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Abstract-This is a brief review of the recent work on the 
development of neuromorphic architectures for future hybrid 
CMOS/nanowire/MOLecular (”CMOL”) circuits. Such circuits 
may provide the first chance for the implementation of advanced 
information processing systems with areal density of (beyond 10’’ 
active functions per cm’) comparable to that of the human 
cerebral cortex, while operating at much higher speed (up to 10’’ 
operations per second per em’), at acceptable power 
consumption. Our group has suggested a family of distributed 
crosspoint networks (“CrossNets”) that are natural for 
implementation in CMOL technology, and has shown that such 
networks may be trained to perform at least the effective pattern 
recognition in the Hopfield mode. Work on Cross.Net training to 
perform more complex tasks in under way. 

Neuromorphic networks, hybrid CMOS/nanowire/molecular 
circuits, single-electron devices, training, panern recognition 

I. INTRODUCTION: CMOL 
VLSI circuits with sub- 1 0-nm features would provide 

enormous benefits for all information technologies, including 
computing, networking, and signal processing. However, 
recent results [l, 21 indicate that the current VLSI paradigm 
based on CMOS technology can be hardly extended into this 
region: below 10 nm gate length the sensitivity of parameters 
(most importantly, the gate voltage threshold) of silicon field- 
effect transistors to inevitable fabrication spreads grows 
exponentially. This sensitivity will probably send the 
fabrication facilities costs (extremely high even now) 
skyrocketing, and lead to the end of Moore’s Law some time 
during the next decade. 

The main alternative nanodevice concept, single-electronics 
[2, 31, offers some potential advantages, e.g., a broader choice 
of possible materials for active devices. However, the critical 
dimension of single-electron transistors (the single-electron 
island size) for room-temperature operation should be below -1 
nm [3], far too small for the current and realistically envisioned 
lithographic techniques. 

I believe the impending crisis of the microelectronics 
progress may only be resolved by a radical paradigm shift f3om 
the purely CMOS technology to “CMOL” hybrid circuits (Fig. 
1) that would combine [2]: 

- a level of advanced CMOS devices fabricated by the 
lithographic patterning, 

- a few layers of parallel nanowire arrays formed, e.g., by 
nanoimprinting, and 

- a level of molecular devices that would self-assemble on 
the nanowires fi-om solution. 

WO pin self -assem bled 
molecular devices 

so1 
MOSFET . . . . . . . . . . . . . . . . . . . .  . . . . . . .  . . . . . . .  . .  ~ . . .  . . . . . . .  . . . . . .  . . . . .  . . . . . . .  . . . . . . .  . . . . . .  . . . . . . .  . . . . . .  

. . . . .  . . . .  ::.: siliconwafer ::::::::::::: . . . . . . .  . . . . . . .  . . . . . . .  . . . . . . .  . . . . . . . . . . . . . . . . . . . .  

nanowiring 
levels 

coarse 
wiring 

and 
Plugs 

CMOS 
stack 

Figure 1. CMOL (hybrid CMOS/nanowirehlOLecular) circuit [2]. 

The CMOL concept allows a combination of the 
advantages of both its nanoscale components (e.g., reliability of 
CMOS circuits and minuscule footprint of molecular devices) 
and patterning techniques (a virtually complete flexibility of 
the usual lithography and potentially very low cost of 
nanoimprinting and chemically-directed self-assembly). This 
combination may enable an unparalleled density of CMOL 
circuits, beyond 10” devices per cm2, limited essentially only 
by quantum-mechanical tunneling between the adjacent 
nanowires. 

For the single-molecule components, single-electron 
devices are the leading candidate, because (in contrast to field- 
effect transistors) their operation mechanism does not require 
high conductivity of the molecule-to-electrode interfaces. (The 
CMOS layer allows CMOL to circumvent one prominent 
drawback of single-electron transistors, their low voltage gain 
[3].) The recent spectacular demonstration of single-molecule 
single-electron transistors by several groups [4-61 offers every 
hope that first VLSI CMOL circuits will be implemented 
within the next 10-15 years, hopehlly in time to preempt the 
impending Moore’s Law crisis. 

