
A Greedy Algorithm for Tolerating Defective Crosspoints in NanoPLA
Design

Helia Naeimi
Department of Computer Science
California Institute of Technology

Pasadena, CA 91125
helia @ caltech.edu

Abstract

Recent developments suggest both plausible fabri-
cation techniques and viable architectures for build-
ing sublithographic Programmable Logic Arrays us-
ing molecular-scale wires and switches. Designs
at this scale will see much higher defect rates than
in conventional lithography. However; these defects
need not be an impediment to programmable logic
design as this scale. We introduce a strategy for tol-
eratirig defective crosspoints and develop a linear-
rime, greedy algorithm for mapping PLA logic around
crosspoint defects. We note that P-term famri must be
bounded to guarantee lokc overhead mapping and de-
velop analytical guidelines for bounding fanin. We
further quantib analytical and empirical mapping
overhead rates. Includingfanin bounding, our greedy
mapping algorithm maps a large set of benchmark
designs with 13% average overheadfor random junc-
tion defect rates as high as 20%.

1. Introduction

Recent work shows how to build nanoscale Pro-
grammable Logic Arrays (nanoPLAs) using the
bottom-up synthesis techniques being developed by
physical chemists [I] [2] [3] . With these bottom-
up techniques, it is possible to build features (e.g.
wires and programmable junctions) without relying
on lithography. As such. these techniques provide a
path to continue the advance of field-programmable
technology beyond the end of the traditional, litho-
graphic roadmap (e.g. 141).

Nonetheless, nanoscale features, both in the sub-
lithographic and lithographic arenas, come with a
new set of challenges. Notably, as devices become
smaller, they are constructed from fewer and fewer
atoms and molecules. Since individual atoms behave
statistically, this means we have higher variance in
the shape and makeup of our devices, and a higher
likelihood that devices are simply unusable. Designs

AndrC DeHon
Department of Computer Science
Califomia Institute of Technology

Pasadena, CA 91125
andre @cs.caltech.edu

at this scale must be defect tolerant. This. and other
aspects of sublithographic assembly techniques, sug-
gest that all devices we build at these scales will be
reconfigurable.

Hewlett-Packard has recently demonstrated an
8 x 8 crossbar using molecular switches at the cross-
points 151. In the HP crossbar, they observed that 85%
of the crosspoint junctions were programmable (15%
were defective). The HP crossbar is an early lab-
oratory prototype, and we expect these defect rates
to decrease. Nonetheless, we are unlikely to achieve
100% crosspoint yield at this scale using these kinds
of bottom-up, statistical fabrication techniques. If de-
fects are randomly distributed, at a 15% crosspoint
defect rate, essentially every row and column in a
lOOx 100 crosspoint array will contain a defective
junction.

With the techniques in this paper, we show that
nanoPLA arrays with a 20% crosspoint defect rate are
still usable with modest (9% including fanin bound-
ing) overhead. That is. despite the fact that no rows
or columns are free of defective junctions, we can still
make use of more than 90% of the nanowires. Snider
et al. have also looked at defect tolerant mapping us-
ing a similar defect model and shown that a 4-bit mi-
croprocessor can tolerate defect rates up to 20% [6].

This defect mapping must be applied on a per-
array basis. That is. each nanoPLA will have a unique
defect pattern. Since nanoPLAs are a few microns
tall and 10-20 microns wide [2], we can easily have
millions of these nanoPLAs on a modest die. Con-
sequently, it is important that we minimize the time
required to map around defects. To this end. we intro-
duce a linear-time, greedy mapping algorithm for as-
signing logical P-terms to physical nanowires avoid-
ing defective junctions in a fabricated nanoPLA.

