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Abstract

It is now widely accepted that the CMOS technology
implementing irreversible logic will hit a scaling limit
beyond 2016, and that the increased power dissipation
is a major limiting factor. Reversible computing can
potentially require arbitrarily small amounts of energy.
Recently several nano-scale devices which have the po-
tential to scale, and which naturally perform reversible
logic, have emerged. This paper addresses several fun-
damental issues that need to be addressed before any
nano-scale reversible computing systems can be real-
ized, including reliability and performance trade-offs
and architecture optimization. Many nano-scale de-
vices will be limited to only near neighbor interactions,
requiring careful optimization of circuits. We provide
efficient fault-tolerant (FT) circuits when restricted to
both 2D and 1D. Finally, we compute bounds on the
entropy (and hence, heat) generated by our FT circuits
and provide quantitative estimates on how large can we
make our circuits before we lose any advantage over ir-
reversible computing.

1 Introduction

There are several compelling reasons for a renewed
interest in reversible computing systems: First, it is
now widely accepted that the CMOS technology im-
plementing irreversible logic will hit a scaling limit be-
yond 2016, and the increased power dissipation is a
major limiting factor. Reversible computing[2, 17, 6]
can potentially require zero or very little energy. Sec-
ond, several new nano-scale devices which have the po-
tential to scale, and which naturally perform reversible
logic, have emerged. This paper addresses several fun-
damental issues that need to be addressed before any
nano-scale reversible computing systems can be real-
ized, including:

1. Reliability and Performance Trade-offs: Current
nano-scale logic proposals appear to provide ex-
tremely unreliable devices, requiring extensive use
of fault-tolerant (FT) circuits. We provide a sys-
tematic design for reversible FT circuits, which
will work reliably even if each gate has an error
probability as high as 1/108. We also calculate the
blow up in size and gate count that would result
from the use of such FT circuits.

2. Architecture Optimization: many of the proposed
nano-scale devices will be limited to only near-
neighbor interactions[12, 10, 19], requiring careful
circuit optimization. We provide efficient FT cir-
cuits when restricted to both 2D and 1D. We show
that for a 2D topology with near neighbor connec-
tions, the error threshold decreases only to 1/273,
and that a 1D lattice that is 27 bits wide but ar-
bitrarily long has an error threshold only 23% less
than the full 2D case.

3. Power Dissipation: Reversible computing systems
in the presence of errors will generate heat. We
compute bounds on the entropy (and hence, heat)
generated by our FT circuits and provide quanti-
tative estimates on how large can we make our cir-
cuits before we lose any advantage over irreversible
computing.

Many previous works have considered gate-level
fault tolerance techniques for irreversible gates[18, 13,
9, 8]. Local fault tolerance schemes for irreversible au-
tomata have also been studied [7]. Quantum comput-
ers are reversible; however, the properties of quantum
errors and quantum information are sufficiently differ-
ent from the classical case that fault-tolerant quantum
computation[16, 14] is not directly applicable to the
traditional reversible classical computing model, which
is the subject of this work.

This paper is organized into three main parts. In
Section 2, we give our model of noisy reversible gates
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and give a circuit fault-tolerant error-recovery and
compute the overhead that the circuit requires both
in time and space. We show that, as long as the er-
ror rate is below a threshold, the circuit can be made
reliable. In Section 3, we apply the results of Section
2 to locally connected models where bits can only op-
erate on their nearest neighbors. We consider the lo-
cal problem in 1D and 2D. In Section 4, we compute
how much entropy and heat is dissipated in the error-
recovery process, and we see that the entropy saving
aspect of reversible computing is lost in our scheme
once the error rate gets close to the threshold.

