toward the south, east, or
west as well.

We have thus defined a model in which each cell performs
transitions on information stored in the memories associated
with it. Later on, we equip the memories with error correcting
ability by adding bits to them that store redundancy information.

III. DELAY-INSENSITIVE CIRCUITS

A delay-insensitive circuit is a circuit whose correctness of
operation is unaffected by arbitrary delays of its signals in the
circuit elements and the interconnection lines. Operations in
delay-insensitive circuits are driven by signals: each circuit
element is inactive unless it receives an appropriate set of input
signals, after which it processes the signals, outputs signals, and
becomes inactive again. Not requiring a clock, delay-insensitive
circuits belong to the larger class of asynchronous circuits,
which have several advantages over synchronous circuits [19],
[54]. In the context of nanotechnology implementations we
underline the following advantages (see also [13]):

1) Distributing the clock signal is not needed. This not only
saves on circuit area, but also facilitates the homogeneity
of the system—an important issue for manufacturing
based on molecular self-assembly. Moreover, many
timing problems disappear, like the failure of signals to
reach their destination within a single clock cycle.

2) Energy consumption and heat dissipation are reduced,
because only those parts of the circuit in which signals
reside need to be active.

3) Changes in the timings of signals, caused by variations in
physical conditions or implementations, do not affect the
correct operation of asynchous circuits, especially if they
are delay-insensitive.

4) Asynchronous circuits can be divided into modules that
are designed without considering other modules, espe-
cially with respect to timing relationships. Modularity
facilitates configurability of circuits.

The above advantages are felt even stronger at higher integra-
tion densities, though for some technologies, such as CMOS,
it is hard to exploit them, leading to performances that are
actually worse with respect to power consumption, wiring re-
quirements, and speed. Alternative technologies, like molecular
electronics and RSFQ superconducting technology, may suffer
less from such problems. For a more extensive discussion of

190 IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 3, NO. 1, MARCH 2004

Fig. 3. (a) Transition rule for signal propagation, and (b) its application twice to a configuration of cells, each time giving rise to a signal successively moving
one cell toward the north. Here a memory contains two bits, each of which is indicated by a block that is shaded for the value 1 and white for the value 0. The
transition rule operates on all bits in the four memories associated with a cell.

asynchronous circuits in the context of nanotechnology we
refer to [13].

Delay-insensitive circuits are built up of modules (see also
[13], [47], [55]), which are elements with a finite number of
input and output lines and a finite number of states. When re-
ceiving certain signals from its input lines, a module conducts an
operation, as a result of which it may change its state and output
certain signals on its output lines. Modules can be constructed
from networks of simpler modules, and they may be as complex
as a delay-insensitive computer. Realized in a cellular array by
configurations of cells in certain states, modules are connected
to each other by paths of cells.

A signal propagates from one end of a path (the source) to
the other end (the destination), using the method lined out in
Fig. 3 in the previous section. Once a signal is transmitted from
a source, it cannot be withdrawn, and it will head for its destina-
tion. There can be more than one signal on each path, but signals
never interfere with each other on a path, except that they may
delay each other for a finite amount of time [47], [55].

When a signal reaches its destination module, it is assimilated
and the module conducts an operation, which usually results in
the output of signals on one or more of its paths. The module
may have to wait, though, for other input signals to arrive from
different paths if its operation requires it. In this case, the input
signal is called pending. If a module is presented with two input
signals from different input paths, and it can only process one at
a time, it may arbitrarily choose which signal to process first. It
is then said to arbitrate between its input signals. The transmis-
sion of signals over paths and their processing by modules may
undergo a finite time delay, without this having consequences
for the correct operation of the circuit. Systematic overviews of
conditions under which delay-insensitive circuits operate can be
found in [18], [47], [55], [56].

As with Boolean circuits in a synchronous system, which can
be constructed using only AND-gates and NOT-gates, it is pos-
sible to construct delay-insensitive circuits from a limited set
of primitive modules or primitives. Such a set, called universal,
can be used for designing circuits that conduct the same class of
computations as possible on conventional computers (see also
discussion in [55]). A universal set of primitives for delay-in-
sensitive circuits, like the sets in [18], [56]–[58], provides both
universal logic functionality as well as timing functionality, the
latter being necessary to make up for the absence of a clock.
A small number of input or output paths of primitives is useful
for implementations on cellular arrays, as each cell has only a
limited number of neighbors through which input and output

may take place, a limitation strongly felt if the cellular array is
2-D. The universal set of primitives in [55] requires only three
paths by each primitive module for input or output of signals.
The key point of this set is the use of paths that are bidirectional
and that can contain more than one signal at a time, provided
they all move in the same direction. Due to the high number of
primitives (five) it consists of, however, an implementation of
this set on an asynchronous cellular array requires as many as
nine transition rules [13]. In this paper we use an alternative set
of delay-insensitive primitives recently proposed in [47]. This
set can do without bi-directionality of paths, but it retains paths
that may contain multiple signals at a time. Though the max-
imum number of paths for input or output of signals required
by the primitives increases to four from three, the set contains
only three primitives (see also [18] for a set of four primitives
each with four paths). This results in an asynchronous cellular
automaton implementation requiring only six transition rules, as
we will see in Section IV.

IV. IMPLEMENTING DELAY-INSENSITIVE CIRCUITS ON

ASYNCHRONOUS CELLULAR ARRAYS

The set of delay-insensitive primitives used in this paper are
listed in Table I, the left side denoting the symbols for the prim-
itives, and the right side the cell configurations used to imple-
ment them on the cellular array. A delay-insensitive circuit can
be realized on the cellular array by connecting configurations
to each other by paths of cells such that the inputs and outputs
of the primitives are appropriately lined up. It is shown in [47]
that any arbitrary delay-insensitive circuit can be constructed in
this way. The cell configurations behave like the primitives ac-
cording to the set of six transition rules defined in Table II. Only
when the configurations are presented with input signals do they
undergo transitions, as the left hand sides of the transition rules
fail to match them otherwise. The configurations are thus stable
in the absence of input signals.

The Fork primitive is a fan-out element commonly used in
delay-insensitive circuits [56], [59]. It produces one signal on
each of its two output paths for every signal it receives from its
input path in accordance with rule 2 in Table II (see Fig. 4).

The Merge primitive, proposed in [55], merges two streams
of input signals into one stream of output signals. It is repre-
sented by the same configuration as the Fork, but then with
input signals arriving from its sides, and it processes a single
signal in accordance with rule 3 in Table II, as in Fig. 5(a). The
Merge primitive also allows simultaneous input signals to its

PEPER et al.: FAULT-TOLERANCE IN NANOCOMPUTERS: A CELLULAR ARRAY APPROACH 191

TABLE I
PRIMITIVES OF DELAY-INSENSITIVE CIRCUITS: SYMBOLS, FUNCTIONAL DESCRIPTIONS, AND IMPLEMENTATIONS ON THE CELLULAR ARRAY

two input paths, unlike previously proposed Merge primitives
[56]–[58], [60], which require mutually exclusive inputs. Our
Merge processes simultaneous inputs at its paths by first for-
warding one signal to the output path, while keeping the input
signal at the other input path pending in accordance with rule 4,
as in Fig. 5(b). After this, it is ready to handle the other input,
and forward it to the output path, using rule 3. This primitive can
also be used for right and left turns of signals. For more details
and background of this Merge module we refer to [13], since it
has also been used therein.

