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Abstract
The proposed nanometre-sized electronic devices are generally expected to
show an increased probability of errors both in manufacturing and in
service. Hence, there is a need to use fault-tolerant techniques in order to
make reliable information processing systems out of those devices. Here we
examine and compare four fault-tolerant techniques: R-fold multiple
redundancy; cascaded triple modular redundancy; von Neumann’s
multiplexing method; and a reconfigurable computer technique. It is shown
that the reconfiguration technique is the most effective technique, able to
cope with manufacturing defect rates of the order of 0.01–0.1, but the
technique requires enormous amounts of redundancy, of the order of
103–105. However, in the case of transient errors, multiple modular
redundancy and multiplexing are the only feasible options.

1. Introduction

The invention of nanometre-scale devices should eventually
permit extremely large scales of integration, of the order of
1012 devices per chip. At the present time, only a handful of
truly nanoscale or molecular scale logic or memory devices
exists, and the question of how to assemble 1012 such devices
on a working chip seems academic. Nevertheless, it is
almost certain that it will be very difficult to make even
small nanoscale circuits—for example having one hundred
devices—with any degree of certainty. Furthermore, it is
probable that the proposed nanoelectronic devices will be more
fragile than conventional devices, and will be sensitive to
external influences such as radiation related effects (radioactive
decay or cosmic rays), high temperature, electromagnetic
interference, parameter fluctuations, etc. Hence, if progress is
to be made in nanoelectronics, fault-tolerant architectures will
certainly be necessary in order to produce reliable systems that
are immune to manufacturing defects and to transient errors.

In general, errors can be split into permanent and
transient errors. Permanent (‘hard’) errors may occur during
manufacture or during the lifetime of the computer. The
current manufacturing strategy is mainly geared to improving
the reliability of the manufacturing process, so that only a
modest proportion of chips fail during test. This requires that
the manufacturing failure rate of individual devices (including
transistors and wiring connections) be very low. For example,

the manufacturing failure rate per device for present-day
CMOS is approximately 10−7–10−6, while the failure rate for
highly experimental devices such as molecular transistors is
currently just below unity. The increasing miniaturization of
CMOS technology is causing the chip failure rate to increase
as both the number of devices and the individual device failure
rates increase. Nobody knows what the eventual probability of
failure during manufacturing, pf , of nanoscale or molecular
scale devices will be, but it is widely acknowledged that it
will be significantly poorer than that of present-day transistors.
Since it should eventually be possible to put more than 1012

molecular-sized devices on a 1 cm2 chip, it is evident that
advanced fault-tolerant strategies will have to be devised.

Several techniques exist for overcoming the effects of
inoperative devices. All of them use the concept of redundancy
(in resources or in time); most of them rely in some way on
the availability of multiple copies of devices or circuits. There
are no conceptual differences in the analysis of transient errors
and manufacturing (or permanent) defects. However, from a
practical point of view some techniques are, in general, more
efficient for dealing with transient errors and some are for
permanent defects.

Here we are mainly concerned with resource redundancy
(temporal redundancy can be shown to be formally equivalent
to resource redundancy). We extend the theory of fault-
tolerance to nanocomputers, which are likely to suffer from
large numbers of defects in manufacturing, and which may
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Figure 1. The basic elements of fault-tolerant techniques: (a) RMR;
(b) CTMR.

also be subject to frequent errors in operation. We analyse
four techniques:

• R-fold modular redundancy [1] (RMR, where R =
3, 5, 7, 9, . . .);

• cascaded triple modular redundancy (CTMR, of the ith
order) [2];

• NAND multiplexing [3];
• reconfiguration [4, 5].

The first two techniques are generalizations of the well-known
triple modular redundancy (TMR) method [1, 2]. At present
this technique is mainly used to correct for transient errors
while a computer is being used. The third technique, which we
call the NAND multiplexing method, was originally proposed
by von Neumann [3] at the time when early computers were
introduced which were notoriously unreliable. Finally, we
develop a simplified theory of reconfigurable computers and
we present derived results. This technique represent a vastly
more sophisticated version of the ‘test–find–replace’ concept
and it is mainly suitable for tackling manufacturing defects
rather than transient errors. The effectiveness of this idea
was successfully demonstrated a few years ago on a massively
parallel computer (‘Teramac’ custom configurable computer)
built at Hewlett-Packard Laboratories [4], but no theoretical
analysis of this system has been published. However, if
the circuit complexity is too high—for example, in the logic
circuitry found in chips such as workstations or PCs—then
even this strategy starts to become unworkable if there are too
many defects.