Any plans for practical applications of CMOL circuits 
should take into account the fact that the chemically-directed 
self-assembly will probably never give 100% of good single- 
molecule devices. Moreover, single-electron transistors (and 
probably any nanometer-scale electron devices) are vulnerable 
to single charged impurities in their nearest environment [2, 31. 
As a result, any reasonable CMOL circuit architecture has to be 
defect-tolerant. Because of this, CMOL circuits will probably 
frnd their first applications in embedded and stand-alone 

This work was supported in part by DOE and NSF. 

0-7803-7976-4/03/$17.00 02003 IEEE 339 

mailto:klikharev@notes.cc.sunysb.edu
http://Cross.Net


memories, with molecules working as memory cells, and 
CMOS layer taking care of logic, decoder, and driverhensor 
circuitry, because simple structure of memory matrices allows 
effective exclusion of bad cells [7, 81. 

I believe, however, that CMOL circuits may be basis of 
much more interesting and complex systems, extending long 
beyond the usual digital number-crunching. The primary 
candidates for that are biologically-inspired neuromorphic 
architectures. A motivation for this choice comes, for example, 
from the well-known comparison of the performance of digital 
computers and biological neural systems for one of the basic 
simplest information processing tasks: image recognition (in 
more formal language, classification). A mammal’s brain 
recognizes a complex visual image, with high fidelity, in 
approximately 100 milliseconds. Since the elementary process 
of neural cell-to-cell communication in the brain takes 10 to 30 
milliseconds, the recognition is completed in just a few “ticks”. 
In contrast, the fastest modern microprocessor operating at a 
few GHz and running the best commercially available 
software, would require minutes (i.e., of the order of 10” clock 
periods) for an inferior classification of a similar image. The 
contrast is very striking indeed. 

The goal of this paper is to give a brief review of our recent 
work [9-121 on the development of a family of neuromorphic 
architectures dubbed CrossNets (standing for distributed 
crossbar networks), that may reach high performance in 
advanced information processing tasks even with account of 
hardware limitations of CMOL circuits. 

11. CROSSNETS 
Figure 2 shows a possible molecular implementation [ 111 

of the basic device of CrossNet circuits: a three-terminal 
latching switch [9-113. This is essentially a combination of two 
well known single-electron devices, the transistor and the trap 
[3 1, where single-electron islands are implemented as diimide 
acceptor groups. The islands are connected by either oligo- 
ethynylenephenylene (OPE) bridges playing the role of tunnel 
junctions, or longer chains that do not conduct electrons, and 
just stabilize the geometric arrangement. The bridges and 
chains are terminated by thiol groups that serve as alligator 
clips that should allow the molecular self-assembly on gold 
nanowires. 

The device is designed to operate in the following way: 
when the sum of voltages applied to nanowires 1 and 2 exceeds 
a certain threshold, an additional electron is injected from wire 
3 into the trap island, and its electrostatic field opens the single- 
electron transistor connecting wires 1 and 3. This connection 
survives the reduction of the applied voltage for quite a while, 
because it takes time for the trapped electron to escape. As a 
result, the device function as a fan-in-two latching switch, 
incorporating a single-bit memory cell. 

Because of the strong (exponential) dependence of the 
electron tunneling probability on the input signal amplitude, 
grouping of four such devices and using dual-rail presentation 
of signals (Fig. 3) the implementation of the “Hebbian” 
b c t i o n  that is very important for neuromorphic networks - 
see, e.g., Refs. 13, 14. Analysis shows [lo, 111 that at large 
signal amplitude, current transferred through this group fiom 

input wires (show red) to output (blue) wire is proportional to 
the “synaptic weight” wV = sgnblxy,), where y, and y, are the 
input signals. If the signal “activity” (average amplitude within 
a certain time window) drops below a certain value, the 
synaptic weights freeze, due to latching of the corresponding 
switches. Thus the composite device shown in Fig. 3 may play 
the role of the Hebbian synapse [13, 141 connecting “axonic” 
(red) and “dendritic (blue) wires. Physically, the wires are 
similar, and differ only by the way they are connected with 
CMOS-implemented neural cell bodies - “somas” -see below. 
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Figure 2. Possible molecular implementation of a three-terminal latching 

switch [l  11. Circuit notation of the device is shown in the left upper comer. 