The Resettable Modulo 2 Counter (R-Counter) primitive
counts (modulo 2) the input signals to path , producing one

output signal on path for every second input signal to . The
primitive returns to its original state upon outputting this signal
on . If the primitive is in its original state and receives only
one input signal from path , no output ensues. The primitive
can be reset to its original state (other than by receiving a
second signal to) by a reset signal to input path , which will
produce an output signal on path . The R-Counter is in fact a
so-called Resettable Join module [60] of which the two regular
input paths have been fused into a single input path . Unlike
the conventional resettable join, the R-Counter is capable of
arbitration when conflicting input signals arise. Arbitration is
the functionality according to which one out of a number of

192 IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 3, NO. 1, MARCH 2004

TABLE II
TRANSITION RULES REQUIRED FOR SIMULATING DELAY-INSENSITIVE CIRCUITS ON THE CELLULAR ARRAY. A CONFIGURATION IN THE CELLULAR ARRAY

MATCHING THE LEFT-HAND SIDE OF A RULE IS TRANSFORMED INTO THE CONFIGURATION ON THE RIGHT-HAND SIDE

Fig. 4. Sequence of configurations in which a Fork receives one signal on its input path, after which it produces one signal to each of its two output paths. The
initial configuration without input signals is labeled as such. For each time a transition rule is used, its label in Table II appears above the corresponding arrow.

Fig. 5. Sequence of configurations in which a Merge receives (a) one signal at one of its input paths and (b) two simultaneous signals at its input paths. All signals
are redirected toward the output path.

competing parallel processes is assigned the exclusive access
to a shared resource. This functionality is useful for building a
sequencer [47], a device that can arbitrate between two input
signals (see also [13], [55]). The R-Counter is represented by
a configuration of three cells of which only two cells may
undergo transitions and the other cell is merely used to hold the
configuration together. If an input signal arrives from path ,
the configuration enters a special state due to rule 5, like in the
third configuration in Fig. 6(a). If one more input signal arrives
from path , the configuration returns to its original state and
an output signal is produced on path due to rule 6, like in the
second half of Fig. 6(a). If an input signal arrives from path ,

like in Fig. 6(b), it stays pending until a signal arrives from path
. The signal on again puts the configuration in the special

state due to rule 5, after which the signal from enters the
configuration, an output signal is produced on path , and the
configuration is restored to its initial state, due to rule 2. If the
order by which signals and arrive is the other way around,
basically the same happens. If there are two input signals to
and one to (not shown in figures), one of the cases in Fig. 6
happens, and one signal remains pending, on either or ,
depending on the case.

Since most circuits laid out on a 2-D cellular array have paths
that cross each other, we need a configuration for crossing

PEPER et al.: FAULT-TOLERANCE IN NANOCOMPUTERS: A CELLULAR ARRAY APPROACH 193

Fig. 6. Configurations of an R-Counter receiving various sequences of input signals. (a) Two subsequent signals are received from input path a. Upon receiving
the first signal, the module goes into a special state (configuration III), but outputs no signals. Upon receiving the second signal, the module produces one signal
on its output path b, in the process returning to its original state. (b) If the module receives one signal from each of its input paths r and a, it produces one signal
on its output path k. Even if the signal from r arrives first at the configuration, it is kept pending until the signal from a arrives.

signals. The cells at a crossing of two paths are a shared
resource, so arbitration is required to assign this resource in
a certain order to signals on the paths. Following the same
approach as in [13], [16]–[18], we construct a circuit for this
task that is called a crossing sequencer [see Fig. 7(a)]. In this
design a signal continuously runs around (busy waiting) to
check for the presence of signals that want to cross each other.
This circuit lacks fair arbitration, in the sense that it is unable
to guarantee that signals arriving at both input paths at around
the same time will be allowed to pass through with the same
probability. Rather, if there are many input signals piling up
at both input paths, the signals from one input path tend to be
processed first, followed by the signals from the other input
path—a shortcoming that is not problematic as in practice
crossings with such busy traffic are rare. A more efficient
but complicated version of this circuit, in which no signal is
required to run around in the absence of input signals, and in
which arbitration is fair, can be derived from the design of the
sequencer module in [47]. The circuit implementation of the
crossing sequencer on the asynchronous cellular array is shown
in Fig. 7(b). Based on this design, any arbitrary delay-insensi-
tive circuit can be laid out on our asynchronous cellular array.
In practice, most crossings in a circuit implementation can be
accomplished without the use of the crossing sequencer due to
information available about the order in which signals are to
cross. If no such information can be deduced from the circuit
design, however, the crossing sequencer is the only option to
make signals cross.

In Fig. 8, we show a circuit design (based on [47]) and
its implementation on the asynchronous cellular array of a
delay-insensitive module called a TRIA [58]. It has three input
lines and three output lines, each output line corresponding to
a unique pair of input lines. If a TRIA receives one input signal
on one input line, it stays pending until a second input signal
arrives on another input line. It then responds by outputting a
signal to the corresponding output line. The TRIA module is
very useful for the efficient design of delay-insensitive circuits,
witness for example its use in the designs in Fig. 9.

The NAND gate, commonly used in synchronous circuits, has
a delay-insensitive counterpart that conducts the logical NAND

operation even if input signals are delayed. To represent a bi-
nary signal in a delay-insensitive circuit, two lines are usually
employed, one labeled 0 and one labeled 1. Called dual-rail
encoding, this method encodes a 0 by a signal on the line la-
beled 0, and a 1 by a signal on the line labeled 1. Signals on
both lines at the same time are forbidden, and the absence of a
signal on either line indicates that no information is being trans-
mitted. Using dual-rail encoding for its inputs and outputs, the
NAND-gate requires four input lines, i.e., and encoding
one input signal and and encoding the other input signal,
as well as two output lines, encoded by and . The design
of the delay-insensitive NAND-gate, based on [55], is given in
Fig. 9(a). Though we do not give the layout of this circuit on
the cellular array to save space, the configuration can be easily
designed from the configurations of the Merge, the Fork and
the TRIA. The delay-insensitive circuit can be laid out on the
asynchronous cellular array as such without using the crossing
sequencer in Fig. 7, since all line crossings are designed to be
collision-free.

Fig. 9(b) shows the design of a delay-insensitive 1-bit
memory, which, unlike the design in [13], is expressed in terms
of the Merge, the Fork, and the TRIA. Again dual-rail encoding
is employed. To write the value 0 or 1 into the memory, a signal
is input to the line or , respectively, after which an
acknowledgment signal emerges from line or . To read
the contents of the memory, a signal is input to line , after
which a signal emerges from line or , depending on the
contents of the memory. A crossing sequencer is not required
for implementing this design on the cellular array.

