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Abstract 

Recent developments suggest both plausible fabri- 
cation techniques and viable architectures for build- 
ing sublithographic Programmable Logic Arrays us- 
ing molecular-scale wires and switches. Designs 
at this scale will see much higher defect rates than 
in conventional lithography. However; these defects 
need not be an impediment to programmable logic 
design as this scale. We introduce a strategy for tol- 
eratirig defective crosspoints and develop a linear- 
rime, greedy algorithm for mapping PLA logic around 
crosspoint defects. We note that P-term famri must be 
bounded to guarantee lokc overhead mapping and de- 
velop analytical guidelines for bounding fanin. We 
further quantib analytical and empirical mapping 
overhead rates. Includingfanin bounding, our greedy 
mapping algorithm maps a large set of benchmark 
designs with 13% average overheadfor random junc- 
tion defect rates as high as 20%. 

1. Introduction 

Recent work shows how to build nanoscale Pro- 
grammable Logic Arrays (nanoPLAs) using the 
bottom-up synthesis techniques being developed by 
physical chemists [ I ]  [2] [ 3 ] .  With these bottom- 
up techniques, it is possible to build features (e.g. 
wires and programmable junctions) without relying 
on lithography. As such. these techniques provide a 
path to continue the advance of field-programmable 
technology beyond the end of the traditional, litho- 
graphic roadmap (e.g. 141). 

Nonetheless, nanoscale features, both in the sub- 
lithographic and lithographic arenas, come with a 
new set of challenges. Notably, as devices become 
smaller, they are constructed from fewer and fewer 
atoms and molecules. Since individual atoms behave 
statistically, this means we have higher variance in 
the shape and makeup of our devices, and a higher 
likelihood that devices are simply unusable. Designs 
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at this scale must be defect tolerant. This. and other 
aspects of sublithographic assembly techniques, sug- 
gest that all devices we build at these scales will be 
reconfigurable. 

Hewlett-Packard has recently demonstrated an 
8 x 8  crossbar using molecular switches at the cross- 
points 151. In the HP crossbar, they observed that 85% 
of the crosspoint junctions were programmable (15% 
were defective). The HP crossbar is an early lab- 
oratory prototype, and we expect these defect rates 
to decrease. Nonetheless, we are unlikely to achieve 
100% crosspoint yield at this scale using these kinds 
of bottom-up, statistical fabrication techniques. If de- 
fects are randomly distributed, at a 15% crosspoint 
defect rate, essentially every row and column in a 
lOOx 100 crosspoint array will contain a defective 
junction. 

With the techniques in this paper, we show that 
nanoPLA arrays with a 20% crosspoint defect rate are 
still usable with modest (9% including fanin bound- 
ing) overhead. That is. despite the fact that no rows 
or columns are free of defective junctions, we can still 
make use of more than 90% of the nanowires. Snider 
et  al. have also looked at defect tolerant mapping us- 
ing a similar defect model and shown that a 4-bit mi- 
croprocessor can tolerate defect rates up to 20% [6]. 

This defect mapping must be applied on a per- 
array basis. That is. each nanoPLA will have a unique 
defect pattern. Since nanoPLAs are a few microns 
tall and 10-20 microns wide [2], we can easily have 
millions of these nanoPLAs on a modest die. Con- 
sequently, it is important that we minimize the time 
required to map around defects. To this end. we intro- 
duce a linear-time, greedy mapping algorithm for as- 
signing logical P-terms to physical nanowires avoid- 
ing defective junctions in a fabricated nanoPLA. 

Novel contributions of this work include: 
Formulation of defective crosspoint mapping prob- 
lem for nanoPLAs 
Introduction of simple, greedy algorithm for linear- 
time mapping around defects 
Analytical estimates on mapping times 
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Analytical identification of bounds on P-term fanin 

Empirical and analytical characterization of map- 

In the next section, we review the emerging, bottom- 
up fabrication techniques for nanowires and cross- 
points and the architectural building blocks for 
restoration and nanoscale addressing. We then review 
the nanoPLA architecture (Section 3). In Section 4, 
we introduce our defect model. Section 5 formulates 
the problem and introduce the basic idea for the solu- 
tion. Section 6 reviews exact algorithms to solve the 
identified mapping problem and develops our linear- 
time heuristic algorithms. In Section 7, we analyze 
the algorithms based on expected case behavior and 
derive bounds for input fanin (Section 8). Section 9 
provides experimental results which ground and con- 
firm the analysis. 