Novel contributions of this work include:
Formulation of defective crosspoint mapping prob-
lem for nanoPLAs
Introduction of simple, greedy algorithm for linear-
time mapping around defects
Analytical estimates on mapping times

0-7803-8652-3/04/$20.00 0 2004 IEEE 49 ICFPT 2004

http://caltech.edu
mailto:cs.caltech.edu

Analytical identification of bounds on P-term fanin

Empirical and analytical characterization of map-

In the next section, we review the emerging, bottom-
up fabrication techniques for nanowires and cross-
points and the architectural building blocks for
restoration and nanoscale addressing. We then review
the nanoPLA architecture (Section 3). In Section 4,
we introduce our defect model. Section 5 formulates
the problem and introduce the basic idea for the solu-
tion. Section 6 reviews exact algorithms to solve the
identified mapping problem and develops our linear-
time heuristic algorithms. In Section 7, we analyze
the algorithms based on expected case behavior and
derive bounds for input fanin (Section 8). Section 9
provides experimental results which ground and con-
firm the analysis.

driven by array size and defect rate

ping overhead for our proposed algorithm

2. Substrate

Nanowire We can grow nanowires to controlled di-
mensions on the nanometer scale using seed catalysts
to define their diameter. Nanowires with diameters
down to 3nm have been demonstrated [7]. With suit-
able doping, conduction through nanowires can be
controlled by an applied electrical field like Field-
Effect Transistors [E]. Techniques have been demon-
strated to align a set of nanowires into a single orien-
tation, close pack them, and transfer them onto a sur-
face. This step can be repeated and rotated by 90 de-
grees so that we get multiple layers of nanowires [9].

Programmable Cmsspoints Over the past few
years. many technologies have been demonstrated for
molecular-scale memories. So far, they all seem to
have: (I) resistance which changes significantly be-
tween ON and OFF states, (2) the ability to be made
rectifying, and (3) the ability to turn the device O N
or OFF by applying a voltage differential across the
junction. UCLA and HP have demonstrated a number
of molecules which exhibit hysteresis [IO].HP has
demonstrated an Ex E programmable crossbar and ob-
served that they could force an order of magnitude re-
sistance difference between ON and OFF state junc-
tions [5] .

Restoring Crosspoint Programmable diode cross-
points in a crossbar array give us a programmable OR
m a y (See Section 3 for more detail). Diodes alone do
not give us cascadable logic. To achieve restoration,
these programmable diode stages can be followed by
dedicated. nonprogrammable restoring stages. The
restoring stages can also provide selective inversion.
DeHon and Wilson describe how to build a nanoscale
nonprogrammable restoring stage using a stochastic
assembly of nanowires with doping profiles [2] [I I].

Lithographic-scale Address Decoder The pitch
of the nanowires can be much smaller than our litho-
graphic patterning. We will be using the crosspoint
programmability to configure logic functions into our
nanoscale devices. In order to do this, we need a
way to selectively place a defined voltage on a sin-
gle row and column wire in order to set the state of
the crosspoint. By constructing nanowires with dop-
ing profiles on their ends [I I] [121, we can give each
nanowire an address (See left end of Figure I (a)). The
dimensions of the address bit control regions can be
set to the lithographic pitch so that a set of crossed,
lithographic wires can be used to address a single
nanowire. Detailed information of this addressing
scheme can be found in [121 and [2].

3. NanoPLA Architecture

NanoPLAs, like conventional PLAs, consist of
two programmable NOR planes (Figure I(a)). Each
of the NOR planes consists of two mays : logic array
and bufferhnverter m a y .

The logic array is the programmable part of each
NOR plane. Its junctions are the bistable crosspoints
described in Section 2. The logic array implements
the OR function of its inputs. which is why the out-
puts of this array are called OR-terms. Each of the
connected junctions behaves like a diode, and each
OR-term is the wired OR logic of its inputs. The out-
put of each OR-term is pulled down weakly. If any of
the inputs is high, then it pulls up the OR-term output
(Figure I(b)).

The two states of the logic array junctions are:
I) connected via a PN junction, 2) disconnected. If
an input participates in an OR function, the junction
of that input and the OR-term nanowire representing
that function will be programmed “closed; thejunc-
tion will be left “open” when the input is not in the
OR function. The junctions are initially in the “open”
state. To program ajunction “closed” a high voltage
difference is applied to the nanowires that cross the
junction. To change the junction state back to “open”.
we apply the opposite voltage polarity by switching
the place of the low voltage and high voltage [5].

The second part of the NOR plane is the
bufferhnverter array. This array restores the input sig-
nals using the restoring, nonprogrammable junctions
(Section 2). The OR-term signals can be selectively
inverted or buffered in this array. So the result of
the NOR plane is either a NOR function or an OR
function [2].