Higher order structures, like counters and for-loops, can be
constructed from a delay-insensitive 1-bit memory in the way
lined out in [13]. A delay-insensitive NAND-gate may be used
for evaluating Boolean expressions. It is not recommended
to apply the delay-insensitive NAND-gate in the same way as
a conventional NAND-gate to build logic circuits, because it
tends to require an increased amount of hardware resources.

194 IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 3, NO. 1, MARCH 2004

Fig. 7. (a) Delay-insensitive circuit scheme for crossing signals without collisions, and (b) its implementation on the asynchronous cellular array. The arrows
in the cellular array denote paths via which signals travel between primitives, or via which signals are input or output. The circuit contains two R-Counters that
register the arrival of signals from the two input paths. A signal running around in a loop (denoted by a black blob in the circuit scheme) scans the R-Counters
alternatingly and produces an output signal at the corresponding path if the R-Counter is in a state denoting the arrival of an input signal.

Fig. 8. (a) Delay-insensitive circuit scheme for a TRIA module based on the design in [47], and (b) its implementation on the asynchronous cellular array. When
a TRIA receives an input signal from each of the two paths I (i 2 f1; 2; 3g) and I (j 2 f1;2; 3g n fig), it outputs a signal to the line O . The circuit is
laid out on the asynchronous cellular array such that the path crossings are collision-free, so the crossing-sequencer in Fig. 7 is not required.

For example, though a delay-insensitive 1-bit memory can
be constructed from delay-insensitive NAND-gates, Fork, and
Merge modules, the design will be much more complicated than
a direct design in terms of TRIA, Fork, and Merge modules.
Similarly, it is much more efficient to build combinational
circuits like counters, adders, multipliers, etc., directly from
the delay-insensitive primitives in Table I than to use the
delay-insensitive NAND-gate to build them.

V. FAULT-TOLERANCE

The cellular array proposed in the previous section is not
fault-tolerant: if a cell misoperates, for example through a mis-

take in a transition or some bits of a memory flipping due to
noise, no recovery is possible, and the cellular array ceases to
operate in the way intended. In this section we equip the cel-
lular array with fault-tolerance, using techniques from error cor-
recting coding theory (e.g., see [37]).

Adopting a common convention, we denote an error cor-
recting code by the 3-tuple , whereby is the word
length, expressed in bits, is the number of codewords, and
is the minimal distance between any two codewords, i.e., the
minimum number of bits by which any two codewords differ.
We recall that a code with the minimum distance can correct
up to errors. If is even, it can in addition detect

PEPER et al.: FAULT-TOLERANCE IN NANOCOMPUTERS: A CELLULAR ARRAY APPROACH 195

Fig. 9. (a) Circuit scheme for a dual-rail encoded delay-insensitive NAND-gate. The lines a and a correspond to one input line in a conventional NAND-gate,
the lines b and b to the other input line, and the lines c and c correspond to the output line. If a signal is input to each of the two lines in one of the sets
fa ; b g; fa ; b g, or fa ; b g, a signal is output to c . If a signal is input to each of the lines a and b , a signal is output to c . If there is only one input signal,
it becomes pending, and the gate will wait for the second input signal to arrive, before producing an output signal. Other combinations of input signals are illegal.
(b) Delay-insensitive circuit scheme for a dual-rail encoded 1-bit memory. The state of the memory is stored by two pending signals (indicated by black blobs in
the circuit scheme) on the left or right input lines to two TRIA modules. A signal pending on the left line denotes 0, the initial state, and a signal on the right line
denotes the state 1. Writing a 0-bit or 1-bit into the memory is done by sending a signal to one of the input lines W and W respectively. This deletes the two
pending signals storing the memory state, after which the new contents is written into the memory, and an output signal for acknowledgment is produced on either
A or A , respectively. By sending a signal to line R, the memory is read out, and a signal is produced on either line R or R , depending on the state of the
memory.

errors. To design an efficient error correcting code given a
certain value of , the value of both and should be as large
as possible, but these are conflicting requirements. This paper
concerns only linear codes, which have the property that the
bit-wise addition—modulo 2 in case of binary codes—of any
two codewords produces again a codeword.

In a previous paper [46] we make an asynchronous cellular
array fault-tolerant by taking all the bits of all the memories as-
sociated with a cell, and encoding them as codewords in an error
correcting code based on a ternary number system. Using this
construction, in each memory up to one error can be corrected
(and two errors detected), and (in principle) in each cell an in-
valid combination of states of the memories associated with it
can be detected. A disadvantage of this approach is that it is
difficult to find codes for which the codewords encode the cell
configurations representing primitives and signals. In [46] this
problem is resolved by adjusting the configurations such as to
match a suitable code. The cellular array in [46], however, is
simpler than in the current paper: it is so simple that it allows
only one signal at a time to run around in a circuit laid out on
it. The richer set of configurations of the cellular array in the
current paper makes this approach harder to pursue. Another
disadvantage of the approach in [46] is that the correction of
errors is complicated, requiring complex circuitry in the cells.
This problem is resolved in [46] by correcting the errors of each
memory individually, rather than taking all memories associated
with a cell together in the error correction. To this end, only the
subcodes associated with individual memories need to be con-
sidered, which is a substantial simplification, though it goes at
the cost of loosing the ability to correct or detect invalid combi-
nations of states of memories associated with a cell. In the cur-
rent paper we extend this approach, in a way that not only single
errors can be corrected in the memories but also multiple errors.

We start with memories that can correct up to one bit error, and
then address the more general case of multiple errors. We also
discuss a variation based on a repetition code and compare it
with the proposed codes.

The messages to be encoded by an error correcting code are
all possible states of one memory of a cell. As each memory
contains two bits, there are four possible memory states: 00, 01,
10, and 11. This translates into four codewords, so . To
encode these messages, it is necessary to decide on the error
correcting ability of each memory, i.e., the maximum number of
corrupted bits in a memory that can be recovered. A code that
is able to correct one error needs to have a minimal distance of

. Given a number of words of , a lower bound
for the word length of a binary code can be deduced from the
Plotkin bound (e.g., see [37]), which states that if then
the following equations should hold for binary codes:

if is even, (1)

if is odd. (2)

This bound is violated for the parameter values ,
and , but not when is increased to , so at least five
bits are required as the word length to allow the correction of
single bit errors. Indeed, it is possible to construct a code with
these parameters, namely the code consisting of the codewords
00000, 11100, 00111, and 11 011.3 In terms of memories, these
codewords are displayed like in Fig. 10. It is easily verified that
flipping any arbitrary single bit in any of these codewords results

3This code can be constructed from a so-called Hamming code (e.g., [37])
with parameters n = 7;m = 16, and d = 3, by selecting the four codewords
of which the first two bits are zero and removing these two bits.

196 IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 3, NO. 1, MARCH 2004

in a word that has distance 1 to the original codeword, and dis-
tance at least 2 to each of the other codewords. In other words,
even if one bit is corrupted, it can be uniquely determined what
the original codeword should have been.