2 Reversible majority multiplexing

In standard irreversible computing, we often imag-
ine that functions are represented by circuits of wires
and gates at fixed positions. We can think of the bits
as moving through the wires to different gates. In re-
versible computing, since gates have identical numbers
of input bits and output bits, we have a choice: we can
picture the bits moving through wires to gates at fixed
locations, or picture the bits as fixed locations in space
and the reversible function as a sequence of reversible
gates applied on the bits. This is commonly represented
as the gate array notation where space is on the y-axis
and time is on the x-axis, and operations are boxes or
symbols that connect the bits they are applied to (see,
for instance Figure 1). This model is realizable in many
nanocomputing proposals[12, 10, 19]1

The error model is a simple independent gate failure
model: at each application, a gate will randomize all
the bits it is applied to with probability g. While this
model does not directly address correlated failures, it
will apply as long as the probability that k out of G
gates fail is less than

(
G
k

)
gk(1 − g)G−k. For most of

this paper, we will assume that this error rate applies to
any three-bit gate, and that we have access to no fault-
free operations. Our goal is to make larger modules of
T reversible gates with a module error rate which is
independent of T , and is in general much smaller than
1 − (1 − g)T ≈ gT (which is what we could expect
without any fault tolerance). In fact, we show that by
using O(T log4.75 T ) gates instead of just T , we obtain
an error rate that is constant in T .

Rather than explicitly deal with error correction
codes, the best gate-level, fault-tolerant schemes for
classical computing are those based on Von-Neumann
multiplexing[18]. In this case, each bit is copied to a

1It should be noted that, since all quantum computers are
reversible, this work is particularly applicable to classical pro-
cessing on quantum hardware.

|q0〉 • • ⊕

|q1〉 ⊕ •

|q2〉 ⊕ •

Figure 1. The reversible Majority gate con-
structed from two controlled-not gates and
one Toffoli gate. The horizontal lines repre-
sent bits. Each vertical line connecting hor-
izontal lines represents a gate. If every bit
connected by a filled dark circle on a particu-
lar vertical line has the value one, the bit on
the horizontal line with the ⊕ is flipped. Time
flows from left to right.

Input Output

000 000
001 001
010 010
011 111
100 011
101 110
110 101
111 100

Table 1. The truth table for the reversible MAJ
gate. Note that each input has a unique out-
put, and that the first bit of the output is the
majority of the input bits. This gate is ob-
tained by flipping the second two bits if the
first bit is 1, and then flipping the first bit if
the second two bits are 1.

second bit, a random permutation is applied, and fi-
nally, a NAND gate is applied to each pair of bits.
These approaches make use of the irreversible NAND
gate. Schemes such as this can result in fault-tolerant
computation as long as the gate error rate is less than
about 11%[18].

Rather than base our multiplexing scheme on
NAND or some derivative, we base ours on a reversible
extension of the majority gate (MAJ), depicted in
terms of CNOT and Toffoli in Figure 12. The reversible
majority gate (MAJ), has a truth table given in Table
1.

We claim that the circuit in Figure 2 is in fact a

2We note that variants of the MAJ gate have found appli-
cation in algorithmic cooling[5] and reversible addition[4]; thus
MAJ appears to be a valuable gate for reversible and quantum
computers.
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|q0〉 MAJ−1 MAJ

|q1〉 MAJ−1 •

|q2〉 MAJ−1 •

|q3〉 = |0〉 • MAJ

|q4〉 = |0〉 • •

|q5〉 = |0〉 • •

|q6〉 = |0〉 • MAJ

|q7〉 = |0〉 • •

|q8〉 = |0〉 • •

Figure 2. A reversible multiplexing scheme
based on the 3-bit repetition code. The out-
put bits are those bit positions 0,3,6. The rest
may be discarded. This circuit is the error-
recovery circuit referred to as EL in Figure
3

fault-tolerant error correction circuit. To see this, con-
sider the code space of 000 representing logical zero
(0L) and 111 (1L) representing logical one. Consider
Figure 2 as having two phases, encoding and decoding.
The first three MAJ−1 gates are the encoding gates
and the last three MAJ gates are decoding gates. Af-
ter the encoding gates the bits should all have the same
value (i.e. 000000000 or 111111111 if the input was 0L

or 1L, respectively). Decoding puts the majority value
of each block of three bits into the three output bits.
Clearly, if there are no errors, the circuit should out-
put exactly what was input, due to the symmetry of
the code under permutations. Now we simply observe
that, if any single error occurs, it will change at most
one bit in each of the final decoder blocks. Since the
decoders return the majority result in their output bit,
a single bit flip will not change the majority result. If
one of the final MAJ gates has an error, it will only
effect one bit in the output, and that can be repaired
in the next error-recovery cycle. Thus we have a fault-
tolerant error-recovery because we can tolerate errors
in our recovery gates.