The restored outputs of the top NOR plane can be
the inputs of the bottom NOR plane; and vice versa;
e.g. a 4-level logic can be implemented by rotat-
ing the signals through the two NOR planes for 2
rounds [2].

50

(4 . (b)
Figure 1. (a) NanoPLA Architecture. (b) Wired OR implemented with diodes.

4. Defect Model

In this section we discuss possible defects in the
nanoPLAs and the defect model used in this paper.
The two more probable defects that we focus on here
are: I) Defects in programmable crosspoints, 2) De-
fects in nanowires. The defective nanowires can be
easily detected with the procedure suggested in [Z].
The time required to test the nanowires of each a-
ray is linear in the code space size of the stochas-
tic address decoder. The defect models are broken
nanowires, stuck-at-0 and stuck-at- I .

Defects in programmable crosspoints are due to
the structure of the junctions, which is a sandwich of
bistable molecules between two layers of nanowires.
In each crosspoint lhere are only a few molecules.
For example, nanowires of width 5nm having cross
sectional area of 25nm2 can hold about 18 molecules
[5] . (In [SI they havedifferent active area size. There-
fore here the number of molecules is scaled accord-
ingly.) The programmability of a crosspoint comes
from the bistable attribute of the molecules located in
the crosspoint area. If there are too few molecules at
the crosspoint then the junction may never be able to
be programmed “closed”, or the “closcd” state may
have higher resistance than the designed threshold
chosen for correct operation and timing of the PLA.

We abstract this into a simple crosspoint defect
model. Crosspoints will be in one of two states:

programmable - crosspoint can be programmed
into both a “closed” state and an “open” state.

e non-programmable - crosspoint cannot be pro-
grammed into an adequate “closed” state, but can
be set into a suitable “open” state.

Crosspoints which cannot be programmed into a suit-
able “open” state will result in the entire horizon-
tal and vertical nanowires being unusable. We treat
these as nanowire defects rather than junction de-
fects. Based on the physical model suggested above
and discussion with physical scientists. we expect
these defects which “short” horizontal and vertical
nanowires to be much less likely and. consequently,
believe it is reasonable to treat them as wire defects.

5. Problem Statement

5.1. Overview

To implement a specific circuit on a nanoPLA, we
program up the logic arrays. This means that each
OR function of a design will be mapped to an OR-
term nanowire.

For clarity, we define the following terminology.
The logical inputs are the set of inputs to the OR func-
tions. The logical inputs includes the primary inputs
of the nanoPLA and the signals that are fed hack from
the other NOR plane. In each OR function the set of
logical inputs that participate in the OR function is
called ON-inpufs and those that do not participate are
called OFF-iripufs.

(4 (b)

Figure 2. (a) A logic array of a nanoPLA.
(b) Programmed logic array.

Henceforth we assume that the input nanowires
of logic arrays are previously assigned to the logical
inputs; and order of the logical inputs is preserved.
This assumption lets us use the same programming
process for all [he inputs irrespective of whether they
are primary inputs or intermediate signals. Interme-
diate signals do not have full freedom in placement
because they are the OR-terms of the previous logic
array and they may already be programmed and as-
signed to fixed location.

To map each OR function to an OR-term
nanowire, the crosspoints of the OR-term nanowire
associated with the ON-inputs of the OR function
are programmed “closed”, and crosspoints of OFF-
inputs are left “open”. Figure 2 shows an example
of mapping four OR functions, f i = a + b + c + d ,

51

f i = a + e + e, f3 = b + e, and f 4 = d + e , with
logical inputs, a? b, e, d, and e. The logic m a y inputs
a to e are assigned to input nanowires H 1 to H 5 , re-
spectively. In the case like Figure 2(b) where there
is no defect in the array, each OR function can be
mapped to any nanowire. Here OR functions 1 to 4
are mapped to nanowires V1 to V4 respectively.

5.2. Challenge

Logic m a y s may contain defective junctions that
cannot be programmed closed, as described in Sec-
tion 4. An OR function can be assigned to a phys-
ical OR-term nanowire if and only if each of the
ON-inputs of the OR function has a correspond-
ing programmable junction on the physical OR-term
nanowire.

