On Optimum Switch Box Designs for 2-D FPGAs

Hongbing Fan
University of Victoria, Canada

Jiping Liu, University of Lethbridge, Canada Yu-Liang Wu and Chak-Chung Cheung Chinese University of Hong Kong, HongKong

Outline

- Switch box design problem of 2D-FPGA
- Hyper-univsersal switch box (HUSB)
- Reduction design method
 - Hypergraph model for routing requirement
 - Graph models for switch box
 - Decomposition theory
 - Reduction design scheme
- Now optimum HUSB designs and verification
- Experimental results on HUSB

Switch box design problem in 2D-FPGA

Design Goal: to find Switch Boxes (SB) with higher routability and fewer switches.

Routability specifications

- 1. Probability model (by J. Rose and S. Brown): Flexibility, average probability of completing a connection
- 2. Universal Switch Block (USB)
 (by Y.W. Chang, D.F. Wong, C.K. Wong)
 routable for every set of 2-pin nets routing
 requirement
- 3. Hyper-Universal Switch Box (HUSB): routable for every set of multi-pin nets routing requirement

The differences between HUSB and USB:

- HUSB is a generalization of USB
- USB is for all 2-pin nets; HUSB is for multi-pin nets
- ♦ HUSB => USB

A 2-pin nets routing requirement

A multi-pin nets routing requirement

(k, w)-HUSB:

the HUSB of k-way and W terminals on each way

Hyper-Universal (k, w)-Design Problem:

- For each pair of k and W, to design a (k, w)-HUSB with the minimum number of switches, optimum (k, w)-HUSB
- \Leftrightarrow e(k, w) = the number of switches in an optimum (k, w)-HUSB.
- **❖** Optimum (k, w)-designs for k = 2, 3 are known.
 - \bullet E(2, W) = W
 - e(3, W) = 3w
- This paper is aimed for optimum (4, w)-designs.
- The hard part of the problem is to verify a given design is hyper-universal

Routing Requirement Modeling:

For (4, w)-SB, label the sides 1, 2, 3, 4.

A net <=> a subset of {1, ..., 4} Routing requirement <=> collection of subsets Global Routing (GR)

Balanced Global Routing, (4, w)- GR

W - regular hypergraph

Graph Model of Switch Boxes

- ♦ (k, W) SB <=> graph: terminals as nodes; switch as edges
- **❖** A detailed routing <=> a spanning forest

A (4, 3) - HUSB view as a graph

A (4, 3) - GR

A detailed routing as a spanning forest

Decomposition Theorem

- Minimal BGR (MBGR): non decomposable 4-way BGR (regular hypergraph with four nodes)
 - For a fixed k, there are finite number of k-MBGRs.
 - Every BGR can be decomposed into the union of MBGRs.
- \Leftrightarrow f(k) = maximum density of all k-MBGRs.
 - + f(4) = 3
 - all 4-way MBGRs are obtained

Hyper-universal decomposition theorem

- ❖ Let p(k) be the least common multiple of minimal densities of k-MBGRs. Then for each W, there exists r such that r < f(k) (p(k) 1) + 1 and every (k, W)-BGR can be decomposed into the union of some (k, p(k))-BGRs and a (k, r)-BGR
- \Leftrightarrow K m, n: the complete (m, n)-SB
- * $K_{k, p(k)} + ... K_{k, p(k)} + K_{k, r}$ is a (k, W)-HUSB
- \Leftrightarrow when k is fixed, then e(k, W) = O(W)

Design scheme for (k, w)-HUSBs

- 1. Compute the set of all k-MPBGRs.
- 2. Compute p(k), determine all d_1 , ..., d_n such that for each W, there is an d_j such that any (k, W)-BGR can be decomposed into a union of some (k, p(k))-BGRs and a (k, d_j) -BGR.
- 3. Design (k, p(k))-HUSB H(k, p(k)) and (k, d_j)-HUSB H(k, d_j) for each j = 1, ..., n.
- 4. $(W-d_i)/p(k)$ $(k, p(k))-HUSBs + (k, d_i)-HUSB$

Hyper-Universal (4, W)-Designs

- $f(4) = 3, \quad p(4) = 6$
- \Leftrightarrow e(4, w) >= 6w
- \bullet To design (4, i)-HUSBs H_i for i = 1, ..., 7:

gives a hyper-universal (4, w)-design.

- ❖ If |F(4, W)| = 6w, then it is an optimum design.
- With above design, detailed routing at the box can be done in polynomial time.

New hyper-universal (4, W)-design

$$|E(H_1)| = 6$$
,
 $|E(H_2)| = 12$,
 $|E(H_3)| = 18$,
 $|E(H_4)| = 25 > 24$,
 $|E(H_5)| = 30$,
 $|E(H_6)| = 37 > 36$,
 $|E(H_7)| = 43 > 42$.
 $|F(4, w)| = 6.3w$

Which are optimum designs

```
|E(H_1)| = 6 = e(4, 1), H_1 is optimum.
|E(H_2)| = 12 = e(4, 2), H_2 is optimum.
|E(H_3)| = 18 = e(4, 3), H_3 is optimum!
|E(H_4)| = 25 = e(4, 4), H_4 is optimum!
|E(H_5)| = 30 = e(4, 5), H_5 \text{ is optimum }!
|E(H_6)| = 37, H_6 is optimum? Unknown!
|E(H_7)| = 43, H_7 is optimum? Unknown!
|F(4, w)| = 6.3w, F(4, w) is optimum? Unknown!
```

The verification of HUSBs

This is the most technical part of the paper:

- 1. Verification for H_3
 - 1. find detailed routings in H_3 for all (4, 3)-BGRs formed by the union of 4-way MBGRs
- 2. Verification for H_4
 - 1. show that no (4,4)-SB with 24 switches is hyper-universal
 - 2. find detailed routing in H_4 for every (4, 4)-BGRs formed by the union of 4-way MBGRs
- 3. Verification for H_5 , H_6 , H_7 and F(4, w)
 - 1. use decomposition theorems
- 4. A data base and a detailed routing algorithm

Experiment with HUSBs

- Run "VPR" on FPGAs with a reduced HUSBs
 - two switches are deleted from F(4, w) to meet the flexibility requirement F_s = 3 for VPR
 - use MCNC benchmark circuits
- Compare the number of tracks required to route the circuits on FPGAs with disjoint S-Box (XC4000 type)

Disjoint (4, 11)-SB

Reduced (4, 11)-HUSBs

Experimental Results

The H'USB FPGAs use about 10% less tracks than Disjoint S-box.

Experimental Results

Circuit Name	Disjoint	H'USB/
alu4	12	10 /
apex2	12	11/
apex4	15	13
bigkey	8	7
des	9	8
diffeq	9	8
dsip	7	7
elliptic	11	11
ex5p	15	13
misex3	13	12
seq	12	12
spla	16	14
tseng	8	7
e64	9	8
Total	156	141 (-9.62%)

Conclusion:

- 1. The graph models and systematic design method for FPAG like configurable switch boxes are presented.
- 2. Derive a series of new hyper-universal (4, w)-designs including optimum (4, w)-designs for w = 3, 4, 5, and a nearly optimum (4, w)-designs for w >= 6, 7.
- 3. An efficient routability verification is used, which leads to an efficient detailed routing algorithm.
- 4. The hyper-universal switch box is locally optimal with respect to the routing capability. Experimental shows that the hyper-universal switch box can also improve the global routing capacity.