Since the codewords in this system are repetition
code words, we can use any universal, reversible set of
gates for computation directly on the repetition code-
words. After each gate operation, we apply our error-
recovery circuit from Figure 2. Now that we have a
circuit, we can ask: for what error rates will this cir-
cuit perform as expected?

2.1 Concatenation

In order to suppress the probability of error, we code
one bit as three bits in a repetition code. But why stop
there? We could also code each of the three bits into
another repetition code, resulting in nine bits, and so
forth. This method is called concatenation.

We say a physical bit is level 0, a three-bit code 000
or 111 is level 1, a nine bit code is level 2, a 3L bit
code is level L. A bit encoded at level L is made up
of three bits encoded at level L − 1. A gate at level
0 is a physical gate to which we have access (in our
case, MAJ). To implement a logical gate at level 1,
we apply the gate at level 0 to each of the three bits in
the code for level 1. To implement a 3-bit gate at level
L, we apply the gate at level L − 1 on the logical bits
in the code, and then correct any errors we may have
caused in each of the bits. This is depicted in Figure
3.

2.2 The threshold for fault-tolerant computation

Throughout this work, we consider the gate error
rate g as the error rate for a 3-bit operation. Thus, we
assume that we can reset three bits with one initializa-
tion operation. The error-recovery circuit depicted in
Figure 2 requires us to initialize six bits (two 3-bit ini-
tialization operations), apply three MAJ−1 gates, and
three MAJ gates for a total of eight gate operations
(six if initialization can be assumed to be far more ac-
curate than our gates). As previously shown, as long
as there is no more than one error in all of these op-
erations, the final result will not be an error. We say
that the error-recovery circuit requires E gates.

In addition to the error-recovery, we also have the
logical gate which we want to apply on the data. To
apply our logical gate, we need to operate on each of
the three bits in the code, which gives us three more
gates which can go wrong.

A particular bit will be correct unless there are two
or more errors. Thus, if each operation has an error
rate g and there are G = 3 + E operations acting on
each encoded bit (some act on more than one encoded
bit), the bit error rate Pbit is:

Pbit ≤
G∑

k=2

(
G

k

)
gk(1 − g)G−k

≤
(

G

2

)
g2

The probability that a gate has no error is at least
as large as the probability that none of the bits are in
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error if each were considered independently:

1 − glogical ≥ (1 − Pbit)
3

The above is true because the right hand side triple
counts the case where the logical gate (the gate applied
to all three bits) fails. We note that the above bound
is a convenient bound, but a tighter bound will result
in an improved error threshold. We can use the above
to see that:

glogical ≤ 1 − (1 − Pbit)
3

≤ 3Pbit

≤ 3

(
G

2

)
g2 (1)

Thus if we want glogical < g, it is sufficient to have
g < 1

3(G

2
)
, which we call the threshold. In our cases

of G = 11 (3 + (E = 8)) and G = 9 (3 + (E = 6)),
we get threshold results of ρ = 1/165 and ρ = 1/108,
respectively.

The above only shows that we can decrease the log-
ical error rate by applying the error-recovery circuit;
it does not show that we can make it as small as we
like. In order to push the error rate to lower values, we
concatenate our bits recursively. At the lowest logical
level, L = 0, each bit is represented by a physical bit.
At all other levels, each bit at level L is represented
by 3-bits at level L − 1. Thus, at level L we are actu-
ally using 3L physical bits. We only pay attention to
the error rates at the largest level, but after each gate
at level L we do an error-recovery at level L, which
in turn applies gates at level L − 1, and so on, until
we reach the bottom level. This recursive structure is
represented in figure 3.

Thus, if the error probability at level k is gk, g0 = g,
and we have G total operations to perform, Equation
1 tells us that:

gk+1 ≤ 3

(
G

2

)
g2

k

To solve equations like the one above, we introduce
κ = log 3

(
G
2

)
, and rk = log gk:

gk+1 ≤ 3

(
G

2

)
g2

k

log gk+1 ≤ log 3

(
G

2

)
+ 2 log gk

rk+1 ≤ κ + 2rk

(rk+1 + κ) ≤ 2(rk + κ)

rk ≤ 2k(r1 + κ) − κ

gk ≤ (3
(
G
2

)
g0)

2k

3
(
G
2

)

EL

EL

EL
GL−1

GL−1

GL−1BL

BL

BL

GL

Figure 3. A gate at concatenation level L. We
apply the gate three times at level L − 1 and
then do an error correction cycle. GL−1 is the
gate operation at the lower logical level, EL is
the error-recovery circuit (Figure 2) on logical
level L (using only gates at level L − 1).

