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Dynamic behavior of quantum cellular automata
P. Douglas Tougaw and Craig S. Lenta)
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~Received 20 November 1995; accepted for publication 9 July 1996!

We examine the dynamic behavior of quantum cellular automata, arrays of artificial quantum-do
cells that can be used to perform useful computations. The dynamics of the array can be solv
directly, retaining the full many-electron degrees of freedom only for small array sizes. For large
arrays, we develop several approximate techniques for reducing the size of the basis set requir
We examine the effect of intercellular quantum correlations on the switching response. Sever
important examples of switching behavior are solved using the techniques developed. ©1996
American Institute of Physics.@S0021-8979~96!04220-X#
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I. INTRODUCTION

Devices based on quantum mechanical principles ho
the promise of faster speeds and greatly reduced sizes.1 Most
quantum devices that have been proposed essentially try
reproduce the current switching behavior of convention
transistors and insert quantum devices into conventio
transistor-based circuit architectures. For example, one ma
difficulty shared by many quantum devices has been drivi
one device with the output of similar devices.2,3 The input of
such a device is typically a voltage which must change
several millivolts, while the change in the output current ca
be measured in nanoamperes. The unique features of qu
tum devices require the development of new computer arc
tectures matched to their capabilities and limitations.

We have proposed a new type of device combined w
an integrated architecture which we have termed quant
cellular automata~QCA!. Experiments are underway to try to
realize this system in semiconductors. We have explored
theoretical behavior of QCA arrays in the steady-sta
regime4–9 and here extend that analysis to include tim
dependent response.

Quantum cellular automata are arrays of Coulom
coupled quantum-dot cells. Electrons within each cell ha
well-defined states with different associated charge distrib
tions. The state of each cell is determined by its interacti
with neighboring cells through the Coulomb interaction
Tunneling between cells is assumed to be completely s
pressed by intercellular barriers. The array is then a man
electron system whose overall state is determined by
boundary conditions on edge cells which act as the inp
channels. The state of the edge cells can be set by elec
static interaction with control electrodes. Computation is a
fected because one can design the layout of the cells so
the ground state of the many-electron problem correspon
to the solution state of the computational problem. We ha
shown that simple design rules allow the layout of cellul
arrays which can perform significant and general compu
tional tasks.8

The QCA scheme has many appealing features. Lo
connectivity through the Coulomb interaction solves th
well-known interconnection problem which plagues conve

a!Electronic mail: lent@callisto.ee.nd.edu
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tional architectures as device size decreases.10–19 Edge-
driven computation means that power is only supplied at t
edges of the device, so neither power nor information nee
to be supplied to the interior of the QCA array. As devic
sizes shrink, the relevant energies increase and higher te
perature operation becomes possible. In principle, QC
implementations could be shrunk to the size of molecules

Needless to say, many questions remain to be work
out concerning the behavior of ideal arrays as well as t
many barriers to practical implementation. Most of the wor
to date has been an investigation of the time-independe
nature of QCA arrays.4–9 Due to the basic device paradigm
the desired result depends only on the ground state of
system. For this reason, it has been important to first stu
the time-independent behavior of these arrays. We now tu
to examining time-independent behavior.

As stated above, the QCA approach is fundamenta
concerned with the ground state of the multicell array. Th
physical ground state is mapped to the logical solution of th
problem. The details of the dynamic behavior of the syste
as it is evolving toward its ground state are secondary to t
mapping itself. This is one of the strengths of the QCA
approach—the details of the evolution of the system, whic
may be hard to control, are not essential in getting the com
putation right. The dynamics of the system aredoing the
computing only in the sense that they move the system to
new ground state. The computing is performed by the rel
tionship of the ground state to the solution state.

Why then is an exploration of the dynamics important
The reasons are twofold. First, it is of interest to try to un
derstand the inherent limits on the switching speed of th
device or array. Second, the dynamics could become critic
if the system cannot actually get to its ground state becaus
becomes stuck in a metastable state. In that case, the m
ping between the ground state and the solution state is irr
evant because the system never arrives at the ground sta

The actual dynamical evolution of the system is compl
cated enormously by its contact with the rest of the world
That the system is in contact with the environment is, o
course, very important because it is by dissipating energy
the environment that the system relaxes to its ground sta
On the other hand, describing this relaxation involves mo
eling the time evolution of a quantum system in contact wit
a thermal reservoir. This time evolution then depends on t
6/80(8)/4722/15/$10.00 © 1996 American Institute of Physics
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specific details of the coupling to the reservoir—for examp
the precise coupling through specific phonon modes, and
precise occupancy of those modes. We cannot hope to s
this problem in its entirety.

What can be done is to describe two limits of the cou
pling to the environment. One limit is when the elastic~iso-
energetic! evolution of the system takes place on a time sc
much longer than the inelastic coupling to the environme
If the coupling to the environment is very strong and effe
tive at coupling the system to its ground state, then the s
tem dynamics can be described simply by the golden-r
rate for scattering from its initial state~just after the inputs
are switched! to its final ground state. The inelastic tim
evolution can then be described by rate equations and
switching times are simply related to these rates. Of cour
the rates themselves may be quite difficult to calcula
Theseextrinsicswitching times, which depend critically on
the nature of the coupling to the thermal environment, ne
to be determined experimentally for specific realizations
QCA’s.

The other limit, the one we focus on here, is when t
inelastic coupling to the environment is slower than the el
tic time evolution of the system. In this case we can study
dynamics of the isolated system which can be described b
Schrödinger equation. The focus here is on how signa
propagate and devices switch when they arenot dissipating
energy to the environment. We refer to the switching tim
in this regime asintrinsic switching times because they resu
from intercellular dynamics only and not from the couplin
to the environment. Though the problem we are addressin
now made simpler by assuming the system is isolated,
therefore described by Schro¨dinger dynamics, it is neverthe
less a many-particle system whose behavior is challengin
capture. The main results of this article are the developm
of successive levels of approximation to model the dynam
switching response of isolated QCA systems.

Since the ground state behavior of QCA devices det
mines their geometry and the nature of their operation, it
important to understand the time-independent nature of Q
devices before progressing to a study of their dynamic
havior. For this reason, a review of the time-independe
behavior of these devices is given in the next section to p
vide background for the new material.

We will not explicitly include the measurement appar
tus in our description of the dynamics. It has been sho
experimentally that the charge state of a dot can be pro
noninvasively in the classical sense.20 By this we mean that
one can construct a sensitive electrometer, using either a
listic constriction near pinchoff or a larger quantum dot, su
that the charge in the electrometer has a vanishingly sm
effect on the energy levels in the dot. Of course, if a me
surement is made it cannot be noninvasive in the quantu
mechanical sense—a ‘‘wave function collapse’’ will occu
Within the QCA paradigm, however, one only measures
edge cells in the ground state. This would be done ove
long length of time compared to the time-scale of interd
quantum fluctuations. Thus, as usual, one measures an
pectation value. In any case, our concern here is with exp
J. Appl. Phys., Vol. 80, No. 8, 15 October 1996
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ing the intrinsic dynamics of the array, not the interactio
with a measurement scheme.