2. R-fold modular redundancy

The concept of TMR is to have three units working in parallel,
and to compare their outputs with a majority gate. Then
TMR can provide an assemblage that behaves like one of its
constituent components, but with an improved probability of
working. The trade-off is that instead of n devices, at least
3n devices plus a majority gate are needed to make this new
‘unit’. RMR is a generalization of TMR where instead of three
we have R units working in parallel (see figure 1(a)).

In our analysis we have assumed a chip with N devices,
with the probability pf of an individual device failing. The
probability Pf ail of a complete chip failing during the working
lifetime is minimized for some optimum cluster size (Nc),
under the condition Ncpf � 1. A cluster (or module)

Pfail
(i)

p

Nc Nc
Nc

Figure 2. The probability of obtaining a defective (TMR/CTMR)
unit (P (i)

f ail) (with 3iNc devices) with B-bit outputs, as a function of
the individual device failure probability pf , using imperfect
majority gates. The groups of curves are for: Nc = 10, B = 1,
m = 10 (right); Nc = 104, B = 64, m = 20 (centre); and Nc = 108,
B = 64, m = 20 (left).

represents the unit (with Nc devices) which is replicated R

times; outputs from each of the units are compared in a majority
gate and the output is determined. It would be a more realistic
approach to fix the logical depth of the system (to say D = 10)
and then have determined values for Nc for each R (since the
total number of devices must be N = RNcD). However,
in the proposed model we calculate the maximum theoretical
improvement offered by this technique. Imperfect majority
gates have B outputs and mB devices.

First we assume that a module of Nc devices works only
if every single device in the module works:

P module
works = (1 − pf )Nc ≈ e−Ncpf (pf � 1). (1)

Now the probability that a module fails, if Ncpf � 1, is
P module

f ails = 1 − P module
works ≈ Ncpf . A group consisting of R

modules and a majority gate works correctly when at least
(R + 1)/2 modules work correctly and when the majority gate
also works (the probability is Pmg,w ≈ e−mBpf ). The number
of devices in a group is RNc + mB, so the total number of
groups is Ngroups = N/(RNc + mB). The chip fails if any of
the groups fail, hence the probability that the whole chip with
N devices fails is (again when P

group

f � 1) approximately

P
chip

f ail = N

RNc + mB
[C(Ncpf )(R+1)/2 + mBpf ] (2)

where C is the binomial factor

C =
(

R

(R − 1)/2

)
. (3)

Here we assume that the errors in each module are uncorrelated,
i.e. that common-mode (or common cause) failures [6] are not
present in the redundant system. The equation dP

chip

f ail /dNc =
0 gives the optimum module size (Nc) for a given pf , which is
substituted in equation (2), yielding the minimum chip failure
probability. Table 1 gives the results for some values of R.
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Table 1. Efficiency of RMR at reducing chip failure rates (Ncpf � 1).

R P
f ail

chip = ε pf,max Optimum module size Nc

1 Ntotalpf ε/Ntotal Ntotal

3 Ntotalpf × 1.15(mBpf )1/2 0.9

(mB)1/3
(ε/Ntotal)

2/3

(
mB

3

)1/2

(pf )−1/2

5 Ntotalpf × 0.8(mBpf )2/3 1.1

(mB)2/5
(ε/Ntotal)

3/5

(
mB

20

)1/3

(pf )−2/3

7 Ntotalpf × 0.6(mBpf )3/4 1.3

(mB)3/7
(ε/Ntotal)

4/7

(
mB

105

)1/4

(pf )−3/4

9 Ntotalpf × 0.5(mBpf )4/5 1.5

(mB)4/9
(ε/Ntotal)

5/9

(
mB

500

)1/5

(pf )−4/5

...
...