If a logic array of a nanoPLA has defective junc-
tions as mark@ in Figure 4(a), then the OR function
a+c+e cannot be assigned to nanowires w l or w2 be-
cause junctions (lol; e), (w2, e) and (w2, e) are non-
programmable, but it can be assigned to nanowires
w3. w4, and w5. Although the nanowires w l and w2
cannot implement the OR function a + e + e they are
still useful for some other OR functions such as b f d .

In spite of having defective junctions in a
nanowire, some OR functions can be successfully
mapped to that nanowire. The challenge is to find
an assignment of the OR functions to the OR-term
nanowires. Our key question is: How do we per-
form this assignment with a small number of spare
nanowires arid it1 reasonable running time?

5.3. Idea

In each OR function there are always some O F F
inputs, i.e. some of the junctions will always be left
open. If there is a nanowire with defective junctions
only at a subset of those positions. then this defec-
tive nanowire can be successfully assigned to the OR
function.

Let F be the set of OR functions and PV be the set
of physical OR-term nanowires. The problem is find-
ing an assignment of OR functions to the nanowires.
This problem can be formally stated as finding a bi-
partite matching from the set F to the set W .

Definition of Bipartite Matching In a bipartite
graph G (V I > V?: E) . the set -44 c E is a matching
from VI i o V, if and only if the following conditions
hold:

V , exists exactly one U E V,: s.t. (. > U) E M .
,,€VI

V , exists at most one U E VI: s.t. (U, U) E AI.
" € V 2

and

Here VI = F and V2 = Pi' and E is defined below.

* General heuristic matching algorithm *\
1 \Vhile F is not empty
2
3

4
5 If (J i .wj) E E
6 Mark(Jil wj) as match.
7
8 Else
9
10 EndWhile
11 EndWhile

Choose a node J i E F
While ((J (is not matched) and
(ti' has non-visited by J , vertex))

Choose a node w, E Mi

Remove Jt from F and wl from !4

Set wI visited by J i

* The algorithm H S ~ i n this paper*\
1 Order the elemeiits i i i F in decreasing order of cI
2 Wliilc F is not empty
3
4

5
6

Choose the first f, E F
While (J , is not matched) illid

(VI' has non-uisited by J, vertex)
Choose a random wj t W
If (V (J , ,k == 1)) * try programming

all the c,'s crosspoints*\
k , l , , k = l

7 Mark(J,,w,) as matchl
8
9 Else
10
11 EndWhile
12 EndWhile

Remove JL from F and U, from bV

Set w, visited by J,

(b)

Figure 3. The algorithm frameworks.

5.4. Formal Problem Statement

Let fo. fl: ..., fl.+, be the OR functions, F , and
wo:201? ...; 'ww/~v~-~ be the OR-term nanowires, IV.
If the number of inputs is N , then for all fz E F ,
fi = (IZ>o> I,,1, ...i I ~ , N - I) , where Ii., is 1 if input
j of OR function fi is ON and 0 if OFF, Similarly
for all w, E PV. wi = (Ji,0> Ji.l> ..., where
Ji,n has value 1 if the corresponding crosspoint is
programmable and 0 if non-programmable.

ft in F and wj in W , (ft, w,) E E i fand only if:
G(F, T,V> E) is a directed bipartite graph. Forevery

Every matching of size IF1 on this bipartite graph
is a valid assignment of the OR functions to the OR-
term nanowires, because it finds an assignment for all
of the OR functions in F . Figure 4(b) shows a bipar-
tite graph G(F. T,T'> E) . Set F is the set of OR func-
tions in Figure 2. and set W is the set of nanowires in
the nanoPLA of Figure 4(a). Figure 4(c) shows one
possible matching.

52

Wt f,

fa
w2

w,
w3

W2
1, w, w.

w, w, fa

WS

reduce the total time complexity, we suggest an ap-
proach that reduces the program and fesf operations
of graph construction as well as the computing oper-
ations.