The above code can be generalized to codes with different
lengths that correct more than one error. To this end, we ob-
serve that codes with a high minimum distance tend to have
bits of which the values 0 and 1 are evenly distributed among
the codewords for each bit. In our case this translates into each
bit being 0 for two codewords and 1 for the other two code-
words. Assuming that one of the codewords is the all-zero code-
word, we then obtain the scheme in Fig. 11 for a code with four
words. Let the number of bits in groups , and in Fig. 11
be , and , respectively, then . From
this scheme it is deduced that the distance between for example
the first and the second codeword is . The minimum
distance of the code is the minimum of the distances of all
pairs of codewords, so,

. To maximize the differences
between , and should thus be as small as possible. We
then consider three cases, depending on the remainder obtained
when is divided by 3 as follows:

• for some . The distance will be maximal if
. In this case , which implies that up

to errors can be corrected and errors detected in a
word.

• for some . The distance will be maximal if
two groups have length and one group has length ,
so let and . In this case

, which implies that up to errors
can be corrected and errors detected in a word.

• for some . The distance will be maximal if
two groups have length and one group has length

, so let and . In this case
, which implies that up to

errors can be corrected in a word.

By substituting the values of and in terms of into (1) or (2),
it is easily deduced that , and furthermore, that is the
largest value for each given for which this holds, implying that
the above codes are optimal with respect to the Plotkin bound.
Asymptotically, up to almost one third of a memory’s bits can
be corrected using these codes.

As an example, we deduce that a code with ,
and has codewords 00000000000000, 11111111100000,
00000111111111, and 11111000011111. Rearranging the bits
of the codewords gives the scheme in Fig. 12. This code can
correct up to four arbitrary errors in a memory of 14 bits, but
even a better performance is possible, as will become clear later
in this section.

We compare this code with a so-called (14, 4, 7) repetition
code, in which words are represented by seven pairs of bits,
each pair being a copy of the original message (see Fig. 13).
Correction of errors in the bits is done by counting the occur-
rence of each of the four messages 00, 01, 10, and 11 among the
bit pairs, and setting all bits according to the bit pair with the
highest count, a method called majority voting. Obviously, three
errors can always be corrected, wherever they occur, because the

Fig. 10. Graphical notation of a (5,4,3)-code. The top row contains the
codewords, the bottom row the original messages. A dark block encodes a bit
with value 1, a white block a bit with value 0. This code allows the correction
of one arbitrary bit error.

Fig. 11 Scheme of a code with four codewords, one of which contains all 0
bits. Each bit position (column) contains two 0-bits and two 1-bits. The bits are
arranged in three different groups a; b, and c, whereby the pattern of bits within
a group as seen over the four words is identical.

Fig. 12. Graphical notation of a (14, 4, 9)-code. The top row contains the
codewords, the bottom row the original messages. A dark block encodes a bit
with value 1, a white block a bit with value 0. The bits of the codewords have
been shuffled to make for an easy-to-discern graphical representation. This code
allows the correction of up to four arbitrary bit errors.

remaining four bit pairs—the majority—remains uncorrupted.
More in general, for a memory with bit pairs for some
odd arbitrary errors can be corrected. We can do
better, however, for some combinations of errors. For example,
if in the case all bits in three bit pairs are corrupted,
making for a total of six bit errors, still the bit pairs carrying
the original message are in the majority, allowing the correction
of all errors. A straightforward analysis of the cases with four,
five, and six errors that can be resolved by the majority voting
strategy reveals that about 65% of the cases with four erroneous
bits can be resolved, about 52% of the cases with five erroneous
bits, and about 29% of the cases with six erroneous bits.

How are errors corrected under the scheme of Fig. 11? An
important requirement is that the correction algorithm should be
straightforward to keep the cells and memories simple. The most
common way to correct errors for codes that are linear—which
all our codes are—is by computing its syndrome (e.g., see [37])
and deducing from it the bit positions of the errors. While this
is relatively straightforward for single-error correction by codes
like the (5,4,3)-code in Fig. 10, it is more complicated for codes
with larger distances, and it may result in cells and memories
becoming too complex. For our (14,4,9)-code we show a dif-
ferent method for error correction, which employs a table in
which the four codewords are stored. Given a word representing

PEPER et al.: FAULT-TOLERANCE IN NANOCOMPUTERS: A CELLULAR ARRAY APPROACH 197

Fig. 13. Graphical notation of a (14, 4, 7) repetition code. The top row denotes
the codewords, the bottom row the original messages. A dark block encodes a
bit with value 1, a white block a bit with value 0. This code allows the correction
of up to three arbitrary bit errors.

a memory that may have to be corrected, the method calcu-
lates the distances to the table entries, and selects the codeword
with the smallest distance as the most likely. Called distance
comparison in this paper, this method has limited complexity
due to the small number of codewords, and it comes with the
bonus that in many cases five and in some cases even six er-
rors can be corrected. For example, if there are errors in the
first three bits, the sixth bit, and the tenth bit of the all-zero
word 00000000000000, it becomes 11100100010000, and this
word has distance 5 to the all-zero codeword, but distances 6,
10, and 7 to the codewords 11111111100000, 00000111111111,
and 11111000011111, respectively.

Some six bit errors are also recoverable. For example, if
bits 1, 2, 6, 7, 10, and 11 are erroneous in the all-zero word,
we obtain 11000110011000. This word has distance 6 to the
all-zero codeword, and distances 7, 7, and 8 to the codewords
11111111100000, 00000111111111, and 11111000011111,
respectively.

Along the same lines, all the cases of five and six errors can be
listed up systematically, revealing that about 75% of the cases
with five erroneous bits and about 20% of the cases with six
erroneous bits can be resolved when using distance comparison
(for details see [61]).

VI. IMPLEMENTATION ISSUES

As the memories of a cellular array design increase in size
with their tolerance to faults, the cells grow in complexity. To
find suitable implementations of fault-tolerant cellular arrays, it
is important that the presumptions are adhered to that prompted
us to use cellular arrays in the first place. That is, cells should
be as simple as possible, and the underlying structure should
be as regular as possible on a fine-grained level. Additionally,
the occurrence of errors in the cellular array should be localized
in the sense that errors only affect a small part of the outcome,
even over a longer time frame. These requirements suggest the
further subdivision of cells in independent units that are similar
to and independent of each other. In this section, we investigate
how such an organization can be obtained, and in particular in-
vestigate how a cell’s mechanism for carrying out transitions
can be implemented as simple identical units that are indepen-
dent of each other.

The actions taking place in a cellular array consist of the fol-
lowing stages.

1) Testing whether the states of the memories associated
with a cell can be matched to the left hand side of a tran-
sition rule.

2) If a match is possible, the corresponding memories are
locked such that they can be exclusively used by the cell
for carrying out the transition. In case a transition rule is
divided into separate units, each unit carries out its transi-
tion independently of the other units. Units may carry out
their transitions at different times, but they should all start
after a match is made. Furthermore, only after all units of
a cell finish, will the transition be considered finished, and
the memories be unlocked.

3) Errors in each memory are corrected at random times,
provided the memory is not locked by a cell carrying out
a transition.

Under this scheme, bit errors in the memories associated with a
cell will disable all transitions of the cell, because a match be-
tween the memory states and the left hand sides of the transition
rules cannot be made in the presence of errors. As soon as all
bits of the memories are corrected, however, the cell will auto-
matically continue its transitions.