driven by array size and defect rate 

ping overhead for our proposed algorithm 

2. Substrate 

Nanowire We can grow nanowires to controlled di- 
mensions on the nanometer scale using seed catalysts 
to define their diameter. Nanowires with diameters 
down to 3nm have been demonstrated [7].  With suit- 
able doping, conduction through nanowires can be 
controlled by an applied electrical field like Field- 
Effect Transistors [E]. Techniques have been demon- 
strated to align a set of nanowires into a single orien- 
tation, close pack them, and transfer them onto a sur- 
face. This step can be repeated and rotated by 90 de- 
grees so that we get multiple layers of nanowires [9]. 

Programmable Cmsspoints Over the past few 
years. many technologies have been demonstrated for 
molecular-scale memories. So far, they all seem to 
have: ( I )  resistance which changes significantly be- 
tween ON and OFF states, (2) the ability to be made 
rectifying, and (3) the ability to turn the device O N  
or OFF by applying a voltage differential across the 
junction. UCLA and HP have demonstrated a number 
of molecules which exhibit hysteresis [IO].HP has 
demonstrated an Ex E programmable crossbar and ob- 
served that they could force an order of magnitude re- 
sistance difference between ON and OFF state junc- 
tions [5 ] .  

Restoring Crosspoint Programmable diode cross- 
points in a crossbar array give us a programmable OR 
m a y  (See Section 3 for more detail). Diodes alone do 
not give us cascadable logic. To achieve restoration, 
these programmable diode stages can be followed by 
dedicated. nonprogrammable restoring stages. The 
restoring stages can also provide selective inversion. 
DeHon and Wilson describe how to build a nanoscale 
nonprogrammable restoring stage using a stochastic 
assembly of nanowires with doping profiles [2] [ I  I]. 

Lithographic-scale Address Decoder The pitch 
of the nanowires can be much smaller than our litho- 
graphic patterning. We will be using the crosspoint 
programmability to configure logic functions into our 
nanoscale devices. In order to do this, we need a 
way to selectively place a defined voltage on a sin- 
gle row and column wire in order to set the state of 
the crosspoint. By constructing nanowires with dop- 
ing profiles on their ends [ I  I]  [ 121, we can give each 
nanowire an address (See left end of Figure I (a)). The 
dimensions of the address bit control regions can be 
set to the lithographic pitch so that a set of crossed, 
lithographic wires can be used to address a single 
nanowire. Detailed information of this addressing 
scheme can be found in [ 121 and [2]. 

3. NanoPLA Architecture 

NanoPLAs, like conventional PLAs, consist of 
two programmable NOR planes (Figure I(a)). Each 
of the NOR planes consists of two mays :  logic array 
and bufferhnverter m a y .  

The logic array is the programmable part of each 
NOR plane. Its junctions are the bistable crosspoints 
described in Section 2. The logic array implements 
the OR function of its inputs. which is why the out- 
puts of this array are called OR-terms. Each of the 
connected junctions behaves like a diode, and each 
OR-term is the wired OR logic of its inputs. The out- 
put of each OR-term is pulled down weakly. If any of 
the inputs is high, then it pulls up the OR-term output 
(Figure I(b)). 

The two states of the logic array junctions are: 
I )  connected via a PN junction, 2) disconnected. If 
an input participates in an OR function, the junction 
of that input and the OR-term nanowire representing 
that function will be programmed “closed;  thejunc- 
tion will be left “open” when the input is not in the 
OR function. The junctions are initially in the “open” 
state. To program ajunction “closed” a high voltage 
difference is applied to the nanowires that cross the 
junction. To change the junction state back to “open”. 
we apply the opposite voltage polarity by switching 
the place of the low voltage and high voltage [5]. 

The second part of the NOR plane is the 
bufferhnverter array. This array restores the input sig- 
nals using the restoring, nonprogrammable junctions 
(Section 2). The OR-term signals can be selectively 
inverted or buffered in this array. So the result of 
the NOR plane is either a NOR function or an OR 
function [2]. 

The restored outputs of the top NOR plane can be 
the inputs of the bottom NOR plane; and vice versa; 
e.g. a 4-level logic can be implemented by rotat- 
ing the signals through the two NOR planes for 2 
rounds [2]. 
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(4 . (b) 
Figure 1. (a) NanoPLA Architecture. (b) Wired OR implemented with diodes. 