= ρ

(
g

ρ

)2k

(2)

Assuming G = 9, 3
(
G
2

)
= 108; thus, if the lowest level

gate error is g0 < 1/108, we can correct all the errors
with high probability if we use enough levels of concate-
nation. Throughout this paper we use ρ for threshold
values. Thus, if we define ρ = 1/3

(
G
2

)
, and if g0 < ρ

we are sure to be able to correct all errors in the limit
of large L.

2.3 Circuit blowup

In this section, we consider how much larger a mod-
ule made of T perfect gates will be when constructed
from the FT techniques of this paper, such that the
final module will have a constant probability of error
irrespective of T.

To implement a 3-bit gate at level L, we must correct
3-bits at level L − 1. Starting from Figure 3, we can
see that if Γk is the number of gates required for one
complete error correction and gate operation on levels
k and lower, and E is the number of gates required to
do error-recovery, then we have that:

Γk = 3Γk−1 + 3EΓk−1

= 3(1 + E)Γk−1

= (3(1 + E))k

Using G = 3 + E, we have:

Γk = (3(G − 2))
k

So there is an exponential blow-up in gate count with
concatenation depth. The bit size blowup is just as
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easy to calculate: at each level, we use 9 bits of the
level below:

Sk+1 = 9Sk

Sk = 9k

How deep do we need to concatenate? If the module
we want to simulate has T gates, we need gL ≤ 1/T in
order to have less than on average one error in the FT
module. Hence, by bounding Equation 2:

ρ(g/ρ)2
L ≤ 1

T

L ≥ log2

log Tρ

log ρ/g
(3)

If we use the minimum valid value for L, the gate blow-
up factor is ΓL = O(GL), and is poly-log in T :

(3(G − 2))L = 2L log
2
3(G−2)

=

(
log Tρ

log ρ/g

)log
2
3(G−2)

As is the size blow-up factor:

SL = 9L = 2L log
2
9

=

(
log Tρ

log ρ/g

)log
2
9

≈
(

log Tρ

log ρ/g

)3.17

For G = 11, we have (3(G − 2))L = O((log T )4.75) and
SL = O((log T )3.17).

Suppose we have g = ρ/10 with G = 9 and ρ ≈
10−2. Without any error correction, modules larger
than 1, 000 gates will almost certainly be faulty. If
we want to make a module of T = 106, we need
L = log2((log2 104)/ log2 10) = 2, so we can make
an accurate module with 106 gates, using 2 levels of
concatenation, if g = ρ/10. This means that, rather
than using one gate, we will need to replace each with
(3(G − 2))2 = 441 gates and replace each bit with
32 = 81 bits. However, we are able to construct a much
larger module: 106 logical gates rather than 1, 000 log-
ical gates.

We have shown that we can take noisy gates and
create modules of bounded noise with only a poly-log
overhead factor. Once we have modules with bounded
noise, higher level fault tolerance techniques may be
applied.

3 Local reversible fault-tolerant

schemes

In this section, we consider the problem of an array
of bits on which we may operate with noisy, reversible

gates. We assume that we may only operate on at most
three neighboring bits at a time. When it is necessary
to operate on pairs of remote bits, we must first move
them close together by a series of SWAP operations
and then operate. This introduces extra overhead into
every logical operation. Since we are assuming that
each operation is noisy we expect this to reduce the
error threshold. We will first consider a 2D array and
see that the 2D array only requires extra SWAP op-
erations to operate on three logical bits, and no extra
SWAP operations to do error-recovery. As such, the
threshold is not much lower than the result of Section
2.2. Later, we consider a 1D array; in this case, our
error correction circuit will require many SWAP oper-
ations. We can expect this to lower the threshold much
more than the 2D case.