In Sec. III we develop a dynamical description of a
array when intercellular correlation effects can be neglect
This is the simplest approach to the dynamics because
dynamics of the array as a whole can then be partition
cleanly into the dynamics of each cell individually. In fac
correlation effects between cells may be important, so in
next section~Sec. IV! we develop a treatment of array dy
namics which treats the entire array as a single quant
system. This involves using the full direct product many-c
basis set. This approach, while ‘‘exact’’ in the sense of so
ing the model we employ, is impractical for all but ver
small systems. We require some approximations. In Sec.
the two-state approximation is introduced along with a tec
nique for selecting a reduced basis set. The results of sev
two-state calculations are shown in Sec. VI. The dynamics
a semi-infinite wire and an energy-absorbing boundary co
dition are explained in Sec. VII along with the application
of those methods. The scaling of the dynamics with cell s
is illustrated in Sec. VIII by considering the switching re
sponse of a possible macromolecular QCA implementati
Conclusions and a discussion of the results follow in Sec.

II. CELL BASIS STATES AND STEADY-STATE
BEHAVIOR

A schematic diagram of a single QCA cell is shown
Fig. 1~a!. This figure shows that a cell consists of four qua
tum dots arranged in a square pattern. Elsewhere, we h
discussed QCA cells with a fifth dot at the center of th
square. While such a fifth dot will slightly improve the be
havior of the QCA cells, it greatly increases the numeric
complexity of the cell model, particularly for calculating dy
namic behavior. For this reason, we consider only the fo
site cell in this paper. There are two electrons within the c
and tunnel barriers between adjacent sites. Tunneling ou
the cell is assumed to be completely suppressed.

FIG. 1. Schematic of the basic four-site cell.~a! The geometry of the cell.
The tunneling energy between two neighboring sites is designated bt,
while a is the near-neighbor distance.~b! Coulombic repulsion causes the
electrons to occupy antipodal sites within the cell. These two bistable st
result in cell polarizations ofP511 andP521 @see Eq.~2!#.
4723P. Douglas Tougaw and C. S. Lent
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QCA cells can be scaled down to atomic dimensions.
cell size is reduced, the energy splitting between station
states increases and the temporal response becomes fast~as
will be seen in Sec. VII!. Simple scaling rules can be used
account for these results. To avoid obfuscating actual per
mance behind dimensionless parameters, we have chose
focus on a ‘‘standard cell’’7,8 that exhibits robust behavior
while remaining within the reach of electron beam nan
lithography. We will concentrate largely on such a standa
cell here. Undoubtedly, the first experiments will be o
larger cells, while final technological promise rests wi
smaller cells.

The near-neighbor distance between dots within a ‘‘sta
dard cell’’ is 20 nm, while the cell centers will be separate
by three times this distance. The tunneling energy betw
dots is 0.3 meV, and the other physical constants of
modeled system correspond to those of GaAs. We have e
where examined the full parameter space of tunneling en
gies and interdot distances.7

We use a simple Hamiltonian of the extended-Hubba
type to describe this cell. Each quantum dot is conside
only as a site, internal degrees of freedom for the dot be
thus ignored. The Hamiltonian employed is given by

Hcell5(
i ,s

~E01Vi !n̂i ,s1 (
i. j ,s

t i , j~ âi ,s
† â j ,s1â j ,s

† âi ,s!

1(
i
EQn̂i ,↑n̂i ,↓1 (

i. j ,s,s8
VQ

n̂i ,sn̂ j ,s8
uRi2Rj u

. ~1!

Here we use the usual second-quantized notation wh
âi ,s(âi ,s

† ) annihilates~creates! an electron on sitei with spin
s. The number operator for electrons of spins on site i is
n̂i ,s 5 âi ,s

† âi ,s . In Eq.~1!, the first term represents the on-si
energy of each dot. The potential energy of an electron at
i due to charges outside the cell, including effects of char
in other cells, isVi . The second term accounts for electro
tunneling between sites, witht i , j50.3 meV for neighboring
sites andt i , j50 for antipodal sites. The third term is th
on-site charging cost to put two electrons of opposite spin
the same dot,21 and the last term corresponds to the Coulom
bic interaction between the electrons on different sites with
a cell.

For the steady-state problem this Hamiltonian is used
the solution of the time-independent Schro¨dinger equation,

Ĥcelluc i&5Ei uc i&, ~2!

whereuci& is the i
th eigenstate of the Hamiltonian, andEi is

the corresponding eigenvalue. These eigenstates are fo
using the many-particle site-ket basis for four sites and t
electrons of opposite spins

uf1&5U00 0
0

0
0

1
1L ,

uf2&5U00 0
0

0
1

1
0L ,..., ~3!

uf16&5U11 0
0

0
0

0
0L .
4724 J. Appl. Phys., Vol. 80, No. 8, 15 October 1996
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The notation for these basis vectors indicates spin-up ele
trons in the top row, spin-down electrons in the bottom row
and columns are numbered in the same order as sites with
the cell as in Fig. 1~a!. Using this notation, a basis vector
with a spin-up electron on the first site and a spin-dow
electron on the third site would be represented by the bas
vector

uf&5U10 0
0

0
1

0
0L . ~4!

These basis states, which are the eigenstates of the nu
ber operator on a particular site within the cell, will be re
ferred to as theunderlying basis set. We calculate the Hamil-
tonian matrix in this underlying basis set by numerically
evaluating each matrix element:

Hi j5^f i uĤuf j& ~5!

and finding the eigenvectors of the resulting 16316 matrix.
The ground state of the cell,uc0&, is represented in this

basis as:

uc0&5(
j

c j
0uf j&. ~6!

Here, ufj & is the j th underlying basis vector andcj
0 is the

coefficient of that basis vector, which is found by direct di
agonalization of the Hamiltonian.

If the tunneling between cells is relatively small, the
electron number is approximately quantized on each of th
sites.22 Qualitatively, it is clear that the ground state of the
cell will correspond to the two electrons occupying antipoda
sites resulting in a ‘‘polarized’’ cell as shown schematically
in Fig. 1~b!. If the tunneling energies become comparable t
the Coulomb energies in the problem, the two-electron wav
function becomes delocalized and the cell polarizatio
vanishes.23 As long as the tunneling matrix elements of the
Hamiltonian are small compared to the Coulombic terms, a
cells in the array will be very close to one of these two
polarized states. In order to make quantitative this notion o
cell polarization we define the cell polarization, which is a
property of the ground state eigenfunctionuc0&, as follows:

P[
~r11r3!2~r21r4!

r11r21r31r4
. ~7!

Here,ri is the expectation value of the number operator o
site i for the ground state eigenfunction:

r i5^c0un̂i uc0&. ~8!

As shown schematically in Fig. 1~b!, this function yields
P511 for one of the fully polarized states andP521 for
the other. Cells in a combination of these two states wi
have an intermediate polarization between21 and11. Due
to the bistability of the cell response, it is possible to store
single binary bit in the quantum state of each cell. We wil
refer to a cell withP511 as being in the logical ‘‘1’’ state,
and a cell withP521 will be in the logical ‘‘0’’ state.

It is illuminating to quantify the effect that the state of
one cell has on that of its neighbors. We consider two neig
boring cells separated by 60 nm and investigate how th
polarization of one of the cells affects the polarization of th
P. Douglas Tougaw and C. S. Lent
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other. In particular, the polarization of cell 2 is fixed at
series of values ranging from21 to 11 and its Coulombic
effect on the polarization of cell 1 is computed for each
these values. For each value of the cell 2, the driver cell,
ground state of cell 1 is computed by direct diagonalizati
of Eq. ~1!, and the induced polarization calculated from th
ground state. The results are shown in Fig. 2, which we re
to as a cell–cell response function. In this figure, the effect
one cell on its neighbors is shown to be very nonlinear a
exhibits bistable saturation. Since a very slight polarizati
of cell 2 induces a much larger polarization in cell 1, cel
cell interaction provides the analogue to gain in a conve
tional digital circuit, restoring the signal levels at each stag

The simulation of a device or array containing man
cells requires an extension of the single-cell approach. T
simplest of these extensions is the intercellular Hartree
proximation~ICHA!, which has been discussed at length
Ref. 7 and 8. A brief description of this technique will b
presented here, but a more thorough presentation can
found in those references.