1, 6.3. Greedy Heuristic Algorithm

f2 ‘4

w4 f, There are heuristic algorithms that, with high
probability, and small time complexity find the max-
imum matching. A general heuristic algorithm is

(a) :i ws
(C)

Figure 4. (a) The crosses show defective
junctions. (b) The graph of the OR-term
nanowire of part (a) and OR-functions of
Figure 2. (c) One possible assignment.

6. Algorithm

6.1. Graph Construction

To build the graph G(F, W, E) the first step is to
find the nodes in each of the sets F and W . Each
OR function in the design is a node in F . Marking
ON and OFF inputs of each OR function, (i.e. the
values of I z , k) f ; E F and all the inputs k, 0 5 k 5
A-1, takes O(1FI.N) computingoperations. To find
the defect configuration of each OR-term nanowire
(i.e. the value of each Jj, i;) , one should check the
programmability of all the junctions of each OR-term
nanowire. This takes (A‘. IWl) programming and test
operations.

To make the set E, the condition (1) will be
checked for each pair of (f ; , wj). Checking it once
takes N computing operations, and checking it over
all of the pairs takes O (N . IF1 . IWI) computing op-
erations. So the total time complexity of the graph
construction is (N . 11,VI) programming arid tesr op-
erations and O(N . IF1 . IWl) computing operations.

6.2. Exact Algorithm

For now assume that CV is large enough so that
there exists a maximum matching of size IFI. Later,
in Section 7, we calculate how large TY should be in
practice.

There are a number of exact algorithms to solve
the maximum bipartite matching problem, such as
the algorithm based on Ford-Fulkerson maximum
flow network algorithm [I31 with time complexity
0 (/VI . IEI) and Hopcroft-Karp [I41 with timecom-
plexity 0 (m. IEI). In our graph IV/ = /FI +
/M’1 and IEl = O(IF1 IWI), which makes the to-
tal time complexity 0 (~m. I F I . IpiTl)

computing operations.
The time complexity of all of these matching al-

gorithm will be dominated by the time complexity
of graph construction of Section 6.1. Therefore to

shown in Figure 3(a).
We distinguish the different heuristic algorithms

by the way they choose the nodes in lines 2 and 4
of Figure 3(a). One way is to choose both f and w
randomly. Another way is to choose each of them
in increasing order of node degree. A combination of
the above is another option. We obtain our best results
by choosing the least degree f from F and choosing
w randomly.

Here we show how we can eliminate the need to
actually build the graph G(F. W, E) . There are two
points in the algorithm that are dependent on graph G:
1) Choosing ft’s based on their degrees G, 2) Line 5
of Figure 3(a) that checks the matching condition by
checking the existence of the edge (f i? w3).

To select OR-terms based on least degree, we
would need to son F. Instead of sorting f ; ’ s of F
based on their degree, the nodes can be soned based
on the expected value of their degree. Let PJ be the
probability that a junction is programmable. and e;
be the number of ON-inputs in the OR function f ; .
The probability that (f ; , w j) E E is PJ“’. This is the
probability that the OR function fz can he assigned to
the nanowire wj . So the expected value of node de-
gree of f ; is (PJ“‘ . IIVl). Ordering F based on the
expecfed value of node degrees is the same as order-
ing it based on the value of e;. This means there is no
need to build the graph for sorting purpose.

To test the condition of line 5 of Figure 3(a), in the
case that there is no graph, we need to program and
test every single nanowire that is picked up to he as-
signed to each OR function f,. The time complexity
of mapping and testing is O(c,) for each OR func-
tion f z . In order to have time complexity of O(e t)
instead of 0 (N) the IZ.k’s need to be stored effi-
ciently (sparsely). Hence by paying this cost there is
no longer a need to build the graph G(F, L.V. E) , and
the total time complexity is only due to the algorithm
of finding a matching (Figure 3(h)).