How can we distribute the mechanism to carry out transi-
tions over independent units? Starting with the (14,4,7) repe-
tition code, we divide a memory up into seven pairs of bits, just
as we did in the previous section. The mechanism to carry out
transitions on a cell can then be divided into units, each acting
on independent groups of bit pairs, like in Fig. 14. A transi-
tion acting on a group of bit pairs is called a group-wise transi-
tion. The rules governing group-wise transitions are the same as
those in Table II, because the state of each group of bit pairs is
identical to the state of the memory in the original nonfault-tol-
erant cellular array. Though this method requires seven units to
carry out transitions, the units are all identical, which facilitates
regularity, and more importantly, the units are independent: for
example if one of the transition units errs, only one of the bit
groups in each memory associated with a cell will be affected,
and this can be recovered by the error correction mechanism in
each memory.

A similar method applies when other error correcting codes
are used, such as the (5,4,3)-code and the (14,4,9)-code, though
it is more difficult to find independent units to carry out
transitions. When dividing a memory into independent groups
of bits, it is important that there is a one-to-one correspondence
between the states of each group on the one hand, and the
memory states of the original nonfault-tolerant cellular array
on the other hand, to ensure that it can be uniquely determined
which transition rule applies for each combination of group
states. So, in the above example of the (14,4,7) repetition
code it would be impossible to design transition rules acting
on only one bit of each of the four memories, because it
would result in rules of which some have identical left hand
sides—a situation not allowed in our model. A one-to-one
correspondence for the (5,4,3)-code and the (14,4,9)-code can
be obtained by grouping the memory bits like in Fig. 15(a)
and (b), respectively. We investigate this in more detail for the
(14,4,9)-code. The case of the (5,4,3)-code, though similar,
is not very practical, because only two groups of bits can be
distinguished in each memory in this case and these groups have
different numbers of bits. With respect to the (14,4,9)-code,
consider the four states of a memory at a cell’s upper edge in
Fig. 16 (original). These memory states are encoded by the

198 IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 3, NO. 1, MARCH 2004

Fig. 14. The transition mechanism in a fault-tolerant cellular array can be
distributed over independent units that act in similar ways. The upper part of
the figure shows a transition as it would take place on the memories associated
with a cell, and the lower part shows its implementation for each quartet of bit
pairs independently.

codewords of the (14,4,9)-code, as in Fig. 12. The grouping of
the 14 bits in the codewords according to Fig. 15(b) then results
in three different patterns, namely the bit pairs in Figs. 16(a),
(b), and (c). There is a one-to-one correspondence between
the patterns in each of (a), (b), and (c) on the one hand, and
the original memory states in Fig. 16 (original) on the other
hand, implying that transition rules can be formulated for the
corresponding groups.

Fig. 17 shows the three group-wise transition rules corre-
sponding to the transition rule for signal propagation (rule 1 in
Table II rotated counterclockwise by 90). To propagate a signal
over a fault-tolerant cellular space based on the (14,4,9)-code,
all three rules acting on the groups of bit pairs in Fig. 16 are
applied in ensemble. The rule under (a) resembles the original
transition rule, but the rules under (b) and (c) do not. However,
the mechanisms implementing them are very similar. The above
discussion suggests that it is possible to implement the mech-
anism for transitions in a distributed way, such that indepen-
dent units are very similar and independent with respect to the
occurrence of errors. The similarity notwithstanding, the three
different types of bit group in Fig. 16(a), (b), and (c), respec-
tively, require different transition rules, which translates into
less regularity than with the use of the (14,4,7) repetition code,
and, depending on the implementation, it may also require more
memory in a cell.

VII. CONCLUSION AND DISCUSSION

Asynchronous cellular arrays have many advantages to offer
as architectures for computers realized by nanotechnology.
Their regular structure paired with the absence of a central
clock may facilitate efficient physical implementations and
manufacturing methods. Making cells as simple as possible,
a key goal, is an ongoing process of experimenting with new
designs of asynchronous circuits and cellular arrays. The
cellular array constructed in this paper is based on a novel type
of delay-insensitive circuit [47]. This allows cells to be less
complex than in previously proposed models, as measured in
terms of the number of bits to represent the table of transition

Fig. 15. (a) Memory bits of a (5,4,3)-code divided into two independent
groups, one with three bits and one with two bits. (b) Memory bits of a
(14,4,9)-code divided into seven independent groups, all with two bits.
Some groupings are horizontal and some vertical to ensure a one-to-one
correspondence with the memory states in the original nonfault-tolerant
cellular array (see Fig. 16).

Fig. 16. (Original) The states of a memory at a cell’s upper edge in a
nonfault-tolerant cellular array. (a) The corresponding states of a vertical pair
of bits in the fault-tolerant cellular array based on the (14,4,9)-code. (b) The
corresponding states of a horizontal pair of bits on the outer edge of a cell.
(c) The corresponding states of a horizontal pair of bits on the inner edge.

rules in a cell as well as a cell’s state (see [13]). To store one
transition rule we need 16 bits, since both the left hand side
and the right hand side of the rule represent four memory states
of two bits. For six transition rules a total of
bits is thus required. To store the states of a cell we need
four memories, but the two bits in each memory are shared
between the two cells associated with the memory, so an
average of four bits per cell is required. We thus have a total
of bits per cell. This compares to 148 bits per
cell in the asynchronous cellular array in [13], which employs
nine transition rules. We believe a further reduction in the cell
complexity may be possible, perhaps down to a level of only
four transition rules, which would translate to 68 bits per cell.
A four-rule asynchronous cellular array has been proposed in
[53], but, though it can conduct the same class of computations
as conventional computers, it does so with an extremely low
efficiency, as only one signal at a time may move around in all
of the circuitry simulated on the cellular array. So, the hunt is
on for squeezing more functionality out of a limited number of
transition rules.

Physical implementations of nanocomputers faces many dif-
ficulties. There are defects and faults arising from the insta-
bility and noise-proneness on nanometer scales, which may lead
to unreliable and undesirable results of computation. In order
to ensure more reliable computation, techniques are necessary
to cope with such errors. The cellular array constructed in the
first part of this paper is made fault-tolerant by representing the
memory states as codewords in an error correcting code. Pro-
vided efficient codes are used, these techniques requires less

PEPER et al.: FAULT-TOLERANCE IN NANOCOMPUTERS: A CELLULAR ARRAY APPROACH 199

Fig. 17. Group-wise transition rules corresponding to the transition rule for signal propagation (rule 1 in Table II, rotated counterclockwise by 90 degrees). The
rules in (a), (b), and (c) carry out transitions on the groups of bits in Fig. 16(a), (b), and (c), respectively.

hardware redundancy than previously proposed schemes, like
R-fold modular redundancy (see Introduction), which amount
to repetition codes, of which errors are corrected by majority
voting. Our scheme allows correction even if up to asymptoti-
cally one third of the bits is corrupted. In contrast, a repetition
code allows only up to asymptotically one fourth of the bits to
be corrupted, witness for example the worst case in which just
more than half of the repeated bit pairs in a codeword are cor-
rupted by one bit error each, all of them in the same position of
the bit pair: in this case just over one fourth of the bits is cor-
rupted, but no recovery is possible.