...
...

Limit ∼ Ntotalpf × (mBpf ) ∼ 1

(mB)1/2
(ε/Ntotal)

1/2 ∼ 1/pf

3. Cascaded triple-modular redundancy

The TMR process can be repeated by combining three of the
TMR ‘units’ with another majority gate to form a ‘second-
order’ TMR unit with even higher reliability (a technique
called CTMR, see figure 1(b)). If all three of the units work
independently, then the probability of the assemblage (three
units plus majority gate) working, P (1)

w , is given by

P (1)
w = (1 − pf )mB[P 3

works + 3P 2
works(1 − Pworks)] (4)

where Pworking ≡ P module
works is given by equation (1). The

performance with additional stages of TMR is obtained by
repeated application of this formula and the probability that a
CTMR configuration of ith order works is

P (i)
w = (1 − pf )mB[(P (i−1)

w )3 + 3(P (i−1)
w )2(1 − P (i−1)

w )] (5)

Figure 2 demonstrates the effectiveness of the CTMR
technique. It shows that there is no advantage in using CTMR
for units containing a small number of devices, when the
majority gates are made from the same devices as the units
that they are monitoring. However, at least in principle,
improvement is possible for units with large Nc.

There are three regions in each set of curves:

(a) Ncpf > ln 2, where redundancy affords no advantage;
(b) 10−3 < Ncpf < ln 2, where redundancy is most effective;

and
(c) Ncpf < 10−3, where only first-order redundancy offers

an advantage.

In case (b), the effectiveness of redundancy scales as a power
law with the order of CTMR. The failure probability is

P
(i)
f ail ∝ (Ncpf )2i .

For case (c) the effectiveness of redundancy depends on the
ratio mB/Nc. Starting from equation (5), it can be shown that
in region (c) the failure probabilities are

P
(0)
f ≡ P module

f ail ≈ Ncpf ,

P
(i)
f ≈ mB

Nc

Ncpf = mB

Nc

P
(0)
f , i = 1, 2, . . . .

(6)

4. NAND multiplexing

Fifty years ago, von Neumann was the first person to consider
the use of redundant components to overcome the effects of
defective devices [3]. He described the now well-known
technique of multiple redundancy (see above), but he also
described another method, which we have called NAND
multiplexing for brevity. Von Neumann showed that this
method could in principle enable a circuit to work, even
if the individual devices had a failure rate of ∼0.01. The
problem with this technique was that it required enormous
levels of redundancy (∼103–104). Although this seems very
unrealistic, very high levels of redundancy may be needed
for nanocomputers, since it may be very hard to make huge
numbers of nanoscale devices with good reliability. We
have examined whether this technique can be used with
smaller levels of redundancy, and we have also examined its
performance for different circuit sizes [7].

In essence the basic technique of multiplexing is similar
to RMR, but instead of having a majority gate to decide
on the proper output, the output is carried on a bundle of
wires, e.g. for a single bit output one would have R wires
(or Nbundle if we use von Neumann’s notation) in a bundle
which carries the output to the next stage. Therefore, in
this method, processing units of any size are replaced by
multiplexed units containing Nbundle number of lines for every
single input and output. Essentially, a multiplex unit consists
of two stages. The first, the executive stage, performs the
basic function of the processing unit in parallel. The second,
the restorative stage, reduces the degradation caused by the
executive stage and thus acts as a non-linear ‘amplifier’ of
the output, see figure 3. An example for the executive stage
given in figure 3 is a simple NAND (two-input gate), but it
could be a unit with an arbitrary number of gates. Now the
signals to and from units are not carried in single lines but in
bundles (Nbundle = 4 in the example in figure 3) and the unit
is replicated the appropriate number of times (there are four
NAND gates in figure 3). If the inputs and processing units are
perfectly reliable then the lines comprising each output should
be identically stimulated (1) or unstimulated (0). However,
due to errors in the input data as well as errors occurring in
the processing of the inputs from faulty devices, not all of the
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Figure 3. The basic elements of NAND multiplexing (after von Neumann [2]) fault-tolerant techniques. The specific logic gates shown are
only for the purpose of illustration.
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Figure 4. The basic structure for the reconfiguration technique theory (after Lach et al [3]). The specific logic gates shown are only for the
purpose of illustration.

output lines in each output will be identically stimulated. Thus,
for multiplexed networks, the final outputs are considered to
be 1 if more than (1 − �)Nbundle lines are stimulated and
0 if less than �Nbundle lines are stimulated, where � is a
critical level that is pre-defined (0 < � < 0.5). Stimulation
levels in between are considered to be undecided (consequently
resulting in malfunction).