7. Analysis

7.1. Running Time Complexity

We first compute the worst-case time complex-
ity. As explained above, line 6 of the algorithm in
Figure 3(b) takes 0(q) program and rest operations.
The maximum number of iterations of the line 4 loop

53

is the total number of unmatched nanowires which is
IWI-i. The line 2 loopruns exactly for IF1 iterations
in order to map each of the OR functions. So the total
number of program and test operations in the worst-
case is O (C : ~ ~ ' - ' ((IWl - i) . ci)). It can be writ-
ten as 0 (IF1 . 1l.L' . cb1) when ch1 is the maximum
of ci's. In Section 8 we show how to bound the size
of C A I , without scaling IF1 by more than a small con-
stant factor. Sorting F in the first line of Figure 3(b)
takes O(lF1 log(lF1)) computing operations. So as-
suming = 114'1 = N, our greedy algorithm takes
N2 program and test operations and O(Nlog(N))
computing operations, while the exact approach takes
N2 program and test and O(iV3) computing opera-
tions.

On average the number of iterations will be
smaller than this. Let mi be the number of iterations
that it takes to find a match for OR function fj. If we
want the expected value of the matching for f i in m,
nanowires to be 1 then:

E (N u m k r of matching in mi) = 1

(2) mi. pc' - 1 j m. - p - c i
J - 2 - J

So the average number of iterations of the line 4 loop
is P;"' for each f i . and the total number of opera-
tions in the average case is:

\ i=o

and replacing ci's with CAI: 0 (IF1 . (P;'"' . C A I))

If the value of CAI is small, which it is after
bounding fanin sizes, then the greedy algorithm takes
O ((F () program arid tesr and O(lFI log(1Fl)) com-
puting operations on average, while the time com-
plexity of the graph construction in the exact ap-
proach is N 2 program and test operations and 0(N3)
computing operations. Figure 5(b) shows the number
of iterations to map each design (IF1 . P;czl').

7.2. Area Overhead Estimation

Here we compute how large W should he in prac-
tice. In the average case as shown before, if the size
of the unmatched set of nanowires when matching the
ith OR function is at least P;"' then the expected
value of finding a match in this set is 1. Therefore

defines a lower bound on the size of W .
Remember that in our algorithm the set of

nanowires that f z can choose from, is of size
(IWI - i). Therefore the probability of successfully
assigning f t to a nanowire is I - (1 - PJc*)"'~'+'
Hence the probability of successfully mapping all the

Bound on mxlmum ske of Fanin (5)
., ~

0 . .

,. ,
The dots show the C;'S of each OR functions of each design.
The curves show two maximum sizes of c for each design.

(a)
Total numm of Iterations

~ ~~ ?"a, i.EILl"ndoYmndr.-~

OR functions is:

Let Y be the yield of mapping designs to nanoPLA.
Then the following inequality gives a tighter lower
bound on the size of W:

8. Bounded Fanin

We show the effect of bounding the size of et's
with an example from the IWLS93 benchmark [15].
In this example IF1 = 1186, = 772, and PJ =
0.95. The lower bound on 111'1 for mapping a single
nanowire with cz = CJI = 772 from Equation (4), is:

(0.95)-'72 5 W + 1017 5 W

54

In (a) the OR function a has c=8. In (h) it is divided into 3 OR functions al . a2 and a3. ?bey are OR-ed together in logic
may 2 and make signal e. which is the same as the logic of the original a OR function. The OR function e is rotated
to logic array I and then to buffer array I , which was a's original position. Two logic levels of delay are added to the
OR function a. If the size of ON inputs of signal e is more than C M then the decomposition process will he repeated for
signal e. For an OR function with c ON inputs, the decomposition process happens logc,,, (c) times.

Figure 6. (a) The original design, (b) design with c value bounded by cnr = 3.

If we decompose this OR function to 8 OR functions,
such that 7 of them have e, = 100, and 1 has cz = 72,
then the lower hound on IT.lr1 to map all of these OR
functions is:

+ 173 5 W

Applying Equation (3) we also see that hounding the
fanin improves the mapping running time from IOzo
to lo5 program and test operations.