If the errors are in certain favorable positions, more bit errors
can be corrected in both schemes (see Section V). At best, re-
covery is then possible if almost half of the bits are corrupted.
Our scheme tends to perform better in most of such instances
than the repetition code scheme. The ability of both coding
schemes for correcting errors beyond their distances indicates
that the codewords, when represented as points in hyperspace,
have much space around them in selected bit positions. This
phenomenon is mainly due to the limited number (four) of code-
words. A comparison can be made with packing a three dimen-
sional space with balls. It is harder to do this efficiently with
a few big balls than with a large number of smaller balls. An
upper bound for the number of balls with a certain diameter that
can be packed in an -dimensional hyperspace is the so-called
Hamming bound (e.g., see [37]). This bound is not tight for our
proposed coding scheme, and the situation is even worse for rep-
etition codes. Even so, no improvement can be expected with
our codes, because another bound, the Plotkin bound, is tight
for them, as pointed out in Section V.

Both the schemes for the (14,4,9)-code and the (14,4,7)-code
in Section V are unable to correct more than six errors, but they
can be used to detect them, as can be shown along the same
lines. Error detection, however, is hardly useful in our context,
for once a memory’s errors become irrecoverable, it is difficult
to restore it by requesting resubmission—a strategy that works
in communications.

Though we have constructed error correcting codes with word
lengths 5 and 14, any word length above 4 may be chosen. The
choice for a particular word length is determined, apart from
how big a memory may be, by the probability of errors occurring
and their type. For example, errors occurring in bursts require
longer codewords.

Inevitably, redundancy is required to attain fault-tolerance,
but this results in more complex cells. More complexity tends
to translate into less regularity, unless a way can be found to di-
vide a cell into identical parts. We have proposed a method to
distribute a cell’s mechanism for carrying out transitions into
units that have about the same complexity as a cell’s transition
mechanism in a nonfault-tolerant cellular array (see Section VI).
Each unit acts on two (or three) bits of each of the cell’s four

memories in an operation that we call a group-wise transition.
As the units are independent of each other, an error occurring
in one of them does not affect the others, so errors occurring
in group-wise transitions remain localized and can be corrected
by an error correcting mechanism acting on the memories, pro-
vided that the number of errors lies within the correction ability
of the code. A unit may be implemented as a separate circuit,
in which case all units can work in parallel. A unit may also
be shared among all groups in a cell, in which case one unit
carries out all group-wise transitions of a cell one by one. This
sequential way of processing has as disadvantage that correla-
tions between errors during different group-wise transitions may
arise and that execution of transitions is slower. The advantage
is that less hardware is necessary, though an additional mecha-
nism may be required to coordinate the sequential execution of
the group-wise transitions.

In this paper, we have implicitly assumed that the circuits
used for error correction are error free. When implementing
cells on the nanometer scale this assumption is easily violated.
The best way to cope with this problem is to design the circuits
such that any error in the error-correcting circuit has only impact
on a limited number of bits, preferably one bit at a time. Erro-
neous bit states caused by transient errors in the error-correcting
circuit may then be corrected in the next iteration through the
circuit.

Though this paper shows how to efficiently simulate delay-
insensitive circuits on asynchronous cellular arrays in a fault-
tolerant way, it leaves open the challenge of configuring the
inherently homogeneous cellular hardware into particular delay-
insensitive circuits [12]. This problem boils down to moving
a certain pattern of information—a configuration of cells in
appropriate states representing a circuit layout—to a certain
location in the cellular array. A method suggested in [13]
for this uses the collective behavior of the cells to copy
information from one part of the cellular array to another part, in
a way resembling self-reproduction in cellular arrays [48], [49],
[62]. To implement configurability on an asynchronous cellular
array, memories may require more bits to carry configuration
information. This implies that a fault-tolerant version of the
cellular array will require error correcting codes with more
codewords than the four assumed in this paper. These codes
are likely to have better efficiency than the codes in this
paper, because, being based on more balls corresponding to
the codewords, the hyperspace will be filled more efficiently.
The Hamming bound will be approached more closely, and
related to that, the number of bits required to make the memories
fault-tolerant may hardly have to increase, as compared to the
proposed codes.

Defect-tolerance, though important for nanotechnology
applications, has not been discussed in this paper. Some
results on defect-tolerance have been obtained by building

200 IEEE TRANSACTIONS ON NANOTECHNOLOGY, VOL. 3, NO. 1, MARCH 2004

the Teramac [27], a parallel computer based on field-pro-
grammable gate arrays (FPGAs) that is able to achieve
high-performance computing, even if a significant number
of its components are defective. As this method requires a
master computer setting up a table of routes around defects
and configuring the hardware correspondingly, it cannot
be performed autonomously by the defective computer,
and as such it may be less suitable for certain types of
nanocomputers. In the context of cellular arrays, some results
on defect-tolerance are given in [63]–[65], but they focus
mainly on variations of the Firing Squad Synchronization
Problem, a synchronization problem on synchronous cellular
arrays that is mainly of theoretical interest.

VIII. ACKNOWLEDGMENTS

The authors would like to thank K. Morita of Hiroshima Uni-
versity, Japan, for his support and discussions.

REFERENCES

[1] A. Bachtold, P. Hadley, T. Nakanishi, and C. Dekker, “Logic circuits
with carbon nanotube transistors,” Science, vol. 294, pp. 1317–1320,
2001.

[2] C. P. Collier, E. W. Wong, M. Belohradsky, F. M. Raymo, J. F. Stod-
dard, P. J. Kuekes, R. S. Williams, and J. R. Heath, “Electronically con-
figurable molecular-based logic gates,” Science, vol. 285, pp. 391–394,
1999.

[3] Y. Cui and C. Lieber, “Functional nanoscale electronic devices assem-
bled using silicon nanowire building blocks,” Science, vol. 291, pp.
851–853, 2001.

[4] Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K. Kim, and C. M. Lieber,
“Logic gates and computation from assembled nanowire building
blocks,” Science, vol. 294, pp. 1313–1317, 2001.

[5] H. W. Ch. Postma, T. Teepen, Z. Yao, M. Grifoni, and C. Dekker,
“Carbon nanotube single-electron transistors at room temperature,”
Science, vol. 293, pp. 76–79, 2001.

[6] M. A. Reed, J. Chen, A. M. Rawlett, D. W. Price, and J. M. Tour,
“Molecular random access memory cell,” Appl. Phys. Lett., vol. 78, pp.
3735–3737, 2001.

[7] T. Rueckes, K. Kim, E. Joselevich, G. Y. Tseng, C. Cheung, and C. M.
Lieber, “Carbon nanotube-based nonvolatile random access memory for
molecular computing,” Science, vol. 289, pp. 94–97, 2000.

[8] W. Porod, “Nanoelectronic Circuit Architectures.” Handbook of
Nanoscience, Engineering, and Technology, W. A. Goddard III, D. W.
Brenner, S. E. Lyshevski, and G. J. Lafrate, Eds. Boca Raton, FL:
Chemical Rubber Company Press, 2002, ch. 5.