3.1 A local 2-dimensional fault-tolerant system

In Figure 2, we presented a fault-tolerant error cor-
rection circuit which assumes that any pair of bits may
be operated on; notice, however, that during the recov-
ery process, only certain bits interacted. In practice,
many systems may allow only local operations. In this
section we consider a 2D lattice of bits. At each time
step any adjacent pairs (or triples) of bits may interact.

If we put the circuit from Figure 2 on the lattice in
Figure 4, we see that all the bits that interact in the
recovery circuit are already near one another in the
lattice. The only additional complication we need to
consider is the difficulty of bringing three logical bits
near one another in order to do a logical operation.

To operate on logical bits, we must interleave the
bits, operate locally, and then uninterleave. But in
which direction do we interleave? There are two direc-
tions: parallel and perpendicular to the logical bit line
(see Figure 4). Interleaving three logical bits parallel to
the logical line requires nine SWAP gates. Interleaving
three logical bits perpendicular to the logic line requires
12 SWAP gates. However, both schemes use at most
six SWAPs on a given logical bit. If we combine two
SWAPs into one three bit gate, which we call SWAP3,
depicted in Figure 5, (and then only count three bit
gates in the threshold) we only use three SWAP3 gates.

Thus, a full cycle now requires six additional gate
operations: three to interleave, three to uninterleave
the bits3. Thus our total gate count is 14 if we ignore
bit initialization, and 16 if we include bit initialization.
As such the threshold using only local operations in

3The error-recovery circuit in Figure 2 actually rotates the
logical bit line, but as long as all bits are recovered at the same
time, this rotation is uniform throughout the circuit and can be
ignored
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Figure 4. Layout of bits on a 2D lattice. Boxes denote the locations of the logical bits; the other bits
are ancillary bits. To bring logical bits close to one another, we can either move them perpendicular
to the logical line (q0,q1,q2) by swapping them past the ancillary bits in between two logical lines
(q3,q4,q5 for one bit and q6,q7,q8 for the other), or we can move them parallel to the logical line, in
which case the two logical bits are adjacent to each other in a line and must be interleaved (q0,q1,q2
with the next q0,q1,q2 just below it in the above figure).
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|q0〉 ×

|q1〉 ××

|q2〉 ×

Figure 5. A SWAP3 gate, which is composed
of two swaps on three bits. Since this gate
only acts on three bits, we assume that its
error rate is at most g, the error of any 3-bit
gate.

|q3〉

|q4〉 ×

|q5〉 ×× ×

|q0〉 ×× ××

|q1〉 ×××

|q2〉 × ××

|q6〉 ×× ×

|q7〉 ×

|q8〉

Figure 6. Interleaving three codewords which
are linearly adjacent.

2D becomes ρ2 = 1/3
(
14
2

)
= 1/273 and ρ2 = 1/3

(
16
2

)
=

1/360 respectively. Clearly, if we can initialize bits with
error probability very much lower than 1/273, they can
be ignored in the threshold calculation, and we can
assume that the gate error rate only needs to reach the
larger threshold, which is approximately 0.4%.

3.2 A local 1-dimensional fault-tolerant system

Figure 7 uses only nearest-neighbor operations on a
1D array. The error correction circuit requires six MAJ
gates, nine SWAPs, and six initializations. Instead of
counting nine SWAPs, we count four SWAP3 gates
and one SWAP. Instead of counting six initializations
we count two 3-bit initializations. This gives a total
of 11 gates or 13 gates, with or without initialization,
respectively.

We want to balance the number of SWAPs applied
to each codeword so that no codeword is corrupted

|q0〉 MAJ−1 MAJ

|q3〉 = |0〉 • × •

|q6〉 = |0〉 • ×× × •

|q1〉 MAJ−1 ×× × × MAJ

|q4〉 = |0〉 • ××× •

|q7〉 = |0〉 • × ×× •

|q2〉 MAJ−1 ×× × MAJ

|q5〉 = |0〉 • × •

|q8〉 = |0〉 • •

Figure 7. A fault-tolerant error-recovery cir-
cuit in one dimension with only local gate op-
erations. This may be thought of as Figure 2
plus Figure 6 handling the the interleaving of
the bits.

more than the other two. As such, we interleave by
bringing the two outer codewords close to the mid-
dle codeword. In order to interleave three logical bits
b0, b1, b2, we move the last bit in b0 just above the last
bit in b1. Then we move the second bit in b0 just above
the second bit in b1. Next, we move the first bit in b0
just above the first bit in b1. Subsequently, we do a
similar operation on b2.