In this approximation, exchange and correlation effe
are included exactly within each cell, but are neglected
tween cells. Cells within the array interact with each other
affecting the on-site energy term of the Hamiltonian, chan
ing Vi in Eq. ~1!. The ground state of a particular cell in th
array~the ‘‘target’’ cell! is calculated under the influence o
the polarizations of all other cells in the array which a
momentarily fixed. In turn, each of the other cells is al
chosen as the target cell, so their polarizations change. T
procedure is carried out iteratively and the array relaxes u
no further change in any of the cells is observed. In this w
the ground state polarization of every cell in the array can
calculated using only a local Hamiltonian for each cell.

It is important to note that, although the intercellula
Hartree approximation can be used to accurately calcu
the ground state of an array of QCA cells, it is not capable
determining the dynamic behavior of the array. By its natu
the ICHA is appropriate for ground state calculations, b
dynamic response requires the inclusion of many-cell exci
states, which are beyond the scope of the approximation.
this reason, it is necessary to develop other techniques
model the time-dependent behavior of many-cell devices

FIG. 2. The cell–cell response. The polarization of cell 2 is fixed and
Coulombic effect on the polarization of cell 1 is measured. The nonlinea
and bistable saturation of this response serves the same role as gain
conventional digital circuit.
J. Appl. Phys., Vol. 80, No. 8, 15 October 1996

Downloaded¬29¬Aug¬2002¬to¬129.74.23.159.¬Redistribution¬subje
a

of
the
on
e
fer
of
nd
on
l–
n-
e.
y
he
ap-
in
e
be

cts
be-
by
g-
e
f
re
so
his
ntil
ay,
be

r
late
of
re,
ut
ted
For
to

.

Figure 3~a! shows the result of such an ICHA calculation
performed on a linear array of QCA cells. The cell on the le
~with the darker border! is held at a polarization ofP511,
and all the other cells in the array are free to react to th
polarization. As shown by this figure, the ground state o
such a configuration has the polarization of the other ce
aligned with the direction of the driver cell. Therefore, suc
a ‘‘binary wire’’ can be used to propagate inputs and inte
mediate results within the array. As previously mentione
local fluctuations in polarization due to fabrication irregulari
ties can be overcome by the bistable saturation of cell r
sponse.

It is important to note that, unless stated otherwise, th
figures shown here are not schematic. Figure 3 shows
actual results of solutions of the ground state using the tim
independent Schro¨dinger equation. Cells with darker borders
have fixed polarizations, while cells with lighter borders ar
free to react to that polarization. The radius of the dot at ea
site is proportional to the expectation value of the numb
operator on that site.

Figure 3~b! shows an inverter for a QCA signal. Such
inversion is made possible because, while cells in a horizo
tal or vertical arrangement tend to align with each other, ce
in a diagonal arrangement tend to anti-align. Thus, the i
coming signal is split into two parts using vertical align
ments, then the two parts are rejoined diagonally. The sp
ting ensures symmetry between inversion of a 1 and
inversion of a 0.

As shown in Fig. 3~c!, the splitting of a QCA binary
wire into two such wires maintains the same signal in each
the two new wires. Such fanout behavior is important, sinc
the result of one intermediate calculation may need to ser
as an input for two or more subsequent calculations.

its
rity
in a

FIG. 3. Fundamental QCA devices.~a! The binary wire allows transmission
of information from one point to another within the array.~b! The inverter
uses diagonal antivoting behavior to invert the signal.~c! Fanout allows the
result of a calculation to be propagated to two or more other points with
the array.~d! The majority logic gate is the fundamental logical element o
a QCA array.
4725P. Douglas Tougaw and C. S. Lent
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Figure 3~d! presents the most fundamental of QCA log
cal devices: the majority logic gate. Three inputs, here co
ing from the top, left, and bottom, are positioned as neig
bors of a device cell. The output leaves the device throug
binary wire connected to the fourth neighbor of the devic
cell. The state of the device cell and the output cell~shown
here on the right! matches that of a majority of the three
inputs. That a single QCA cell serves as a three input maj
ity gate illustrates the potential for revolutionary increases
functional density within the QCA paradigm. Notice, also
that by fixing one of the three inputs, the majority gate ca
be ‘‘reduced’’ to a two-input AND or OR gate. When com
bined with the inverter, logical completeness is thereby a
sured.

III. INCOHERENT CELL-CELL DYNAMICS

The simplest approach to the time dependence of an
ray of cells is to ignore correlations and coherence betwe
cells and solve separate Schro¨dinger equations for each cell.
In this Hartree-type treatment, one treats each cell as
sponding to the charge on every other cell. Within the ce
the time dependence is determined by the full two-bo
Hamiltonian. For cellk, we can write the Hamiltonian as

Hk
cell5(

i ,s
~E01Vi !n̂i ,s1 (

i. j ,s
t i , j~ âi ,s

† â j ,s1â j ,s
† âi ,s!

1(
i
EQn̂i ,↑n̂i ,↓1 (

i. j ,s,s8
VQ

n̂i ,sn̂ j ,s8
uRi2Rj u

1 (
i , j ,s,s8,mÞk

VQ

n̂i ,sr j ,s8~m!

uRi2Rj~m!u
, ~9!

where each operator acts only on the electrons within t
cell. The electron density due to electrons of spins in dot j
of cellm is given by the expectation of the number operat
for that site:

r j ,s~m!5^cm~ t !un̂ j ,s~m!ucm~ t !&. ~10!

For each cell we can then solve the time-dependent Sch¨-
dinger equation

Hk
celluCk~ t !&5 i\

]

]t
uCk~ t !&. ~11!

The set of Schro¨dinger equations given by Eq.~11! are
coupled only through the intercell potential terms@the last
term in Eq.~9!#. Results of a calculation based on Eqs.~9!–
~11! for the switching of an isolated line of cells are shown i
Fig. 4. The first cell is switching abruptly from a polarizatio
of 21 ~logical 0! to a polarization of11 ~logical 1! and the
resulting ‘‘kink’’ propagates down the line switching subse
quent cells.24 If the line is finite, the kink will reflect at the
end of the line and bounce back and forth until inelast
processes which are not included in our treatment relax
system to its new switched ground state.

Limitations of this approach are clear. This treatme
ignores correlations between electron states in different ce
Further, Eq.~10! uses an expectation value as an instan
neous charge, when it is in fact an average quantity over
4726 J. Appl. Phys., Vol. 80, No. 8, 15 October 1996
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quantum ensemble. Still, this approach could prove use
for a quasistatic regime in which each cell responds
changes in local potential which occur much more slow
than quantum fluctuations~tunneling! within the cells. As we
shall see in the following section, the uncorrelated approa
yields dynamics which are qualitatively correct but undere
timate the intrinsic switching speed of an array. The veloc
of the kink is increased by correlation effects between ce

IV. COHERENT FULL-BASIS CELL DYNAMICS

To treat correlation effects between cells we must mod
the entire cellular array as a single quantum system. Si
there are many particles in the array, this approach has s
ous practical limitations. In this section we examine the a
proach that would be used if we were unconstrained by
limits of computational power and could solve the syste
exactly. Key to the ‘‘correct’’ approach is using, as a bas
set, the states formed from direct products of individual c
states.