[9] P. Beckett and A. Jennings, “Toward nanocomputer architecture,”
in Proc. 7th Asia-Pacific Computer Systems Architecture Conf.,
ACSAC’2002 (Conf. on Research and Practice in Information Tech-
nology), vol. 6, F. Lai and J. Morris, Eds., 2002.

[10] M. Biafore, “Cellular automata for nanometer-scale computation,”
Physica D, vol. 70, pp. 415–433, 1995.

[11] J. Lyke, G. Donohoe, and S. Karna, “Reconfigurable Cellular Array Ar-
chitectures for Molecular Electronics,” Air Force Research Laboratory,
Tech. Rep. AFRL-VS-TR-2001-1039, 2001.

[12] L. J. K. Durbeck and N. J. Macias, “The cell matrix: An architecture for
nanocomputing,” Nanotechnology, vol. 12, pp. 217–230, 2001.

[13] F. Peper, J. Lee, S. Adachi, and S. Mashiko, “Laying out circuits on
asynchronous cellular arrays: A step toward feasible nanocomputers?,”
Nanotechnology, vol. 14, pp. 469–485, 2003.

[14] K. L. Wang, “Issues of nanoelectronics: A possible roadmap,” J.
Nanosci. Nanotechnol., vol. 2, no. 3/4, pp. 235–266, 2002.

[15] K. Nakamura, “Asynchronous cellular automata and their computational
ability,” Syst., Comput., Contr., vol. 5, no. 5, pp. 58–66, 1974.

[16] J. Lee, S. Adachi, F. Peper, and K. Morita, “Embedding universal delay-
insensitive circuits in asynchronous cellular spaces,” Fundamenta Infor-
maticae, vol. 58, no. 3/4, pp. 295–320, 2003.

[17] S. Adachi, F. Peper, and J. Lee, “Computation by asynchronously up-
dating cellular automata,” J. Stat. Phys., vol. 114, no. 1/2, pp. 261–289,
2004.

[18] L. Priese, “A note on asynchronous cellular automata,” J. Comput. Syst.
Sci., vol. 17, pp. 237–252, 1978.

[19] S. Hauck, “Asynchronous design methodologies: An overview,” Proc.
IEEE, vol. 83, pp. 69–93, 1995.

[20] C. Joachim, J. K. Gimzewski, and A. Aviram, “Electronics using hybrid-
molecular and mono-molecular devices,” Nature, vol. 408, pp. 541–548,
2000.

[21] A. J. Heinrich, C. P. Lutz, J. A. Gupta, and D. M. Eigler, “Molecule
cascades,” Science, vol. 298, pp. 1381–1387, 2002.

[22] Y. Kameda, S. V. Polonsky, M. Maezawa, and T. Nanya, “Self-timed
parallel adders based on DI RSFQ primitives,” IEEE Trans. Appl. Su-
percond., vol. 9, pp. 4040–4045, 1999.

[23] P. Patra, S. Polonsky, and D. S. Fussell, “Delay-insensitive logic for
RSFQ superconductor technology,” in Proc. 3rd Int. Symp. on Adv. Res.
in Asynchronous Circuits and Systems. Las Alamitos, CA, 1997, pp.
42–53.

[24] C. S. Lent and P. D. Tougaw, “A device architecture for computing with
quantum dots,” Proc. IEEE, vol. 85, pp. 541–557, 1997.

[25] R. P. Cowburn and M. E. Welland, “Room temperature magnetic
quantum cellular automata,” Science, vol. 287, pp. 1466–1468, 2000.

[26] U. Golze and L. Priese, “Petri net implementations by a universal cell
space,” Inform. Contr., vol. 53, pp. 121–138, 1982.

[27] J. R. Heath, P. J. Kuekes, G. S. Snider, and R. S. Williams, “A de-
fect-tolerant computer architecture: Opportunities for nanotechnology,”
Science, vol. 280, pp. 1716–1721, 1996.

[28] J. von Neumann, “Probabilistic Logics and the Synthesis of Reliable
Organisms From Unreliable Components.” Automata Studies, C. E.
Sharmon and J. McCarthy, Eds. Princeton, NJ: Princeton Univ. Press,
1956, pp. 43–98.

[29] R. L. Dobrushin and S. I. Ortyukov, “Upper bound on the redundancy of
self-correcting arrangements of unreliable functional elements,” Prob.
Inform. Trans., vol. 13, pp. 203–218, 1977.

[30] N. Pippenger, “On networks of noisy gates,” in Proc. 26th IEEE Symp.
on Foundations of Computer Science, 1985, pp. 30–38.

[31] , “Invariance of complexity measures for networks with unreliable
gates,” J. Assoc. Comput. Mach., vol. 36, no. 3, pp. 531–539, July 1989.

[32] P. G. Depledge, “Fault-tolerant computer system,” Inst. Elect. Eng.
Proc., vol. 128, pp. 257–272, 1981.

[33] S. Spagocci and T. Fountain, “Fault rates in nanochip devices,” in Elec-
trochem. Soc. Proc., vol. 99, 1999, pp. 354–368.

[34] K. Nikolić, A. Sadek, and M. Forshaw, “Fault-tolerant techniques for
nanocomputers,” Nanotechnology, vol. 13, pp. 357–362, 2002.

[35] J. Han and P. Jonker, “A system architecture solution for unreliable na-
noelectronic devices,” IEEE Trans. Nanotechnol., vol. 1, pp. 201–208,
Dec. 2002.

[36] J. Han and P. Jonker, “A defect- and fault-tolerant architecture for
nanocomputers,” Nanotechnology, vol. 14, pp. 224–230, 2003.

[37] F. J. MacWilliams and N. J. Sloane, The Theory of Error-Correcting
Codes: NorthHolland, 1978.

[38] D. A. Spielman, “Highly fault-tolerant parallel computation,” in Proc.
37th Annual IEEE Conference on Foundations of Computer Science,
1996, pp. 154–163.

[39] H. Nishio and Y. Kobuchi, “Fault tolerant cellular spaces,” J. Comput.
Syst. Sci., vol. 11, pp. 150–170, 1975.

[40] M. Harao and S. Noguchi, “Fault tolerant cellular automata,” J. Comput.
Syst. Sci., vol. 11, pp. 171–185, 1975.

[41] P. Gács, “Reliable computation with cellular automata,” J. Comput. Syst.
Sci., vol. 32, no. 1, pp. 15–78, 1986.

[42] , “Self-correcting two-dimensional arrays,” in Advances in Com-
puting Research (a Scientific Annual), vol. 5, S. Micali, Ed.. Greenwich,
CT, 1989, pp. 223–326. Randomness in Computation.

[43] P. Gács and J. Reif, “A simple three-dimensional real-time reliable cel-
lular array,” J. Comput. Syst. Sci., vol. 36, no. 2, pp. 125–147, 1988.

[44] W. Wang, “An Asynchronous Two-Dimensional Self-Correcting Cel-
lular Automaton,” Ph.D. dissertation, Boston University, Boston, MA
02 215, 1990. Short version: In Proc. 32nd IEEE Symposium on the
Foundations of Computer, IEEE Press, pp. 188–192, 1991.