Figure 6 shows how an OR function with c=8, will
he decomposed into OR functions with c 5 3. Fig-
ure 5(a) shows which OR functions i n each design
need to be divided to smaller fanin OR functions if
the size of ITV/ is desired to he IF1 or 1000 x IFI. The
x-axis in this graph is the number of OR functions in
each design, i.e. 1F1. Each point on the x-axis is ded-
icated to a single design with IF1 equal to the value
of x at that point. For example the highlighted yellow
diamonds show the ci value of all the OR functions
of a design with IF1 = 1186. The curves show the
estimation in Equation (4) of the maximum size of
c, if lW-1 = IF/ or 111'1 = 1000 x IFI. Assum-
ing 1W-l = JFI and using Equation (2) and (4) the
value of the maximum ti's on the lower curve result
from PJ".'' < IF/. and further we can estimate the
lower hound on c.u by CAI < ~ logp, IF!. Similarly
the lower bounds for cz's related to the case when

The graphs of Figure 5(a) show that the number
of OR functions with large ON input set is relatively
small, and we also observed they cause very long
running time and large area overhead in mapping.
This suggests we should hound the size of cl,, with
- logp,, IF1 to get the ratio of 1 for II,Vl,IFl on aver-
age. Since the size of et's is bounded, in order to sort
F in the first line of the algorithm in Figure 3(b) we
can use a radix sort with time complexity of O(lFl) ,
bringing the total computation time of our greedy al-
gorithm to O(lF1).

IWI = 1000 x IF^ will be ~ logp, (1: oon . 1 ~ 1) .

9. Experimental Results

The mapping algorithm is tested over three dif-
ferent benchmarks: 1) Selected elements of data-
path (See [2]) , 2) Small examples from IWLS93
benchmark suit [15], 3) PLA hook examples [16].
For statistical purposes each benchmark is mapped
100 times. The designs of these benchmarks have
been first synthesized to multilevel logic and rotated
through two NOR planes of a nanoPLA [2] .

Figure 5(b) shows the graphs for estimation of to-
tal number of iteration to map OR functions of a de-
sign for hounded and unbounded c and also the sim-
ulation results for hounded e. Figure 5(h) shows that
the total number of iterations is generally linear in the
number of OR functions, IF(, and well matched with
the calculation i n Equation (3) . Figure 5(c) shows the
average area overhead ratio over all the benchmark
set designs. Bounding the fanin scales the number of
OR functions by an average factor of 1.11 for a de-
fect rate (P J) of 0.20. The additional average factor
of 1.02 is incurred after physically mapping these OR
functions onto nanowires. This brings the total aver-
age overhead factor to 1.13.

The area overhead of this greedy algorithm is com-
pared with an exact matching algorithm for a 4 x 4
multiplier that is implemented in two logic planes.
The first plane has 697 OR functions and 33 inputs
and the other one has 25 OR functions and 697 in-
puts. In Figure 7(a) area overhead of each of the
planes is plotted for both greedy and exact algorithm.
In Figure 7(h) the ratio of the total area of the exact
algorithm over the total area of the greedy algorithm
is plotted. This shows that our greedy algorithm is
within a few percent of optimal on average for mod-
est fault rates.

10. Summary

A plausible architecture for nanoPLA design is
suggested in [2] . The defect rate of different fahri-

55

Exact and G d y algorithm
r m
bW
BW
5 W
s.m - 4.50

E l m
2.60
.3m
E *SO

zm
l W
7.m
0.50
0.W

OW 060 0.70 080 0.m
Pi

(a) (b)
Figure 7.
multiplier. The area over IF1 is plotted. (b) w. (a) An exact algorithm and our greedy algorithm area overhead for a 4 x 4

cation processes is unknown hut expected to be on
the order of a few defects per 100 junctions. This
suggests searching for an efficient programming op-
eration that tolerates the defective junctions. In this
paper we compare the exact matching algorithm with
a suggested greedy algorithm. Assuming that IF1 s=
IW/ % N, the time complexity of our algorithm is,
O(N)program andtestoperations and O(Nlog(N))
computing operations, while the time complexity of
the exact algorithm plus graph construction is iV2
program and resf operations and O(N3) computing
operations. We also showed that it is necessary to
hound the fanin size in order to achieve reasonable
running time and area overhead for matching. After
hounding the fanin, the time complexity of our algo-
rithm will be O(N) computing and program and test
operations. Including bounding the fanin and map-
ping, our algorithm can tolerate defect rates as high
as 20% with an average overhead factor of less than
13%.

11. Acknowledgments

This research was funded in part by the DARPA
Moletronics program under grant ONR N00014-01-
0651 and NOO014-W-1-0591.