4. Defect Model 

In this section we discuss possible defects in the 
nanoPLAs and the defect model used in this paper. 
The two more probable defects that we focus on here 
are: I )  Defects in programmable crosspoints, 2) De- 
fects in nanowires. The defective nanowires can be 
easily detected with the procedure suggested in [Z]. 
The time required to test the nanowires of each a- 
ray is linear in the code space size of the stochas- 
tic address decoder. The defect models are broken 
nanowires, stuck-at-0 and stuck-at- I .  

Defects in programmable crosspoints are due to 
the structure of the junctions, which is a sandwich of 
bistable molecules between two layers of nanowires. 
In each crosspoint lhere are only a few molecules. 
For example, nanowires of width 5nm having cross 
sectional area of 25nm2 can hold about 18 molecules 
[5 ] .  (In [SI they havedifferent active area size. There- 
fore here the number of molecules is scaled accord- 
ingly.) The programmability of a crosspoint comes 
from the bistable attribute of the molecules located in 
the crosspoint area. If there are too few molecules at 
the crosspoint then the junction may never be able to 
be programmed “closed”, or the “closcd” state may 
have higher resistance than the designed threshold 
chosen for correct operation and timing of the PLA. 

We abstract this into a simple crosspoint defect 
model. Crosspoints will be in one of two states: 

programmable - crosspoint can be programmed 
into both a “closed” state and an “open” state. 

e non-programmable - crosspoint cannot be pro- 
grammed into an adequate “closed” state, but can 
be set into a suitable “open” state. 

Crosspoints which cannot be programmed into a suit- 
able “open” state will result in the entire horizon- 
tal and vertical nanowires being unusable. We treat 
these as nanowire defects rather than junction de- 
fects. Based on the physical model suggested above 
and discussion with physical scientists. we expect 
these defects which “short” horizontal and vertical 
nanowires to be much less likely and. consequently, 
believe it  is reasonable to treat them as wire defects. 

5. Problem Statement 

5.1. Overview 

To implement a specific circuit on a nanoPLA, we 
program up the logic arrays. This means that each 
OR function of a design will be mapped to an OR- 
term nanowire. 

For clarity, we define the following terminology. 
The logical inputs are the set of inputs to the OR func- 
tions. The logical inputs includes the primary inputs 
of the nanoPLA and the signals that are fed hack from 
the other NOR plane. In each OR function the set of 
logical inputs that participate in the OR function is 
called ON-inpufs and those that do not participate are 
called OFF-iripufs. 

(4 (b) 

Figure 2. (a) A logic array of a nanoPLA. 
(b) Programmed logic array. 

Henceforth we assume that the input nanowires 
of logic arrays are previously assigned to the logical 
inputs; and order of the logical inputs is preserved. 
This assumption lets us use the same programming 
process for all [he inputs irrespective of whether they 
are primary inputs or intermediate signals. Interme- 
diate signals do not have full freedom in placement 
because they are the OR-terms of the previous logic 
array and they may already be programmed and as- 
signed to fixed location. 

To map each OR function to an OR-term 
nanowire, the crosspoints of the OR-term nanowire 
associated with the ON-inputs of the OR function 
are programmed “closed”, and crosspoints of OFF- 
inputs are left “open”. Figure 2 shows an example 
of mapping four OR functions, f i  = a + b + c + d ,  
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f i  = a + e + e,  f3 = b + e, and f 4  = d + e ,  with 
logical inputs, a? b,  e, d, and e. The logic m a y  inputs 
a to e are assigned to input nanowires H 1  to H 5 ,  re- 
spectively. In the case like Figure 2(b) where there 
is no defect in the array, each OR function can be 
mapped to any nanowire. Here OR functions 1 to 4 
are mapped to nanowires V1 to V4 respectively. 

5.2. Challenge 

Logic m a y s  may contain defective junctions that 
cannot be programmed closed, as described in Sec- 
tion 4. An OR function can be assigned to a phys- 
ical OR-term nanowire if and only if each of the 
ON-inputs of the OR function has a correspond- 
ing programmable junction on the physical OR-term 
nanowire. 