Figure 3. The group of four latching switches as a Hebbian synapse: (a) 
schematics, and (b) notation used in the following figures. 

Figure 4 shows the general structure of CrossNets. These 
networks consist of synaptic tiles (“plaquettes”) with 8 Hebbian 
synapses each, and sparsely located somatic (gray) cells, to be 
implemented in the CMOS layer of the CMOL circuit. In the 
simplest case, the gray cell may be just a nonlinear amplifier 
that performs the “activation” function y, = g(x,) that is linear at 
small kll, but saturates at yi = sgn(xl) at large kll. 

Various species of CrossNets [ 11, 121 differ by the way the 
rare somatic cells are imbedded into a large 2D array of 
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synaptic plaquettes. Figure 5 shows probably the most 
promising CrossNet type explored by our group: the so-called 
mar. In this network, the somatic cells are located in the 
points of another square array, that is inclined by small angle a 
relative to the array of synaptic plaquettes. It is easy to check 
that synapses connect each somatic cell with 4M other cells, 
where the connectivity parameter M is defined by the incline: 
M = l/tan2a. Of all explored CrossNets, InBar is especially 
convenient for the CMOL implementation, because each 
CMOS-based somatic cell may occupy a similar square-shaped 
area of the chip; the gray squares in Fig. 5 are not these cells 
per se, but rather the places of their interconnection with the 
moleculehanowire layers - cf. Fig. 1. 

Figure 4. The general scheme of connection of two somatic (gray) cells in 
CrossNet arrays. Each soma feeds 4 dual-rail output (axonic) lines going in 
all 4 directions. If the corresponding synapse is connected (w,, # 0), axonic 
signal makes a current contribution into each perpendicular “dendritic” 
(blue) line. The contribution may be either positive or negative, depending 
on the sign of the synaptic weight w,,. Notice open-circuit terminations of 
axonic and dendritic lines at the borders of the somatic cells; due to these 
terminations these cells do not communicate directly. 

The most important advantages of the CrossNets over other 
possible neuromorphic networks (see, e.g., Refs. 9, 15, 16) is 
that these networks allow to achieve large connectivity M>> 1 
in quasi-2D CMOL circuits - see Fig. 1. This is very important, 
because connectivity determines the useful hctionality of 
such networks [13, 141. For example, in average connectivity 
of the cerebral cortex neurons is as high as -lo4. On the other 
hand, it is well known that functionality of cellular-automata 
structures (with near-neighbor interactions and hence M- 1) is 
rather limited [ 151. 

One more useful feature of CrossNets is that the physical 
length of wires connecting each pair of cells equals to their 
minimal Manhattan distance. This minimizes the interconnect 

capacitance and hence increases the circuit speed - for 
estimates, see below. 

1 / 3 1  

Figure 5 .  The most promising CrossNet geometry: the inclined distributed 
crossbar (“InBar”). Green squares are synaptic plaquettes, while gray 
squares are locations where the somatic cells contact nanowires of the 
molecular layer. Dotted red and blue lines indicate the interconnection path 
of a sample pair of somatic cells, while thin violet lines show the rectangular 
grid at which all the somas are located. The grid incline angle a determines 
the network connectivity: the number of somatic cells connected with an 
arbitrary cell is 4M= 4/tan2a 

111. CROSSNET TRAINING 
Neuromorphic networks do not require usual software, but 

need to be trained to perform their tasks. For CrossNets, the 
main challenge is that external access to individual synapse is 
impossible. Because of this, most well developed neural 
network training techniques cannot be directly applied. 