A. The direct-product basis

To construct the basis set for an array of cells, one m
take the direct product of all combinations of the single-c
basis vectors. In a single cell with four sites and two ele
trons of opposite spin, there are a total of sixteen underly
basis vectors. All possible direct product combinations
these sixteen vectors for two cells would yield 1625256 ba-
sis vectors. In general, an array withNC number of cells and
NV number of basis vectors within each cell will have a tot
number of direct-product basis vectors equal to

NBASIS5NV
NC. ~12!

An enumeration of these direct product basis vectors
a system with three cells and sixteen underlying vectors

FIG. 4. The time-dependent behavior of a QCA binary wire with no qua
tum correlations between cells. The polarization kink propagates down
wire at a rate of approximately 5 ps per cell, which is slower than in t
fully coherent system.
P. Douglas Tougaw and C. S. Lent
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uF1&5uf1~1!f1~2!f1~3!&,

uF2&5uf1~1!f1~2!f2~3!&,

A

uF17&5uf1~1!f2~2!f1~3!&,

A

uF4096&5uf16~1!f16~2!f16~3!&. ~13!

Here, the subscript number on each direct-product e
ment refers to the underlying basis ket index and the num
in parentheses indicates the cell number. Because opera
can now refer to different cells, it is necessary to add
additional parameter to the creation and annihilation ope
tors to specify which cell is being operated upon. The Ham
tonian is also augmented to include intercellular Coulomb
interaction:

H5 (
i ,s,m

E0n̂i ,s~m!1 (
i. j ,s,m

ti , j~ âi ,s
† ~m!â j ,s~m!

1â j ,s
† ~m!âi ,s~m!!1(

i ,m
EQn̂i ,↑~m!n̂i ,↓~m!

1 (
i. j ,s,s8,m

VQ

n̂i ,s~m!n̂ j ,s8~m!

uRi~m!2Rj~m!u

1 (
i , j ,s,s8,k.m

VQ

n̂i ,s~m!n̂ j ,s8~k!

uRi~m!2Rj~k!u
. ~14!

When the full direct-product Hamiltonian matrix is ca
culated in this basis, it is possible to determine the eig
states of an entire array of cells including all exchange a
correlation effects both within each cell and between ce
The elements of the Hamiltonian have the form

Hi j5^F i uĤuF j& ~15!

and the eigenstates of this many-cell Hamiltonian can
found by solving the equation

(
j
Hi jC j

k5EkC i
k . ~16!

When this matrix equation is solved, the many-ce
ground stateuC0& can be written in the direct product bas
set

uC0&5(
j

C j
0uF j&. ~17!

This is the most fundamental and accurate model of the
havior of QCA devices, but Eq.~12! indicates that the size of
the basis set will rapidly increase to exceed available co
puting memory and speed.

B. Full dynamic behavior of a short line

By using Eq.~14! to find the full many-cell Hamiltonian
in the direct-product basis set, we can model the dynam
response of a small array of cells without the need for furth
approximations. To this end, we solve the time-depend
Schrödinger equation,
J. Appl. Phys., Vol. 80, No. 8, 15 October 1996

Downloaded¬29¬Aug¬2002¬to¬129.74.23.159.¬Redistribution¬subje
le-
ber
tors
an
ra-
il-
ic

l-
en-
nd
lls.

be

ll
is

be-

m-

ic
er
ent

i\
]C

]t
5ĤC ~18!

in the many-cell direct product basis,uFj &.
Time marching is achieved by finding the projection o

the current state on each of the eigenstates of the many-
Hamiltonian. Each of these projections then propagates
ward in time according to the time-dependent Schro¨dinger
equation. Formally,

C j~ t1Dt !5^F j uC~ t1Dt !&

5(
k,m

^F j uuk&e2 i /\~EkDt !^ukuFm&Cm~ t !,

~19!

where the uuk& are the instantaneous eigenstates of t
Hamiltonian

H~ t !uuk&5Ekuuk&. ~20!

When time marching is performed in this way, the wav
function remains strictly normalized.

With the available computing power, we are able
model a binary wire with three cells and a driver in this wa
Figure 5 shows the result of such a simulation. The polari
tion of the driver cell~shown as a dotted line! switches con-
tinuously from21 to 11 over a period of 20 ps. As tha
switching occurs, the remaining cells in the line begin
react. The first cell is almost completely switched by the tim
the polarization kink reaches the end of the short wire. Wh
this happens, the kink reflects because energy dissipatio
not included in this model. If it were possible to model
longer line in this way, one would see each cell in the lin
switching to match the new state of the driver cell.

V. THE TWO-STATE APPROXIMATION

Although the full direct-product basis is the most com
plete way of modeling QCA devices, it is only possible
model small systems using this scheme. The combinato
explosion due to Eq.~12! severely limits the size of devices
that can be modeled using the full direct-product basis se
this way. For this reason, it is necessary to make reducti
in the number of basis vectors used to model larger syste

FIG. 5. The dynamic response of a three-cell line using the full dire
product basis set. The dotted line represents the polarization of the dr
cell, and the other three cells in the line are indicated. The polarizat
‘‘kink’’ reflects off the end of the wire because energy dissipation is n
included in this model.
4727P. Douglas Tougaw and C. S. Lent
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The bistable nature of QCA cells suggests that it is po
sible to model each cell using only two basis vectors. In th
section, we present a technique for selecting two optim
basis vectors and using them to model larger QCA device

A. Selection of the two-state basis

When the time-independent behavior of large QCA a
rays is modeled as described in Sec. II, it is found that ea
cell in a line of cells tends to polarize to a particular value
P with a magnitude that may be slightly less than 1. Th
‘‘saturation polarization’’,Psat, is determined by the size of
the cells and the tunneling barriers between dots within t
cell. The line will polarize to a state with all cells~except
near the end! having polarization1Psat or 2Psat depending
on the sign of the driver polarization at the input. Since ea
cell naturally tends to a state with these polarizations it
natural to use them as a basis state for describing the syst
In order to determine the state vector of a cell exhibiting th
saturation polarization, we model a cell in the middle of
long line of similar cells of identical polarization using an
iterative technique. Since the cells in an array tend to exhi
this polarization, we will use the state thus calculated as t
building block of our two-state basis.

Figure 6 shows a schematic of the system used to de
mine the saturation polarization state vectors in this way.
target cell is placed in the middle of a linear array of cel
with three neighbors on each side. Since the quadrupole
teraction of cells decays very rapidly with distance, cel
more than three intercellular distances away will have ve
little effect on each other. For this reason, it is not necess
to include more than three neighbors on each side of
target cell. An iterative process is then carried out to dete
mine the state of the cell in the middle of the wire. At eac
step of the iterative process, the neighboring cells are held
a polarization equal to that of the target cell. The groun
state of the target cell is then calculated by solving the tw
electron Schro¨dinger equation. The driver polarizations ar
updated to the match the new value of the target cell and
process is repeated until convergence is obtained.

More explicitly, the system starts with the target cell an
the neighbors completely polarized in one of the two dire
tions:

Pdriver5Pcell561. ~21!