If a logic array of a nanoPLA has defective junc- 
tions as mark@ in Figure 4(a), then the OR function 
a+c+e cannot be assigned to nanowires w l  or w2 be- 
cause junctions (lol; e),  (w2, e) and (w2, e )  are non- 
programmable, but it can be assigned to nanowires 
w3. w4, and w5. Although the nanowires w l  and w2 
cannot implement the OR function a + e + e they are 
still useful for some other OR functions such as b f d .  

In spite of having defective junctions in a 
nanowire, some OR functions can be successfully 
mapped to that nanowire. The challenge is to find 
an assignment of the OR functions to the OR-term 
nanowires. Our key question is: How do we per- 
form this assignment with a small number of spare 
nanowires arid it1 reasonable running time? 

5.3. Idea 

In each OR function there are always some O F F  
inputs, i.e. some of the junctions will always be left 
open. If there is a nanowire with defective junctions 
only at a subset of those positions. then this defec- 
tive nanowire can be successfully assigned to the OR 
function. 

Let F be the set of OR functions and PV be the set 
of physical OR-term nanowires. The problem is find- 
ing an assignment of OR functions to the nanowires. 
This problem can be formally stated as finding a bi- 
partite matching from the set F to the set W .  

Definition of Bipartite Matching In a bipartite 
graph G ( V I >  V?: E ) .  the set -44 c E is a matching 
from VI i o  V, if and only if the following conditions 
hold: 

V , exists exactly one U E V,: s.t. ( . > U )  E M .  
,,€VI 

V , exists at most one U E VI: s.t. (U, U) E AI. 
" € V 2  

and 

Here VI = F and V2 = Pi' and E is defined below. 

\* General heuristic matching algorithm *\ 
1 \Vhile F is not empty 
2 
3 

4 
5 If (J i .wj )  E E 
6 Mark(Jil wj) as match. 
7 
8 Else 
9 
10 EndWhile 
11 EndWhile 

Choose a node J i  E F 
While ( ( J (  is not matched) and 
(ti' has non-visited by J ,  vertex) ) 

Choose a node w, E Mi 

Remove Jt from F and wl from !4 

Set wI visited by J i  

\*  The algorithm H S ~  i n  this paper*\ 
1 Order the elemeiits i i i  F in decreasing order of cI 
2 Wliilc F is not empty 
3 
4 

5 
6 

Choose the first f, E F 
While ( J ,  is not matched) illid 

(VI' has non-uisited by J,  vertex) 
Choose a random wj t W 
If ( V (J , ,k  == 1)) \* try programming 

all the c,'s crosspoints*\ 
k , l , , k = l  

7 Mark(J,,w,) as matchl 
8 
9 Else 
10 
11 EndWhile 
12 EndWhile 

Remove JL from F and U, from bV 

Set w, visited by J,  

(b) 

Figure 3. The algorithm frameworks. 

5.4. Formal Problem Statement 

Let fo. fl: ..., fl.+, be the OR functions, F ,  and 
wo:201? ...; 'ww/~v~-~ be the OR-term nanowires, IV. 
If the number of inputs is N ,  then for all fz E F ,  
fi = (IZ>o> I,,1, ...i I ~ , N - I ) ,  where Ii., is 1 if input 
j of OR function fi is ON and 0 if OFF, Similarly 
for all w, E PV. wi = (Ji,0> Ji.l> ..., where 
Ji,n has value 1 if the corresponding crosspoint is 
programmable and 0 if non-programmable. 

ft  in F and wj in W ,  (ft, w,)  E E i fand only if: 
G(F, T,V> E )  is a directed bipartite graph. Forevery 

Every matching of size IF1 on this bipartite graph 
is a valid assignment of the OR functions to the OR- 
term nanowires, because it finds an assignment for all 
of the OR functions in F .  Figure 4(b) shows a bipar- 
tite graph G(F.  T,T'> E ) .  Set F is the set of OR func- 
tions in Figure 2. and set W is the set of nanowires in 
the nanoPLA of Figure 4(a). Figure 4(c) shows one 
possible matching. 

52 



Wt f, 

fa 
w2 

w, 
w3 

W2 
1, w, w. 

w, w, fa 

WS 

reduce the total time complexity, we suggest an ap- 
proach that reduces the program and fesf operations 
of graph construction as well as the computing oper- 
ations. 