Despite of this challenge, we have demonstrated [ 121 that 
at least one CrossNet species, InBar (Fig. 5), may be 
effectively trained to operate as a Hopfield network 
(essentially, an associative memory) [13, 141. For this, one of 
the cells of each pair is fed with a strong external signal 

proportional to 5, ’c, ‘, where 6 is the i-th pixel of the p-  

th image of the training set, while the second cell is fed with a 
positive signal of constant magnitude. In this way, each of two 
synapses connecting the cell pair (Fig. 4) acquires weight wg = 

s g n ~ ~ , p ~ , p  . This is exactly the so-called “clipped Hebb 

rule” that is known to work very well for fully connected 
Hopfield networks [13, 141. Our estimates have shown that for 
a CrossNet trained by this method, the maximum number of 
stored patterns should scale as M. 

Numerical experiments with InBar computer models have 
confirmed this result. An example of our results is shown in 
Fig. 6. In this case, an InBar had been taught three different 
images, and then has been able to restore a strongly corrupted 
version of any of these images, fed into it as an initial 

P 

P 
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condition. Remarkably, the recall process is perfect (no 
corrupted bits in the end) and very fast. 

We have been certainly inspired by this first success, but 
practical applications of Hopfield networks are rather limited 
[13, 141. Much more valuable would be to have CrossNets 
trained as patterns classifiers. This would open way to a large 
practical market of image classification and feature detection. 
Recently, we have developed [12] a plan for such training 
using the fact of chaotic excitation of CrossNets with 
sufficiently large somatic cell gain [9-111, and are currently 
working on its verification. 

Cross-Correlat~on Used 
To Locate A Known 
Target 111 an Image 
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Figure 6. The process of recall of one of three trained black-and-white images 
by an InBar-type CrossNet with 256x256 neural cells and connectivity 
parameter M = 64. The initial image (left panel) was obtained from the trained 
image (identical to the one shown in the right panel) by flipping as many as 
40% of pixels. Q = RCo is the effective time constant of intercell interaction. (Ro 
is the resistance of the connected latching switch, while CO is the dendrite line 
capacitance per one synaptic plaquette.) 

IV. DISCUSSION: POSSIBLE CROSSNET PERFORMANCE 
If the CrossNets may be indeed trained to perform 

advanced information processing, their performance may be 
very spectacular. Assuming the nanowire spacing (“half-pitch”) 
of F = 2 nm, limited by wire-to-wire tunneling, for a CrossNet 
with connectivity 4M = lo4, the synaptic plaquette size would 
be 32x32 m2. (Notice that this corresponds to an areal density 
of -10l2 synapses and lo8 somatic cells per cm2, higher than 
that of the mammal’s cerebral cortex.) Estimating the time 
scale zo of neural cell interaction (that is dominated by the 
charging of the dendritic line capacitances through resistance 
Ro of open single-electron transistors) and power dissipated by 
the circuit, we obtain [ll,  121 that for high but acceptable 
power consumption of 100 W/cm2, achieved at Ro = 10’oQ (a 
very realistic value for the devices like the one shown in Fig. 
2), zo is as small as -20 ns. This speed is approximately 6 
orders of magnitude higher than that of the cortical circuitry 
(and corresponds to -10“ operations per sec per cm’, the 
number well above - 3 ~ 1 0 ’ ~  binary operations per second in 
Pentium 4 processor). Even scaling Ro up by a factor of 100 to 
bring ower consumption to a more comfortable level of 1 
W/cm , would still leave CrossNet with 4 orders of magnitude 
of speed advantage over their biological prototypes. This is 
why we believe that even relatively small CrossNet CMOL 
chips may revolutionize the pattern classification field. 

This success would pave the way toward much more 
ambitious goals. It seems completely plausible that a cerebral- 
cortex-scale CrossNet-based system (with -1 0’’ neurons and 
1014 synapses, that would require -10x10 cm2 silicon substrate) 
would be able, after a period of initial training by a dedicated 
external tutor, to learn directly fiom its interaction with the 

P 

environment. In this case one can speak of a “self-evolving” 
system. If these expectations are confirmed, we may be able to 
revisit the initial dream of the neural network science of 
providing hardware means for reproducing the natural 
evolution of the cortex on a much faster time scale. Such 
evolution may lead to self-development of advanced features 
such as system self-awareness and reasoning. If a substantial 
success along these lines materializes, it will have a strong 
impact not only on information technology, but also on the 
society as a whole. 
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