The Hamiltonian of the target cell is then calculated as
function of the driver polarizations by adding the effect o
the six driver cells to the Hamiltonian of an isolated cell

Ĥcell~Pdriver!5Ĥcell~0!1V~Pdriver!. ~22!

FIG. 6. A schematic representation of the technique used to determine
two self-consistent basis vectors. During each iteration, the polarization
the neighbors is set to match that of the target cell. At convergence, the s
of the target cell is that of a cell in the center of a long line of identical cell
4728 J. Appl. Phys., Vol. 80, No. 8, 15 October 1996
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The eigenstates of this Hamiltonian are then calculated:

Ĥcell~Pdriver!uccell&5Ecelluccell&. ~23!

The polarization of the ground state of the target cell c
then be found, as in Eqs.~8! and~9!, and the polarization of
the driver cells is set equal to that calculated for the targ
cell:

Pdriver5Pcell . ~24!

The next iteration begins again at Eq.~22!. OncePcell stops
changing, we have calculated the state vector of a satura
cell in that polarization direction.

Since each cell can be in either of two polarization d
rections, we perform this iterative calculation for initia
states of bothP511 andP521. The magnitude of the two
saturation polarizations will be the same, but their sign w
be different. It is necessary to carry out the calculation twi
since the two state vectors thus found will be eigenstates
different Hamiltonians. The polarization at convergence w
depend on the initial value given to the polarization of th
target and driver cells:

initial Pdriver51⇒Psat,ux1& ~25!

and

initial Pdriver521⇒2Psat,ux2&. ~26!

The result of this iterative process is the value ofPsatand
the two vectorsux1& andux2&, which we will use to form the
two-dimensional basis for each cell. Each of these is e
pressed as a superposition of the sixteen underlying b
vectors:

ux1&5(
j

x j
1uf j& ~27!

and

ux2&5(
j

x j
2uf j&. ~28!

Although the two converged states have the same po
ization magnitudes and the same eigenenergy, the state
tors ux1& andux2& are eigenvectors of different Hamiltonian
and for this reason they are not orthogonal

Ĥcell~Psat!ux1&5E1
0 ux1& ~29!

and

Ĥcell~2Psat!ux2&5E2
0 ux2&. ~30!

We must still explicitly orthogonalize them in order to
use them as a convenient basis set. It is also importan
maintain symmetry between the two vectors in order to tre
the two polarization states on the same footing. Ifux1& and
ux2& are the two vectors found by the iterative method d
scribed above, symmetric orthogonalization requires t
ux18 & and ux28 &, the corrected vectors, satisfy the followin
conditions:

^x18 ux28 &50 ~31!

and

the
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tate
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^x18 ux1&5^x28 ux2&. ~32!

These two criteria are satisfied by the following equations

ux18 &5ux1&2abux2& ~33!

and

ux28 &5ux2&2ab* ux1&, ~34!

where

b5^x2ux1& ~35!

and

a5
11~12b2!1/2

b2 . ~36!

Once these two symmetric orthogonal basis vectors h
been determined for a single cell, we can use their dire
product combinations to model arrays with many cells. Sin
there are only two basis vectors per cell in this new basis,
total number of basis cells is now

NBASIS52Nc. ~37!

An enumeration of this basis set for a system of thr
cells is

uQ1&5ux18 ~1!x18 ~2!x18 ~3!&,

uQ2&5ux18 ~1!x18 ~2!x28 ~3!&,

uQ3&5ux18 ~1!x28 ~2!x18 ~3!&,

A

uQ8&5ux28 ~1!x28 ~2!x28 ~3!&. ~38!

This direct product of the self-consistent symmetric o
thogonal basis vectors will simply be referred to as the tw
state basis set. It is a direct product of two basis vectors
cell, each of which is a superposition of the sixteen under
ing basis vectors.

With this smaller required basis set, it is now possible
perform simulations on arrays with eight to ten cells, whi
is sufficient to model significant dynamic behavior o
QCA’s.

B. Validity of reduced basis

The state vector of a single cell exists in a sixtee
dimensional Hilbert space spanned by the underlying ba
set @Eq. ~3!#, but we have now selected a two-dimension
basis set within that space to which the state vector should
largely confined. If the approximation were exact, the sta
vector would be completely confined to the two-dimension
plane thus defined, so a measurement of that confinem
will provide an indication of the accuracy of our approxima
tion.

In order to determine the confinement of the state vec
of a cell to the two-dimensional space we have defined,
consider a test case consisting of a single cell with a dri
on each side. The polarization of the two drivers is equ
and the value of this polarization is varied between21 and
11. For each value of the driver polarization, the sixtee
J. Appl. Phys., Vol. 80, No. 8, 15 October 1996
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dimensional ground state of the cell is calculated. The pr
jection of this ground state onto each of the two basis vecto
calculated above is then determined

l0
15u^x18 uc0&u2 ~39!

and

l0
25u^x28 uc0&u2. ~40!

A similar calculation of the projection is performed for the
first excited state of the cell for each value of the drive
polarization:

l1
15u^x18 uc1&u2 ~41!

and

l1
25u^x28 uc1&u2. ~42!

The results of these calculation are shown in Fig. 7. Fi
ure 7~a! shows the projection of the ground state onto each
the two basis vectors and the total projection into the tw
dimensional subspace spanned byux18 & andux28 &. The mini-
mum value of the total projection into the two-dimensiona
space is 0.993, which implies that the a typical cell remain
almost completely contained within the two-dimensiona
subspace of the new basis vectors.

Figure 7~b! shows the projection of the first excited stat
onto each of the basis vectors and the two-dimensional su
space. While the excited states are not important for t
time-independent results shown in Sec. II, they are releva
for time-dependent behavior. It is therefore desirable that t
first excited state remains mostly in the two-dimension
subspace we have defined, and the minimum projection
0.947 shows that it does so.

FIG. 7. Projections of the ground state and first excited state onto the cho
two-state basis vectors for varying degrees of cell polarization.~a! Projec-
tion of the ground state on each of the two basis vectors and total project
on the two-dimensional space.~b! A similar calculation for the first excited
state. The dotted line is plotted at projection51.
4729P. Douglas Tougaw and C. S. Lent
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A perhaps more direct measurement of the accuracy
the two-state approximation in reproducing time-depend
results is performed by repeating the calculation of Fig.
using the two-state basis set. The result of such a two-s
calculation is shown in Fig. 8. All cell parameters and driv
conditions are identical to those of Fig. 5, so a comparison
the switching behaviors of the two systems gives a go
measure of the accuracy of our approximation.

One can see that the dynamic response of the three-
wire using the two-state basis is very similar to the sam
calculation using the full basis set. The polarization of t
first cell seems to rise slightly more slowly in the two-sta
approximation, and the details of the kink reflection a
slightly different, but the agreement between the two calc
lations is very good. This result, combined with that of Fi
7, gives us some measure of confidence in using the t
state approximation.