1, 6.3. Greedy Heuristic Algorithm 

f2 ‘4 

w4 f, There are heuristic algorithms that, with high 
probability, and small time complexity find the max- 
imum matching. A general heuristic algorithm is 

(a) :i ws 
(C) 

Figure 4. (a) The crosses show defective 
junctions. (b) The graph of the OR-term 
nanowire of part (a) and OR-functions of 
Figure 2. (c) One possible assignment. 

6. Algorithm 

6.1. Graph Construction 

To build the graph G(F,  W, E )  the first step is to 
find the nodes in each of the sets F and W .  Each 
OR function in the design is a node in F .  Marking 
ON and OFF inputs of each OR function, (i.e. the 
values of I z , k )  f ;  E F and all the inputs k, 0 5 k 5 
A-1, takes O(1FI.N) computingoperations. To find 
the defect configuration of each OR-term nanowire 
(i.e. the value of each Jj, i;) ,  one should check the 
programmability of all the junctions of each OR-term 
nanowire. This takes (A‘. IWl) programming and test 
operations. 

To make the set E, the condition (1) will be 
checked for each pair of ( f ; ,  wj). Checking it  once 
takes N computing operations, and checking it over 
all of the pairs takes O ( N .  IF1 . IWI) computing op- 
erations. So the total time complexity of the graph 
construction is ( N  . 11,VI) programming arid tesr op- 
erations and O(N . IF1 . IWl) computing operations. 

6.2. Exact Algorithm 

For now assume that CV is large enough so that 
there exists a maximum matching of size IFI. Later, 
in Section 7, we calculate how large TY should be in 
practice. 

There are a number of exact algorithms to solve 
the maximum bipartite matching problem, such as 
the algorithm based on Ford-Fulkerson maximum 
flow network algorithm [I31 with time complexity 
0 (/VI . IEI) and Hopcroft-Karp [I41 with timecom- 
plexity 0 (m. IEI). In our graph IV/ = /FI + 
/M’1 and IEl = O(IF1 IWI), which makes the to- 
tal time complexity 0 (~m. I F I .  IpiTl) 

computing operations. 
The time complexity of all of these matching al- 

gorithm will be dominated by the time complexity 
of graph construction of Section 6.1. Therefore to 

shown in Figure 3(a). 
We distinguish the different heuristic algorithms 

by the way they choose the nodes in lines 2 and 4 
of Figure 3(a). One way is to choose both f and w 
randomly. Another way is to choose each of them 
in increasing order of node degree. A combination of 
the above is another option. We obtain our best results 
by choosing the least degree f from F and choosing 
w randomly. 

Here we show how we can eliminate the need to 
actually build the graph G(F. W, E ) .  There are two 
points in the algorithm that are dependent on graph G: 
1) Choosing ft’s based on their degrees G, 2) Line 5 
of Figure 3(a) that checks the matching condition by 
checking the existence of the edge ( f i?  w3). 

To select OR-terms based on least degree, we 
would need to son F.  Instead of sorting f ; ’ s  of F 
based on their degree, the nodes can be soned based 
on the expected value of their degree. Let PJ be the 
probability that a junction is programmable. and e; 
be the number of ON-inputs in the OR function f ; .  
The probability that ( f ; ,  w j )  E E is PJ“’. This is the 
probability that the OR function fz can he assigned to 
the nanowire wj .  So the expected value of node de- 
gree of f ;  is (PJ“‘ . IIVl). Ordering F based on the 
expecfed value of node degrees is the same as order- 
ing it based on the value of e;. This means there is no 
need to build the graph for sorting purpose. 

To test the condition of line 5 of Figure 3(a), in the 
case that there is no graph, we need to program and 
test every single nanowire that is picked up to he as- 
signed to each OR function f,. The time complexity 
of mapping and testing is O(c,) for each OR func- 
tion f z .  In order to have time complexity of O(e t )  
instead of 0 ( N )  the IZ.k’s need to be stored effi- 
ciently (sparsely). Hence by paying this cost there is 
no longer a need to build the graph G(F,  L.V. E ) ,  and 
the total time complexity is only due to the algorithm 
of finding a matching (Figure 3(h)). 