12. References

[I] S. C. Goldstein and M. Budiu. “NanoFabrics: Spatial
Computing Using Molecular Electronics,“ in ISCA.
June2001. pp. 17&189.

[2] A. DeHon and M. I. Wilson, ”Nanowire-Based Sub-
lithographic Programmable Logic Arrays:’ in FPGA.
February 2004. pp. 123-132.

[31 Y. Luo. P. Collier. 1. 0. Jeppesen, K. A. Nielsen.
E. Delonno. G. Ho, I. Perkins, H.-R. Tseng,
T. Yamamoto. I. F. Stoddan, and J. R. Heath.
“Two-Dimensional Molecular Electronics Circuits:’
CIwnPIz~sClwn. vol. 3. no. 6. pp. 519-525. 2002.

[4] “International Technology Roadmap for Semiconduc-
tors:’ <http:/lpuhlic.itrs.netb, 2003.

[SI Y. Chen. G.-Y. Jung. D. A. A. Ohlberg, X. Li. D. R.

Stewart. J . 0. Jeppesen, K. A. Nielsen, J . E Stoddart,
and R. S. Williams. “Nanoscale Molecular-Switch
Crossbar Circuits:’ Nunorechnology. vol. 14, pp. 462-
468.2003.

[61 G. Snider, P. Kuekes. and R. S. Williams, ”CMOS-
l i e Logic in Defective, Nanoscale Crossbars:’ Nun-
otechnology, vol. 15. pp. 881-891. June 2004.

[71 Y. Cui, L. J. Lauhon. M. S. Gudiksen. I. Wang. and
C. M. Lieber, “Diameter-Controlled Synthesis of Sin-
gle Crystal Silicon Nanowires.” Applied Physics Ler-
rers. vol. 78, no. 15, pp. 22142216,2001.

181 Y. Huang. X. Duan, Y. Cui. L. Lauhon. K. Kim. and
C. M. Lieher, “Logic Gates and Computation from
Assembled Nanowire Building Blocks:’ Science, vol.
294. pp. 1313-1 317.2001.

[9l D. Whang. S. Jin, and C. M. Lieber, “Nanolithog-
raphy Using Hierarchically Assembled Nanowire
Masks:’ Nanolerrers. vol. 3. no. 7, pp. 951-954. July
9 2003.
C. Collier, G. Mattersteig. E. Wong, Y. Luo. K. Bev-
erly, J. Sampaio. F. Raymo. J. Stoddart. and J. Heath.
“A [ZICatenane-Based Solid State Reconfigurable
Switch:’ Science, vol. 289, pp. 1172-1 175. 2000.
M. S. Gudiksen. L. J. Lauhon. I. Wang. D. C. Smith.
and C. M. Lieber. “Growth of Nanowire Superlattice
Structures for Nanoscale Photonics and Electronics.”
Nature. vol. 415. pp. 617420. February 7 2002.
A. DeHon. P. Lincoln, and I. Savage, “Stochastic
Assembly of Suhlithographic Nanoscale Interfaces,”
IEEE Trurisuctions on Nu~iorechnolog~, vol. 2. no. 3.
pp. 165-174.2003.
T. Cormen. C. Leiserson. and U . Rivest. hifroductiori
fo Algorithms. MIT Press, 1990.
J. E. Hopcroft and R. M. Karp, “‘An n2.5 Algorithm
for Maximum Matching in Bipartite Graphs:’ SIAM
Joamul on Compuriag, vol. 2, no. 4. pp. 225-23 I ,
1973.
K. McElvain, “LGSynth93 Benchmark Set: Ver-
sion 4.0.” online <http://www.chl.ncsu.edu/publ
Benchmakdirs/LGSynth93/doc/iwls93.ps>. May
1993.
U. C. Group, “Espresso Examples:’ On-
line <ftp://ic.eecs.berkeley.edu/puhlEspresso/
espresso-book-examples.tar.gr>. June 1993.

56

http:/lpuhlic.itrs.netb
http://www.chl.ncsu.edu/publ
ftp://ic.eecs.berkeley.edu/puhlEspresso