Interleaving b0 and b1 requires 8 + 7 + 6 SWAPs (8
for the last bit, 7 for the second bit, 6 for the first bit).
Interleaving b2 requires 10 + 8 + 6 SWAPs (10 for the
first bit, 8 for the second, and 6 for the last). This
gives a total of 45 SWAPs; however, at most 24 act on
a single bit. If, instead of counting SWAPs, we count
SWAP3 gates, we have only 12 SWAP3 gates acting
on each codeword to interleave.

Thus, a full operation is 12 SWAP3 on each code-
word to interleave, the gate operation, which touches
each of the three bits in each codeword, and finally 12
SWAP3 gates to uninterleave, for a total of 27 gates, in
addition to the error-recovery cycle. The error-recovery
cycle requires 13 gates (11 if we neglect initialization),
for a total of 40 gates. This yields a threshold of
ρ1 = 1/3

(
40
2

)
= 1/2340 (or ρ1 = 1/2109 if bit initial-

ization is much more accurate than ρ1). Thus, we find
that ρ1 is about an order of magnitude worse in the 1D
case than it is in the 2D case. In the next section, we
will see how using a few levels of 2D at the lowest level
can recapture most of the advantage that 2D offers in
the threshold.
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3.3 Concatenating different thresholds

If a particular fault-tolerant scheme has a threshold
ρ2 and the elementary gates have an error rate of g,
Equation 2 tells us that, after k levels of concatenation,
the resulting error rate is less than:

gk = ρ2

(
g

ρ2

)2k

If, after k levels of this scheme, we concatenate with
L − k levels of a scheme with threshold ρ1, we have:

gL = ρ1

(
gk

ρ1

)2L−k

= ρ1


ρ2

(
g
ρ2

)2k

ρ1




2L−k

= ρ1


 g(

ρ1

ρ2

) 1

2k

ρ2




2L

= ρ1

(
g

ρ(k)

)2L

with ρ(k) = ρ2

(
ρ1

ρ2

) 1

2k

. Thus, if we use k levels of

a scheme with a lower threshold, we can get most of
the advantages of a lower threshold, even with a small,
finite number of concatenations. Table 2 shows that,
after a few levels of 2D concatenation, the threshold
approaches the 2D case studied in Section 3.1. In par-
ticular, a linear array nine bits wide has a threshold
60% as large as the full 2D case, and an array 27 bits
wide has a threshold 77% as large as the full 2D case.
This underscores the fact that most of the benefits of
a 2D structure accrue in the first few levels of concate-
nation.

4 Entropy dissipation

Reversible computing has been proposed as a
method to reduce power consumption of computing de-
vices. In some quantum systems, reversible logic is all
that is available, and irreversible devices must be sim-
ulated from reversible ones (by discarding or resetting
bits). However, a Toffoli gate can simulate an irre-
versible NAND gate by dissipating at most 3/2 bits of
entropy per cycle4. Similarly, due to the universality of

4The value of 3/2 bits is in fact optimal (assuming equally
likely inputs and using only reversible logic), and may be
achieved using the MAJ−1 gate.

k Width ρ(k)/ρ2

0 1 0.13
1 3 0.36
2 9 0.60
3 27 0.77
4 81 0.88
5 243 0.94

Table 2. If we concatenate k levels of 2D cir-
cuits with L − k levels of 1D circuits, we see
that the threshold rapidly approaches the 2D
case. If we are allowed 27 lines rather than
just one, we can get a threshold which is only
23% smaller than 2D case.

NAND, we can use NAND gates to build a functionally
equivalent gate to Toffoli at a entropic expense of only
a few bits. Hence, once our encoded gates dissipate 3/2
bits of entropy per operation, we can say that we have
actually used faulty, reversible gates to build fault-free
irreversible logic.