7. Analysis 

7.1. Running Time Complexity 

We first compute the worst-case time complex- 
ity. As explained above, line 6 of the algorithm in 
Figure 3(b) takes 0(q) program and rest operations. 
The maximum number of iterations of the line 4 loop 
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is the total number of unmatched nanowires which is 
IWI-i. The line 2 loopruns exactly for IF1 iterations 
in order to map each of the OR functions. So the total 
number of program and test operations in the worst- 
case is O ( C : ~ ~ ' - '  ((IWl - i) . ci)). It can be writ- 
ten as 0 (IF1 . 1l.L' . cb1) when ch1 is the maximum 
of ci's. In Section 8 we show how to bound the size 
of C A I ,  without scaling IF1 by more than a small con- 
stant factor. Sorting F in the first line of Figure 3(b) 
takes O(lF1 log(lF1)) computing operations. So as- 
suming = 114'1 = N, our greedy algorithm takes 
N2 program and test operations and O(Nlog(N) )  
computing operations, while the exact approach takes 
N2 program and test and O(iV3) computing opera- 
tions. 

On average the number of iterations will be 
smaller than this. Let mi be the number of iterations 
that it takes to find a match for OR function fj. If we 
want the expected value of the matching for f i  in m, 
nanowires to be 1 then: 

E ( N u m k r  of matching in mi) = 1 

(2) mi. pc' - 1 j m. - p - c i  
J -  2 -  J 

So the average number of iterations of the line 4 loop 
is P;"' for each f i .  and the total number of opera- 
tions in the average case is: 

\ i=o 

and replacing ci's with CAI: 0 (IF1 . (P;'"' . C A I ) )  

If the value of CAI is small, which it is after 
bounding fanin sizes, then the greedy algorithm takes 
O ( ( F ( )  program arid tesr and O(lFI log(1Fl)) com- 
puting operations on average, while the time com- 
plexity of the graph construction in the exact ap- 
proach is N 2  program and test operations and 0(N3) 
computing operations. Figure 5(b) shows the number 
of iterations to map each design (IF1 . P;czl'). 

7.2. Area Overhead Estimation 

Here we compute how large W should he in prac- 
tice. In the average case as shown before, if the size 
of the unmatched set of nanowires when matching the 
ith OR function is at least P;"' then the expected 
value of finding a match in this set is 1. Therefore 

defines a lower bound on the size of W .  
Remember that in our algorithm the set of 

nanowires that f z  can choose from, is of size 
(IWI - i). Therefore the probability of successfully 
assigning f t  to a nanowire is I - (1 - PJc*)"'~'+' 
Hence the probability of successfully mapping all the 

Bound on mxlmum ske of Fanin (5 )  
. . . .. ....... ........., .................. ~ 

0 . .  

,. , 
The dots show the C;'S of each OR functions of each design. 
The curves show two maximum sizes of c for each design. 

(a) 
Total numm of Iterations 

~ ~ ...... . .~ ....................... ?"a, i.EILl"ndoYmndr.-~ 

OR functions is: 

Let Y be the yield of mapping designs to nanoPLA. 
Then the following inequality gives a tighter lower 
bound on the size of W: 

8. Bounded Fanin 

We show the effect of bounding the size of et's 
with an example from the IWLS93 benchmark [15]. 
In this example IF1 = 1186, = 772, and PJ = 
0.95. The lower bound on 111'1 for mapping a single 
nanowire with cz = CJI = 772 from Equation (4), is: 

(0.95)-'72 5 W + 1017 5 W 
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In (a) the OR function a has c=8. In (h) it is divided into 3 OR functions al .  a2 and a3. ?bey are OR-ed together in  logic 
may 2 and make signal e. which is the same as the logic of the original a OR function. The OR function e is rotated 
to logic array I and then to buffer array I ,  which was a's original position. Two logic levels of delay are added to the 
OR function a. If the size of ON inputs of signal e is more than C M  then the decomposition process will he repeated for 
signal e. For an OR function with c ON inputs, the decomposition process happens logc,,, ( c )  times. 

Figure 6. (a) The original design, (b) design with c value bounded by cnr = 3. 

If we decompose this OR function to 8 OR functions, 
such that 7 of them have e, = 100, and 1 has cz = 72, 
then the lower hound on IT.lr1 to map all of these OR 
functions is: 

+ 173 5 W 

Applying Equation ( 3 )  we also see that hounding the 
fanin improves the mapping running time from IOzo 
to lo5 program and test operations. 

