CS6813 Spring 2003

Research Seminar on Reconfigurable Hardware

http://www.arl.wustl.edu/~lockwood/class/cs6813

Review of:

A Potentially Implementable FPGA for Quantum Dot Cellular Automata

•Paper by:

Michael Thaddeus Niemier, Arun Francis Rodrigues, Peter M.Kogge

•Published in:

- -Workshop on Non-Silicon Computation (NSC), in conjunction with Int. Symp. On High Performance Computer Architecture (HPCA)
- February 3, 2003

•Review by:

- Dave Lim

CS6813: Research Seminar on Reconfigurable Hardware

General Outline

- Introduction
 - What is Quantum-dot Cellular Automata (QCA)?
- What's already available in QCA?
- · Clocking in QCA.
- What's in an FPGA?
- What should be used as a logic block for QCA FPGA?
- What should be used as interconnects for QCA FPGA?
- What would QCA FPGA look like?

CS6813: Research Seminar on Reconfigurable Hardware

Introduction

- Falls under a more general title of nanotechnology
- A QCA cell can be viewed as a set of four change containers or "dots", positioned at the corners of a square.

- Each cell has two extra mobile electrons
 - Electrons like to be as far away from each other as possible
 - Electrons can only move by tunneling
- Can use QCA as an alternative to CMOS technology
 - First step, figure out a target design that allows for 'early' implementation, i.e.
 FPGAs

CS6813: Research Seminar on Reconfigurable Hardware

2

What's already available in QCA?

- Functional complete logic set exist and has been experimentally tested:
 - researchers at Notre Dame have experimentally demonstrated a 'majority gate' which can be used to implement AND/OR gates
 - inverter can also be easily implemented
- QCA binary wire has also been fabricated
 - an array of QCA cells (inherently pipelined)
- Clocked QCA cells have been seen
- Addressable memory cell arrays have been designed and simulated
 - single QCA memory bit has been experimentally demonstrated
- Work now is on how to put everything together to

CS6813: Research Seminar on Reconfigurable Hardware

- 4 clock phases (instead of 2):
 - switch
 - hold
 - release
 - relax

CS6813: Research Seminar on Reconfigurable Hardware

Washington

5

What's in an FPGA?

- Collection of functionally complete logic elements (logic blocks)
- Interconnection framework that connects logic blocks
 - Horizontal and vertical wires with programmable connections (GRM)
 - Direct connection between logic blocks (carry chain)

CS6813: Research Seminar on Reconfigurable Hardware

Washington

What should be used as a logic block for QCA FPGA?

- 3 things to consider:
 - what functionality is absolutely needed?
 - how would logic elements in block be programmed?
 - is it simple enough to potentially fabricate?
- Designs considered:
 - a single NAND or NOR gate
 - a single majority gate (programmable AND/OR gate)
 - some form of memory (LUT)

CS6813: Research Seminar on Reconfigurable Hardware

7

What should be used as a logic block for QCA FPGA? (continued)

- Majority gate (AND/OR):
 - no inverter
 - needs to be conditionally programmed, makes things difficult
- Memory (LUT):
 - functionally complete
 - needs to be conditionally programmed, makes things difficult
- Verdict: choose single NAND gate
 - don't need to worry about programming logic blocks, FPGA is configured by programming interconnects

CS6813: Research Seminar on Reconfigurable Hardware

What should be used as interconnects for QCA FPGA?

- Need to take into consideration the same things.
- Most intuitively similar to CMOS pass transistor: an array of programmable multiplexors and selectors
- Issues with this scheme:
 - Complex
 - Takes up a ton of room
- Need to device a more efficient routing mechanism.
 - Take advantage of QCA clocking scheme, only apply clocks to wanted connection

CS6813: Research Seminar on Reconfigurable Hardware

9

What should be used as interconnects for QCA FPGA? (continued)

- Base-line routing element cross two QCA wires in a single clocking region:
 - not flexible, either on or off
 - can't turn corners, no fanout

(b)

CS6813: Research Seminar on Reconfigurable Hardware

Washington

- 2x2 routing element 4 clocking regions in a 2x2 pattern:
 - more flexible
 - supports fanout
 - switch signal is not terminated

CS6813: Research Seminar on Reconfigurable Hardware

What should be used as interconnects for QCA **FPGA?** (continued)

- 3x3 routing element 9 clocking regions in a 3x3 pattern:
 - very flexible
 - allows termination of switched signals
 - 125% expansion in area

CS6813: Research Seminar on Reconfigurable Hardware

What should be used as interconnects for QCA **FPGA?** (continued)

- 3x2 routing element 6 clocking regions in 3x2 pattern:
 - Compromise between flexibility of 3x3 element and size of 2x2 element

CS6813: Research Seminar on Reconfigurable Hardware

Washington

What would QCA FPGA look like?

 Place and route FPGA by applying clocks to desired regions

CS6813: Research Seminar on Reconfigurable Hardware

Washington

Conclusion

- Construct QCA wire loops from routing elements storage (i.e. flip-flops)
- Succeeded in designing the first QCA-based FPGA

CS6813: Research Seminar on Reconfigurable Hardware

1 =

Observations:

- Storage devices will take burn a big part of the chip
- Doesn't actually talk about clock distribution
- · Wires are uni-directional
- Wires that are pipelined screws everything up
 - Mentions placing cells in a single clocking zone to eliminate pipelining but this brings up a bunch of other issues, does not address those issues, then uses it same technique to create adder

CS6813: Research Seminar on Reconfigurable Hardware

Washington