C. Mapping to the Ising model

Since only two basis vectors are being used to repres
the state of each cell in an array, it is natural, and in fa
useful, to consider the relationship of this problem to t
Ising spin problem. We begin by rewriting the two-sta
many-cell basis vectors as

uQ j&5uS1S2S3•••SN&, ~43!

where the pseudo-spinSi511 or 21 ~↑ or ↓! depending on
the presence ofx18 or x28 in the corresponding position o
the original two-state basis vector. One can then evaluate
elements of the Hamiltonian matrix using this new notatio

Hi j5^Q i uĤuQ j&, ~44!

whereĤ is the full many-cell Hamiltonian of Eq.~14!. When
this Hamiltonian matrix is calculated, one finds that it is
the form:

Ĥ5
Ekink

2 SN2(
i
SiSi11D 1(

i
tŝx~ i !, ~45!

whereEkink andt are evaluated numerically using the micro
scopic Hamiltonian, Eq.~14!. The kink energy,Ekink , is the
difference between the energy expectation value of a ba
state with a single kink and that of one with no kinks:

FIG. 8. Dynamic response of a three-cell line using the two-state appr
mation. The conditions of this simulation are identical to those of Fig. 5, a
give very similar results. This agreement highlights the validity of the tw
state approximation.
4730 J. Appl. Phys., Vol. 80, No. 8, 15 October 1996
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Ekink5^↓~1!↑~2!↑~3!•••↑~N21!↑~N!

3uĤu↓~1!↑~2!↑~3!•••↑~N21!↑~N!&

2^↑~1!↑~2!↑~3!•••↑~N21!↑~N!

3uĤu↑~1!↑~2!↑~3!•••↑~N21!↑~N!&. ~46!

The parametert is the off-diagonal Hamiltonian elemen
connecting a state with no kinks to a state with a single ki

t5^↓~1!↑~2!↑~3!...↑~N21!↑~N!

3uĤu↑~1!↑~2!↑~3!...↑~N21!↑~N!&. ~47!

@We use the symbolt here because, as we will see in Se
VII, this number can be viewed as the hopping energy o
kink—it is distinct from the site hopping energy of Eqs.~9!
or ~14!.# The spin-flip operator,ŝx( i ), causes thei

th pseudo-
spin to flip.

An examination of Eq.~45! will show that this Hamil-
tonian is isomorphic to that of the Ising model in a transver
magnetic field. it is important to point out that this identifi
cation is a result of simply calculating the matrix elements
the microscopic Hamiltonian in the two-state basis; it is n
ana priori assumption. The parameters which enter the Is
Hamiltonian,Ekink ~frequently denotedJ in the Ising model!
and t ~which plays the role of the applied transverse ma
netic field strength!, are calculated directly from the micro
scopic Hamiltonian for the multicell problem by finding vari
ous matrix elements in the two-state basis. Indeed,
importance of this identification for us is simply in reducin
the computational task of computing the Hamiltonian matr
elements. Once this identification is made, one need o
compute a few elements directly to deduce the value of
other elements in the matrix.

VI. QCA DYNAMICS USING THE TWO-STATE
APPROXIMATION

Now that we have calculated the two-state basis vect
and demonstrated the accuracy of the two-state approxi
tion, we can use them to model QCA devices. We consid
first the behavior of a wire consisting of eight cells and e
amine the current densities involved in cell switching. W
will then turn our attention to the switching behavior of th
most important QCA logic element, the majority logic gat

A. The eight-cell line

We consider a line of eight ‘‘standard’’ cells with a
driver on the left end of the line. Figure 9 shows the calc
lated cell polarizations at various times. Here, the kink r
flection, which made it difficult to see the switching behavi
in the shorter line of Figs. 4 and 7, occurs at a much lat
time. For this reason, it is possible to see cells in the li
consecutively switch to match the new direction of the driv
cell. For our standard cell, this switching takes approx
mately 2 ps per cell~this time will decrease for smaller
cells!. The ballistic nature of kink propagation is clear in th
figure. Also, a comparison with Fig. 4 shows that the switc
ing time is nearly 2.5 times as fast as when intercellu

oxi-
nd
o-
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correlations are neglected. From the relative abruptness
the kink front it is clear that correlations over near neighbo
and perhaps next-near neighbors play a role here.

The motion of the kink down the wire raises an interes
ing question regarding directionality of its motion. Once th
kink is several cells away from the driver, how does
‘‘know’’ to continue in the same direction? Using th
pseudo-spin language of the last section we can ask the q
tion this way: If at a particular time the line is in stat
u↓↓↑↑↑↑&, is the successor stateu↓↓↓↑↑↑& or u↓↑↑↑↑↑&?

The answer to this question is that the system is n
described by one of these simple states, but is in a lin
combination of states. We have seen that kink motion
unidirectional even when we neglect correlations betwe
cells and consider each cell to be described by its own s
vector. Thus, for simplicity, consider, within that approxima
tion, the state vector of the cell at the edge of the kink. It
not simply ux18 & or ux28 & ~pseudo-spin up or down!. It is a
linear combination of these:c1ux18 & 1 c2ux28 &. The complex
ratio of these coefficients determines whether the state is ‘
switching to down’’ or ‘‘down switching to up.’’ This, in
turn, determines the direction of kink motion. The ratio
coefficients must be determined bysolving the dynamic
problem; any simple appeal to a static model will prove in
adequate.

The nature of this directionality can be illuminated fu
ther by considering the particle current density. It is possi
to calculate the expectation value of the current density
tween any two sites within the array. For a given many-c
wave function, this is done by calculating the expectati
value of the current density operator

ĵ ~r !5
1

2mi
$â†~r !“â~r !2@“â†~r !#â~r !%. ~48!

Figure 10 shows a plot of the results of such a curre
density calculation for the simulation of Fig. 9. The size
the dots at each site represent the expectation value of
charge density on that site, while the length and direction
the arrow between two dots represents the expectation v
of the current density between those two dots.

Here, we see that on the right side of the kink~‘‘ahead’’
of the kink!, the current density is flowing from highe
charge densities to lower ones. This acts to depolarize

FIG. 9. The dynamic response of a line of eight cells using the two-st
approximation. The driver cell changes direction over a period of 20 ps,
the other cells in the line change direction to match it. The polarization k
travels down the wire at a rate of approximately 2 ps per cell.
J. Appl. Phys., Vol. 80, No. 8, 15 October 1996
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cells on the leading edge of the kink. On the left side of th
kink ~‘‘behind’’ the kink!, the current density is flowing
from lower charge density to higher charge density. This ac
to repolarize the cells on the trailing edge of the kink. Thu
the kink has a directionality built into it—a head and a tai
The kink does not get lost. In the absence of dissipation, ki
motion proceeds ballistically indefinitely. The presence o
dissipation relaxes the kink, and the whole line, to the ne
ground state.