Figure 6 shows how an OR function with c=8, will 
he decomposed into OR functions with c 5 3. Fig- 
ure 5(a) shows which OR functions i n  each design 
need to be divided to smaller fanin OR functions if 
the size of ITV/ is desired to he IF1 or 1000 x IFI. The 
x-axis in this graph is the number of OR functions in 
each design, i.e. 1F1. Each point on the x-axis is ded- 
icated to a single design with IF1 equal to the value 
of x at that point. For example the highlighted yellow 
diamonds show the ci value of all the OR functions 
of a design with IF1 = 1186. The curves show the 
estimation in Equation (4) of the maximum size of 
c,  if lW-1 = IF/ or 111'1 = 1000 x IFI. Assum- 
ing 1W-l = JFI and using Equation ( 2 )  and (4) the 
value of the maximum ti's on the lower curve result 
from PJ".'' < IF/. and further we can estimate the 
lower hound on c.u by CAI < ~ logp, IF!. Similarly 
the lower bounds for cz's related to the case when 

The graphs of Figure 5(a) show that the number 
of OR functions with large ON input set is relatively 
small, and we also observed they cause very long 
running time and large area overhead in mapping. 
This suggests we should hound the size of cl,, with 
- logp,, IF1 to get the ratio of 1 for II,Vl,IFl on aver- 
age. Since the size of et's is bounded, in  order to sort 
F in the first line of the algorithm in Figure 3(b) we 
can use a radix sort with time complexity of O(lFl) ,  
bringing the total computation time of our greedy al- 
gorithm to O(lF1). 

IWI = 1000 x  IF^ will be ~ logp, (1: oon . 1 ~ 1 ) .  

9. Experimental Results 

The mapping algorithm is tested over three dif- 
ferent benchmarks: 1) Selected elements of data- 
path (See [ 2 ] ) ,  2 )  Small examples from IWLS93 
benchmark suit [15], 3) PLA hook examples [16]. 
For statistical purposes each benchmark is mapped 
100 times. The designs of these benchmarks have 
been first synthesized to multilevel logic and rotated 
through two NOR planes of a nanoPLA [ 2 ] .  

Figure 5(b) shows the graphs for estimation of to- 
tal number of iteration to map OR functions of a de- 
sign for hounded and unbounded c and also the sim- 
ulation results for hounded e. Figure 5(h) shows that 
the total number of iterations is generally linear in the 
number of OR functions, IF( ,  and well matched with 
the calculation i n  Equation ( 3 ) .  Figure 5(c) shows the 
average area overhead ratio over all the benchmark 
set designs. Bounding the fanin scales the number of 
OR functions by an average factor of 1.11 for a de- 
fect rate ( P J )  of 0.20. The additional average factor 
of 1.02 is incurred after physically mapping these OR 
functions onto nanowires. This brings the total aver- 
age overhead factor to 1.13. 

The area overhead of this greedy algorithm is com- 
pared with an exact matching algorithm for a 4 x 4 
multiplier that is implemented in two logic planes. 
The first plane has 697 OR functions and 33 inputs 
and the other one has 25 OR functions and 697 in- 
puts. In Figure 7(a) area overhead of each of the 
planes is plotted for both greedy and exact algorithm. 
In Figure 7(h) the ratio of the total area of the exact 
algorithm over the total area of the greedy algorithm 
is plotted. This shows that our greedy algorithm is 
within a few percent of optimal on average for mod- 
est fault rates. 

10. Summary 

A plausible architecture for nanoPLA design is 
suggested in [ 2 ] .  The defect rate of different fahri- 
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cation processes is unknown hut expected to be on 
the order of a few defects per 100 junctions. This 
suggests searching for an efficient programming op- 
eration that tolerates the defective junctions. In this 
paper we compare the exact matching algorithm with 
a suggested greedy algorithm. Assuming that IF1 s= 
IW/ % N, the time complexity of  our algorithm is, 
O(N)program andtestoperations and O(Nlog(N))  
computing operations, while the time complexity of 
the exact algorithm plus graph construction is iV2 
program and resf operations and O(N3) computing 
operations. We also showed that it is necessary to 
hound the fanin size in order to  achieve reasonable 
running time and area overhead for matching. After 
hounding the fanin, the time complexity of our algo- 
rithm will be O(N) computing and program and test 
operations. Including bounding the fanin and map- 
ping, our algorithm can tolerate defect rates as high 
as 20% with an average overhead factor of less than 
13%. 
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