[45] P. Gács, “Reliable cellular automata with self-organization,” J. Stat.
Phys., vol. 103, no. 1/2, pp. 45–267, 2001. Short version in Proc. IEEE
Symposium on Foundations of Computer Science, pp. 90–99, 1997.

[46] T. Isokawa, F. Abo, F. Peper, S. Adachi, J. Lee, N. Matsui, and S.
Mashiko, “Fault-tolerant nanocomputers based on asynchronous
cellular automata,” Int. J. Mod. Phys., 2004, to be published.

[47] J. Lee, F. Peper, S. Adachi, and S. Mashiko, “Universal delay-insensitive
systems with buffering lines,” IEEE Trans. Circuits Syst., Part I, 2003,
submitted for publication.

[48] A. W. Burks and J. von Neumann, Eds., The theory of Self-Reproducing
Automata. Champaign, IL: Univ. Illinois Press, 1966.

PEPER et al.: FAULT-TOLERANCE IN NANOCOMPUTERS: A CELLULAR ARRAY APPROACH 201

[49] E. F. Codd, Cellular Automata. New York: Academic, 1968.
[50] K. Morita and S. Ueno, “Computation-universal models of two-dimen-

sional 16-state reversible cellular automata,” IEICE Trans. Inform. Syst.,
vol. E-75-D, no. 1, pp. 141–147, 1992.

[51] N. Margolus, “Physics-like models of computation,” Phys. D, vol. 10,
pp. 81–95, 1984.

[52] T. Toffoli and N. Margolus, “Invertible cellular automata: A review,”
Phys. D, vol. 45, pp. 229–253, 1990.

[53] J. Lee, F. Peper, S. Adachi, K. Morita, and S. Mashiko, “Reversible com-
putation in asynchronous cellular automata,” in Proc. 3rd Int. Conf. Un-
conventional Models Computation, C. S. Calude, M. J. Dinneen, and F.
Peper, Eds., 2002, pp. 220–229.

[54] A. Davis and S. M. Nowick. (1997) “An Introduction to Asynchronous
Circuit Design”. Computer Science Dept., Univ. Utah. [Online]. Avail-
able: http://www.cs.columbia.edu/async/publications.html

[55] J. Lee, F. Peper, S. Adachi, and S. Mashiko, “Universal delay-insensitive
circuits with bidirectional and buffering lines,” IEEE Trans. Comput., to
be published.

[56] R. M. Keller, “Toward a theory of universal speed-independent mod-
ules,” IEEE Trans. Comput., vol. C-23, pp. 21–33, 1974.

[57] J. C. Ebergen, “A formal approach to designing delay-insensitive cir-
cuits,” Distrib. Comput., vol. 5, pp. 107–119, 1991.

[58] P. Patra, “Approaches to the Design of Circuits for Low-Power Compu-
tation,” Ph.D. Thesis, University of Texas at Austin, 1995.

[59] S. M. Ornstein, M. J. Stucki, and W. A. Clark, “A functional description
of macromodules,” in Proc. Spring Joint Computer Conf. (AFIPS), 1967,
pp. 337–355.

[60] Encyclopedia of Delay-Insensitive Systems (Edis) [Online]. Available:
http://edis.win.tue.nl/edis.html

[61] F. Peper, T. Isokawa, F. Abo, J. Lee, S. Adachi, N. Matsui, and S.
Mashiko, “Fault-tolerance in biological systems simulated on asyn-
chronous cellular automata,” in Proc. 9th Int. Symp. Artificial Life
Robotics (AROB), 2004, pp. 61–66.

[62] J. A. Reggia, S. L. Armentrout, H.-H. Chou, and Y. Peng, “Simple
systems that exhibit self-directed replication,” Science, vol. 259, pp.
1282–1287, 1993.

[63] M. Kutrib and R. Vollmar, “Minimal time synchronization in restricted
defective cellular automata,” J. Inform. Process. Cybern., vol. 3, pp.
179–196, 1991.

[64] M. Kutrib and R. Vollmar, “The firing squad synchronization problem
in defective cellular automata,” IEICE Trans. Inform. Syst., vol. E78-D,
no. 7, pp. 895–900, 1995.

[65] H. Umeo, “A fault-tolerant scheme for optimum-time firing squad syn-
chronization,” Parallel Comput.: Trends Applicat., pp. 223–230, 1994.

Ferdinand Peper (M’00) received the M.S. and
Ph.D. degrees in computer science from Delft
University of Technology, Delft, The Netherlands,
in 1985 and 1989, respectively.

Currently, he is a Senior Researcher at the
Nanotechnology Group of the Communications
Research Laboratory, Kobe, Japan, and Visiting
Professor at the Himeji Institute of Technology,
Japan. His research interests include cellular au-
tomata, nanocomputing, quantum computing, neural
computing, and evolutionary hardware.

Jia Lee received the B.E, M.E., and Ph.D. degrees
from Hiroshima University, Japan, in 1996, 1998, and
2001, respectively.

He is currently a Postdoctoral Researcher in
the Nanotechnology Group of the Communications
Research Laboratory, Kobe, Japan. His research in-
terests include asynchronous circuits, asynchronous
cellular automata, and formal language theory.

Fukutaro Abo received the B.E. degree from
Himeji Institute of Technology in 2001 and is
currently working toward the M.E. degree at the
same institution.

His research interests include fault- and defect-
tolerant cellular automata.

Teijiro Isokawa (S’99–M’01) received the M.E. de-
gree from Himeji Institute of Technology in 1999.

He is currently working as a Research Associate
at the Division of Computer Engineering, Grad-
uate School of Engineering, Himeji Institute of
Technology. His research interests include cellular
automata-based computer systems, evolutionary
computation, artificial immune systems, and neural
networks.

Susumu Adachi received the M.E. degree in phys-
ical engineering from Hiroshima University, Japan,
in 1995 and the Ph.D. degree in computer engineering
from Kobe University, Japan, in 2001.

He is currently a Postdoctoral Researcher at the
Nanotechnology Group of the Communications Re-
search Laboratory, Japan. His research interests in-
clude cellular automata, quantum computation, and
evolutionary computation.

Nobuyuki Matsui received the B.S. degree in
physics from the Faculty of Science, Kyoto
University, Japan, in 1975 and the M.E. and Dr.
Eng. degrees in nuclear engineering from Kyoto
University in 1977 and 1980, respectively.

After working in the Faculty of Science and Tech-
nology, Kinki University, he became an Associate
Professor and a Professor of the Computer Engi-
neering Division, Graduate School of Engineering
at Himeji Institute of Technology in 1993 and 1998,
respectively.

Dr. Matsui is a Member of the ENNS, SICE, ISCIE, and the Physical Society
of Japan.

Shinro Mashiko received the B.S. degree in 1980
from Yamanashi University, Kofu, Japan, and the
M.E. and Dr. degrees from Tohoku University,
Sendai, Japan, in 1983 and 1987, respectively.

He is the Chief of the Nanotechnology Section and
the Director of the Kansai Advanced Research Center
in Kobe, Japan, which is part of the Communication
Research Laboratory, Japan.

Dr. Mashiko is a Member of the Japan Society of
Applied Physics.