It has been shown that if a reversible computer has
errors, there must be a supply of fresh zero bits in or-
der to remove entropy from the computer[1]. Here,
we estimate how much entropy per gate must be dis-
sipated during fault-tolerant operation of a noisy re-
versible computer. We note that when n bits have n×H
bits of entropy, it is not necessary to replace them with
n zero-entropy bits; instead, reversible cooling[15, 3, 5]
schemes can ensure than we only need to replace n×H
of them with zero-entropy bits. Thus, asymptotically,
we need to calculate the expected amount of entropy
in the ancillary bits, and that will correspond to the
number of bit resets we will need in our system.

Landauer pointed out that where there is ir-
reversibility in computing, there must be heat
dissipation[11]. Thus, by computing the amount of en-
tropy dissipated, we know that the heat dissipated is:

∆E ≥ kbt∆H

where ∆H is the amount of entropy dissipated, kb is
Boltzmann’s constant, and t is the temperature.

We represent the number of gates at level L − 1
needed to simulate a gate at level L as G̃. The value of
G̃ will depend on the model we are working with, e.g.
non-locally connected vs. locally connected. Following
the calculations in Section 2.3, and due to subadditivity
of entropy, if HL is the entropy generated by one gate
operation at level L, we can see that:

HL ≤ G̃HL−1

= G̃L−1H1
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Not every error is distinguishable, so assuming each
error can be distinguished provides an upper bound.
When a gate has an error, we assume it outputs totally
random bits; thus, with probability 1 − g, the output
is correct, and with probability g the output is one of
eight equally likely outputs. Calculating the entropy
of such a scenario yields H( 7g

8 ) + 7g
8 log 7, and we find:

H1 ≤ G̃

(
H(

7g

8
) +

7g

8
log 7

)

≤ G̃

(
2

√
7g

8
+

7g

8
log 7

)

≤ G̃

(
2

√
7

8
+

7

8
log 7

)
√

g

If we define κ =
(
2
√

7
8 + 7

8 log 7
)
, then we have:

HL ≤ G̃Lκ
√

g

To obtain a lower bound, we recall that we assume
independent errors. From Figure 3 we can see that
errors in the recovery process are independent of errors
in different logical bits. After each gate at level L > 0,
we do error-recovery, and this is where the entropy is
removed by means of bit resets. If there are E gates in
the recovery process, we know that:

HL ≥ 3EHL−1

= (3E)L−1H1

We note that every gate touches at least one an-
cillary bit. With probability g the physical gate fails.
When the gate fails, that bit will be flipped with prob-
ability 1/2; thus, the entropy of all the ancillary bits is
at least:

H1 ≥ H(g/2) ≥ g

So we have:
HL ≥ (3E)L−1g

Putting both the upper and lower bounds together:

g(3E)L−1 ≤ HL ≤ G̃Lκ
√

g

If we want to have O(1) bits of entropy per gate, by
bounding the left side of the above equation, we must
have:

g(3E)L−1 ≤ 1

log g + (L − 1) log 3E ≤ 0

L ≤
log 1

g

log 3E
+ 1

For example, if g = 10−2, and E = 11, we have L ≤ 2.3.

We see that the entropy-saving aspect of reversible
computing is indeed highly sensitive to error. Both the
upper and lower bounds of entropy per gate are expo-
nential in L for fixed g. At the same time, we see that,
even if there is some small finite error with g � 1, the
entropic savings relative to irreversible computing may
be obtained by using O(log 1

g
) levels of error correction.

5 Conclusion

We have given a method of producing fault-tolerant
reversible circuits. We also considered this prob-
lem in which only local communications are allowed,
which we believe will be very valuable for quantum
computing systems that need to perform some clas-
sical processing without having to resort to quantum
measurements[19]. We also note that the circuits and
threshold values presented here represent an lower
bound on the threshold for reversible, fault-tolerant
logic. There may exist improved schemes which could
improve the threshold values; however, the circuits here
provide an existence proof.

While we showed how to make fault-tolerant, re-
versible circuits, we also saw that, when the error rate
is near the threshold, there is considerable cost (in bits,
gates, and entropy) to the error correction procedure.
While it was already known that, in principle, any
noisy reversible computer must dissipate entropy[1],
our circuits provide a useful upper bound on how much
entropy must be released in the computing process with
noisy reversible gates.

The authors would like to thank Michael Frank
for many helpful comments, and Thomas Szkopek for
pointing out an error in an earlier draft.
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