B. The majority gate

The majority logic gate is the fundamental QCA logic
device. Therefore, it is important to verify that a majority
logic gate exhibits the correct time-dependent behavior. Fi
ure 11 shows the result of such a time-dependent simulat
of a majority logic gate with short wires supplying the input
and outputs to the device cell. We begin with the system
the ground state. Att50, two of the three inputs to the de-
vice ~the ones on top and bottom! are in the logical zero
state, while the input from the left is in the one state. Th
device cell and the binary wire connected to the output ce
are in the same direction as a majority of the three inputs

From t50 ps to t520 ps, the direction of the bottom
input is continuously switched fromP521 to P511. This
continuous switching occurs between the first two pictures
Fig. 11. The switching of the bottom driver causes the pola
ization of the binary wire connected to that input to chang
just as we saw in the results of Fig. 9. By the timet520 ps,
the device cell has begun to switch, indicating that the ca
culation by the majority logic cell is taking place at that time
By t530 ps, the polarization kink has left the device cell an
is traveling down the binary wire connected to the output.

ate
and
ink

FIG. 10. Calculated particle current. The diameter of each dot is propo
tional to the charge on the site. Arrows indicate the direction and magnitu
of the particle current density. Ahead of the kink~to the right!, current
density acts to depolarize the cells. Behind the kink~to the left!, current
density acts to repolarize the cells. This asymmetry in the nature of t
current density explains why polarization kinks propagate ballistically dow
the wire in the desired direction.
4731P. Douglas Tougaw and C. S. Lent
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VII. DYNAMICS OF THE SEMI-INFINITE WIRE

Although the two-state approximation dramatically r
duces the size of the basis set required to model a Q
device, it is possible to reduce the basis set even further if
exclude those basis vectors with many kinks in the syste
For a small but interesting class of problems, like those
kink propagation, we introduce only a single kink into th
system by switching the input. It is then unlikely that th
system will ever enter the part of the Hilbert space spann
by those basis vectors with many kinks. In addition to redu
ing the required basis set, this single-kink approximation
lows us to introduce a kink-absorbing boundary condition
the end of a wire which can be used both to simulate
behavior of a semi-infinite wire and to crudely introduc
energy dissipation into our model. Such a wire will not e
hibit any of the kink reflections present in the nondissipati
calculations presented above. We will also use this appro
mation to examine the dynamic response of a binary w
with a spacing error.

A. The single-kink Hamiltonian

The two-state approximation eliminates all of the unne
essary basis states within an individual cell, but there are
many unused basis vectors in the many-cell direct-prod
space of these two states. Those many-cell basis vectors
taining several kinks are unnecessary when modeling a s
tem that contains a single kink, so the next logical reduct
of the basis set is to eliminate those direct-product vect
with more than one kink.

FIG. 11. The switching of a majority gate using the two-state approxim
tion. The bottom input is switched from 0 to 1, and the device cell a
output cells change accordingly. The switching occurs without reflection
delay.~b! A schematic diagram of a majority-logic gate showing the chan
in the input and the corresponding change in the output.
4732 J. Appl. Phys., Vol. 80, No. 8, 15 October 1996
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If we begin with the pseudo-spin interpretation of th
two-state many-cell basis presented in Eq.~43!, it is possible
to enumerate those basis vectors with no more than one ki
If the driver cell on the left of the wire has a polarization o
11, the single basis state with no kinks is:

uJ0
1&5u↑~1!↑~2!↑~3!...↑~N22!↑~N21!↑~N!& ~49!

and there are a number of single-kink basis states equa
the number of cells in the line

uJ1
1&5u↓~1!↓~2!↓~3!•••↓~N22!↓~N21!↓~N!&,

uJ2
1&5u↑~1!↓~2!↓~3!•••↓~N22!↓~N21!↓~N!&,

uJ3
1&5u↑~1!↑~2!↓~3!•••↓~N22!↓~N21!↓~N!&,

A

uJN21
1 &5u↑~1!↑~2!↑~3!•••↑~N22!↓~N21!↓~N!&,

uJN
1&5u↑~1!↑~2!↑~3!•••↑~N22!↑~N21!↓~N!&.

~50!

Notice that thei th single-kink basis vector contains a kink to
the left of thei th nondriver cell.

If the polarization of the driver cell is21, the kink-free
basis vector is

uJ0
2&5u↓~1!↓~2!↓~3!•••↓~N22!↓~N21!↓~N!& ~51!

and the single-kink basis vectors are

uJ1
2&5u↑~1!↑~2!↑~3!•••↑~N22!↑~N21!↑~N!&,

uJ2
2&5u↓~1!↑~2!↑~3!•••↑~N22!↑~N21!↑~N!&,

uJ3
2&5u↓~1!↓~2!↑~3!•••↑~N22!↑~N21!↑~N!&,

A

uJN21
2 &5u↓~1!↓~2!↓~3!•••↓~N22!↑~N21!↑~N!&,

uJN
2&5u↓~1!↓~2!↓~3!•••↓~N22!↓~N21!↑~N!&.

~52!

Thus, we can see that the basis set to be used in the sin
kink approximation depends on the state of the driver ce
associated with the system. There are a total of 2N basis
vectors associated with both driver polarizations, since t
kink-free basis state is also a member of the single-kink ba
for the opposite polarization.

Now we will write the Hamiltonian, Eq.~14!, in the
single-kink basis with a driver of positive polarization
$uJi

1&%. In this reduced basis, the Hamiltonian has tridiagon
form and is isomorphic to the Hamiltonian of a particle mov
ing in the tight-binding model. For this reason, it is now
helpful to view the polarization kink as a pseudo-particle an
to simulate the motion of that pseudo-particle in a way dic
tated by the tight-binding model and the Hamiltonian ele
mentsEkink and t, as defined in Eqs.~46! and ~47!. The
Hamiltonian for a polarization kink as a pseudo-particle i
the tight-binding model is

a-
nd
or
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N

n̂kink~ i !Ekink1t (
i51

N21

~ âkink
† ~ i !âkink~ i11!

1âkink
† ~ i11!âkink~ i ! ~53!

whereâkink
† (k) and âkink(k) are the creation and annihilation

operators for a kink pseudo-particle to the left of thekth site:

âkink
† ~k!u↑~1!↑~2!↑~3!•••↑~k21!↑~k!↑~k11!•••↑~N

22!↑~N21!↑~N!&

5u↑~1!↑~2!↑~3!•••↑~k21!↓~k!↓~k11!•••↓~N

22!↓~N21!↓~N!& ~54!

and

âkink~k!u↑~1!↑~2!↑~3!•••↑~k21!↓~k!↓~k11!•••↑~N

22!↑~N21!↑~N!&5u↑~1!↑~2!↑~3!•••↑~k

21!↑~k!↑~k11!•••↑~N22!↑~N21!↑~N!&. ~55!

In Eq. ~53!, n̂kink( i ) is the number operator for a kink on th
i th site. When this Hamiltonian is written in the single-kin
basis set, the diagonal elements have a value ofEkink and the
off-diagonal elements connecting neighboring sites hav
value of t.

B. Kink absorbing boundary condition: The semi-
infinite wire

While the single-kink approximation reduces the r
quired size of the basis set and therefore allows the mode
of larger devices, no additional information would be gain
by applying that technique to simply model a longer wire.
is useful, however, in allowing the implementation o
method of dissipating energy from the system at the end
the wire. Recent work of Hellums and Frensley, based in p
on the quantum transmitting boundary method of Lent a
Kirkner, has made it possible to include particle-absorbi
boundary conditions at the ends of a wire.25 We use this
boundary condition to absorb the pseudo-particle repres
ing the polarization kink and refer the reader to Ref. 25 fo
complete description of the method. Such kink absorpt
will lower the energy of the system and have the effect
simulating energy dissipation in the calculations.

The particle-absorbing boundary condition is no
Markovian since it includes a convolution integral over th
past history of the system. The system of interest is coup
to a semi-infinite kink reservoir, which is capable of absor
ing kinks present at the interface between the system and
reservoir. The time-dependent Schro¨dinger equation for the
combination of these two systems is

i\
]

]t F cS

cR
G5F Hs

HiR

HiR
†

HrR
GF cS

cR
G . ~56!