For the sake of simplifying calculations, von Neumann
assumed the most basic logic gate in a chip to be the NAND
gate. This is a universal logic gate and can be used to build
the basic logic gates NOT and NOR (containing one and four
NAND gates respectively). Thus, a NAND network equivalent
can replace any conventional architecture. The use of only
NAND gates in extremely large-scale integration (XLSI)
architectures may also be justified in that construction is
simplified through the use of identical repeating sub-units.

It is possible to develop a quantitative theory for NAND
multiplexing whereby the probability distribution of the output
stimulation fraction ψ , of a NAND multiplex can be calculated
as a function of the input stimulation fractions, ξ and η (see
figure 3), taking into account a probability of failure ε in each
NAND gate. If ζ and ω are the stimulation fractions of the
executive stage and intermediate restorative stage outputs, then
probability distributions 	ζ , 	ω and 	ψ can be derived for ζ ,
ω and ψ , respectively. For large Nbundle, these distributions are
approximately Gaussian and indeed the theory is only valid for
large Nbundle due to this assumption. For details of the theory
developed by von Neumann and the formulae for 	ζ , 	ω and
	ψ see [3]. Additional details are given in [7].

5. Reconfiguration

In 1998, a paper was published in Science on the ‘Teramac’
reconfigurable computer [4], with the proposal that this
technique would be useful for overcoming manufacturing
defects in nanocomputers. Unfortunately, no details of the
theory are available, so that it is not possible to make
quantitative estimates of its performance in general. We have

therefore taken an analysis by Lach et al [5] as a theoretical
basis, and extended the theory contained in that paper to
find approximate upper bounds to the maximum allowable
manufacturing defect rate, for different sizes of circuit.

Devices (‘transistors’), each having a probability pf of
being defective during manufacture, are assembled in groups
of Ntrans to form a configurable logic block (CLB, shown as
a sub-unit in figure 4). A number of these CLBs are grouped
together, NCLB at a time, to form an atomic fault-tolerant block
(AFTB, larger units in figure 4). It is assumed that the AFTB
can be configured to perform some basic set of operations,
even though any one of its constituent CLBs may be faulty.
In general, different types of AFTBs can be designed to carry
out different functions, and each type may incorporate different
numbers of CLBs. However, it is assumed here that all AFTBs
contain the same number of CLBs.

The AFTBs are then grouped together, NA at a time, to
form a cluster which then performs some desired function. In
the present context we suppose that a quite high-level function
is implemented. For example, the cluster might operate as if
it contained a large block of memory, or a 64-bit full adder,
or a processing element for an artificial retina, or even the
equivalent of a present-day workstation CPU chip. On the
other hand, the cluster function could be much simpler.

One further stage is needed. It is assumed that the chip
is completely filled with identical, independent copies of the
cluster. Suppose that we would like to be able to manufacture
chips, so that after fault-detection and reconfiguration, they
have a certain probability—for example 90%—of working.
We now apply a higher level of redundancy, by grouping
the clusters together, R at a time, to form a supercluster.
For simplicity we have assumed that it is possible to detect
which, if any, of the R clusters work, and then reconfigure the
supercluster so that it gives a valid output. The supercluster is
then considered to be acceptable if at least one of the R clusters
works. This model is greatly simplified, and other models are
possible, but it is very general. Fuller results are given in [7].
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E6

Figure 5. Allowable failure rate per device, pf , as a function of the
amount of redundancy, R, for different numbers of effective devices
in a working unit (Nc). The total number of devices on the chip is
N = 1012 and the chip must work with 90% probability (B = 64
and m = 20).