Here,Cs is the state of the modeled system,Cr is the
state of the kink reservoir,Hs is the Hamiltonian of the sys-
tem,HrR is the Hamiltonian of the reservoir, andHiR is the
interaction Hamiltonian coupling the two systems. After u
ing Laplace transforms to eliminateCrR , the time-dependent
Schrödinger equation becomes
J. Appl. Phys., Vol. 80, No. 8, 15 October 1996
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]cs

]t
5Hscs~ t !1HiR

† F E
0

t

GR~ t2t!HiRcs~t!dt

1 i\GR~ t !c rR~0!G , ~57!

whereGR(t) is the propagator for the reservoir, which is a
function of the coupling between cells in the reservoir.

We solve Eq.~57! using the values forHs from the
tight-binding model for polarization kinks. When this
method is used to model a line of QCA cells, the results a
those shown in Fig. 12. The driver cell is changed from
polarization of21 to a polarization of11, and all of the
other cells in the line react to this change. The kink prop
gates down the wire at a rate of approximately 2 ps per ce
and no reflection occurs at the end of the wire. The kink h
essentially left the wire byt520 ps, allowing it to dissipate
energy and settle into the new switched ground state.

C. Spacing error

Landauer has objected that an error in the intercellul
spacing within a QCA wire would result in wire failure.18

His argument is that if a larger-than-standard gap were
occur between cellsk2 l andk, the effect of cellk1 l on cell
k would be greater than that of cellk2 l . The result, he
suggests, is that the line could not be switched to a new st
because the old state, represented by cellk1 l , would keep
cell k in from switching.

FIG. 12. Dynamic response of a single-kink wire with a kink absorber at th
end. The kink propagates at a rate of 2 ps per cell and has completely left
system byt520 ps.
4733P. Douglas Tougaw and C. S. Lent
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We have performed a time-dependent solution of suc
system using the single-kink approximation and found th
the line indeed switches. The result of this calculation
shown in Fig. 13, in which a wire with a 20% spacing err
~a rather larger error than one would likely expect! between
two of the cells near the middle of the wire is being studie
According to the objection the polarization, kink should sto
when it reaches the gap, since the cell on the other side of
gap is more strongly influenced by its nonswitched neighb
While the spacing error causes some partial reflections of
kink, with a resulting delay in the time it takes to switch th
entire wire, the wire does switch to match the driver cell.
spacing error acts as a small barrier for kink propagati
What the calculation illustrates is that even a very large sp
ing error acts as a relatively small barrier which does n
keep the system from switching.

The spacing error problem is a specific case of Land
er’s more general objection that QCA systems suffer from
lack of unidirectionality because inside the array cells w
‘‘old’’ information have as much weight as cells with
‘‘new’’ information. The calculations shown here illustrat
that the ballistic nature of kink motion, even in the absen
of dissipation, are sufficient in many systems to provide t
unidirectionality desired. More fundamentally we believ
this argument is invalid because the new information p
sented at the inputs causes the ground state of the syste
change. It is this effect, rather than the details of the tempo
evolution, that are the heart of the matter. Unidirectionality
effected because of the breaking of the symmetry betw
input and output—inputs are held fixed and outputs are n

FIG. 13. Dynamic response of a single-kink wire with a spacing error an
kink absorber at the end. The spacing error causes a delay, but the wire
operates correctly.
4734 J. Appl. Phys., Vol. 80, No. 8, 15 October 1996
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The only relevant issue beyond that is the issue
metastability—will the system succeed in reaching t
ground state in a reasonable time? The spacing error prob
is important not from the point of view of unidirectionality
but from the point of view of metastability. Landauer is co
rect in that a spacing error could, in principle, be a source
a metastable hangup. The question becomes a quantita
one—is the kinetic barrier between the state just after
input is switched and the desired ground statelarge enough
to keep the system from reaching its ground state, leavin
stuck in a metastable excited state? Such a quantitative q
tion can only be answered by a quantitative calculation su
as this one. In this case the answer is that even a fairly la
spacing error does not cause a problem~of course, a bi-
zarrely large spacing error would!. There are certain in-
stances, such as fanout, to which Landauer also corre
points, for which metastability could be a much more serio
problem. We address that issue elsewhere in the contex
gradual adiabatic switching.26

VIII. MACROMOLECULAR CELLS

As stated above, the speed of QCA devices improves
the size decreases. At the present time, the long-term goa
such shrinking is a macromolecular implementation,
which the QCA cells are formed by self-assemblin
molecules.27 It is expected that such cells will be at least te
times smaller than the ‘‘standard’’ semiconductor cells, w
have a dielectric constant of 1, and electrons in those c
will have the effective mass of free electrons. We investiga
the dynamic behavior of these cells to estimate the amoun
improvement that can be expected by their use.

The two-state calculations of Fig. 9 were repeated us
the parameters described above for macromolecular ce
The results of this calculation are shown in Fig. 14, a
demonstrate that the use of macromolecular cells impro
the switching speed of a cell by a factor of 100 over that
the ‘‘standard’’ cell. Instead of 2 ps per cell, these devic
now switch at 20 fs per cell.

Repeating the single-kink calculations of Fig. 12 fo
macromolecular cells yields the result shown in Fig. 15. Th
calculation also results in an improvement of the switchi
speed by a factor of 100 over that of a ‘‘standard’’ cell.

d a
still

FIG. 14. Dynamic response of an eight-cell macromolecular wire using
two-state approximation. Kink propagation requires 20 fs, which is an i
provement by a factor of 100 over the semiconductor cells.
P. Douglas Tougaw and C. S. Lent
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In addition to these improvements in speed, correspon
ing improvements in the possible operating temperature
observed. While standard cells are calculated to operate
isfactorily at temperatures up to 5 K, the larger Coulomb
energies present in macromolecular cells make it possible
them to operate at or above room temperature. This com
nation of an improvement in speed and in operating tempe
ture makes implementation of macromolecular cells a ve
attractive goal.

IX. CONCLUSIONS

We examined the dynamics of isolated QCA arrays wi
a particular focus on assessing the intrinsic switching beh
ior. Dissipative coupling to thermal reservoirs will likely be
important in real arrays. This coupling could result in usef
switching times for real devices that are faster~for strong
dissipative coupling! or slower ~for very weak dissipative
coupling! than the intrinsic limits we have examined. W
have also studied methods to reduce the size of the basis
required to accurately model large QCA devices.

Clearly, fabrication of these devices remains the large
challenge to the realization of QCA arrays, but current tec
niques in nanofabrication make this realization qui
possible.28 Other challenges, such as detecting the presen

FIG. 15. Kink propagation in a macromolecular wire using the single-kin
approximation and a kink absorber at the end of the wire. The polarizat
kink propagates across one cell in approximately 20 fs and leaves the sys
by t5200 fs.
J. Appl. Phys., Vol. 80, No. 8, 15 October 1996
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or absence of a single electron at the output,20,29 and main-
taining a uniform cell occupancy throughout the array,30,31

have already been addressed.
While this paper has concentrated on switching the de

vices only by varying the polarization of the driver cell, it is
also possible to lower and raise the barriers within each ce
so as to facilitate correct switching. If the barriers are low-
ered, the confinement of the electrons on each site will b
relaxed, and the polarization of the cells will decrease. Th
driver cell can then be switched, and the barriers raise
again. The array will then ‘‘recrystallize’’ in its new ground
state without any excess ‘‘kink energy’’ ever being intro-
duced to the system. If the switching is done slowly enough
the adiabatic theorem guarantees that the system can
maintained at all times in its instantaneous ground state
eliminating any metastability problems. Such adiabatic
switching will be discussed more thoroughly elsewhere.26
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