6. Results and discussion

Figure 5 illustrates the relative performance of three techniques
(RMR, multiplexing and reconfigurability), applied to the
rectification of manufacturing faults. The horizontal axis in
figure 5 represents the redundancy R, which is effectively the
number of times that a circuit has to be replicated before it
becomes useful. The vertical axis is pf , the probability of an
individual device (‘transistor’) being defective in manufacture.
The curves in figure 5 are based on the assumption that a chip
with 1012 devices has to be made with a 90% probability of
working. The numbers alongside each curve represent the
number of devices in the basic circuit (that is assumed to
be replicated in various ways). Thus Nc = 100 denotes a
very small circuit (for example an elementary part of a field
programmable gate array [8]). The value Nc = 104 or 105

might represent a moderately powerful ‘neuron’ or one of many
small digital processors in an image processing array. Finally,
Nc = 107 is intended to be representative of the number of
devices on the main chips in present-day workstations.

The curves in figure 6 are representative of the
approximate upper bound for each technique. For example,
although the RMR technique is the least effective, with the
level of redundancy of R = 5 we can achieve the same level
of chip reliability, but with devices which are four orders
of magnitude less reliable. The price for this improvement
is that the effective number of devices is reduced to N/5
(and the pf for each device must be smaller than 10−9 for
N = 1012 devices). On the other hand, the curve for the
reconfigurable computer shows that this technique can in
principle handle extremely large manufacturing defect rates—
in the limit, even approaching unity—but only at the expense of
colossal amounts of redundancy, for example, manufacturing
defect rates of 0.1 (i.e. 10%). If one wishes to fabricate a chip
containing the equivalent of many present-day workstations,
then the device failure rate during manufacturing must be
smaller than 10−5. This may be difficult to achieve.

R

p

Figure 6. These curves compare three different fault-tolerant
strategies (RMR, von Neumann multiplexing and a reconfigurable
computer technique), applied to a hypothetical chip with 1012

devices (perhaps the ultimate number for a 1 cm2 chip). The curves
show the necessary level of redundancy R, as a function of the
failure rate per device pf , which ensures that the whole chip will
work with a 90% probability. Starting points are at R = 1 (RMR),
R = 100 (multiplexing) and R = 1.33 (reconfiguration). Results for
the multiplexing are extrapolated for small R (R < 100) and
presented with a broken curve, as the von Neumann’s formula is not
accurate in this region.

It can be seen that RMR and NAND multiplexing are
in general worse than reconfiguration. However, if the dead
devices cannot be located during manufacture, then a fault
tolerant strategy must be adopted, which allows a chip to work,
even with many faulty (either temporarily or permanently)
devices. Furthermore, reconfiguration might be very time
consuming for protecting against transient errors that may
occur in service, and therefore demand temporary shutdown
of the system until reconfiguration is performed. It may also
be necessary to use NAND multiplexing if reconfiguration
methods are impractical or if the probability of transient errors
is very high.

RMR provides some benefits, but these are unlikely to
be useful for chips with 1012 devices, once the manufacturing
defect rate is greater than about 10−8 (see figure 6). Such values
are almost impossible to achieve with present-day CMOS. The
NAND multiplexing technique in principle would allow chips
with 1012 devices to work, even if the fault rate is as high as
10−3 per device. However, as illustrated by the curve labelled
‘multiplexing’ in figure 6, this needs even more redundancy
than the reconfiguration technique.

The implications of these results are that the future
usefulness of various nanoelectronic devices may be seriously
limited if they cannot be made in large quantities with a high
degree of reliability. The results shows that it is theoretically
possible to make very large functional circuits, even with one
dead device in ten, but only if the dead devices can be located
and the circuit reconfigured to avoid them. Even so, this
technique would require a redundancy factor of ∼10 000, i.e.,
a chip with 1012 non-perfect devices would perform as if it had
only 108 perfect devices. If it is not possible to locate the dead
devices, then one of the other two techniques would have to
be used. These would require the manufacturing and lifetime
failure rate for R = 1000 to be between 10−7 and 10−6, which
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is comparable with the present-day manufacturing failure rates
for CMOS transistors.
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