
Design and Implementation of FPGA Router for Efficient Utilization of
Heterogeneous Routing Resources

Deepak Rautela, Rajendra Katti
Department of Electrical and Computer Engineering

North Dakota State University
Fargo, ND-58105, USA

{Deepak.Rautela,Rajendra.Katti}@ndsu.edu

Abstract

The routing resources available in recent FPGA archi-
tectures (e.g., Xilinx Virtex-II) are very different from the
older generation of FPGAs (e.g., Xilinx XC4000). The latest
FPGA architectures have heterogeneous routing resources
which include directly driven wires of different lengths and
connectivity. Since routing resources in FPGAs are fixed,
it is very important for the routing algorithms to fully ex-
ploit the potential of new routing architectures. FPGA rout-
ing architectures are usually represented as a routing re-
source graph (RRG). In this paper we present a simplified
scheme to build the RRG for FPGA architectures with het-
erogeneous routing resources. Using our RRG construc-
tion scheme we have built a routability driven FPGA router
named “Bison”. We also present two dynamic weight up-
date based heuristics which we have incorporated into the
router, so that efficient utilization of routing resources can
be achieved.

1 Introduction

FPGA routers can be divided into two groups. The com-
bined global-detailed routers [9, 2], which determine a com-
plete routing path in one step, and the two-step routers,
which first perform global routing [4] to determine the chan-
nel segments each net will use, and then perform detailed
routing [8] to determine the wires each net will use within
each of the specified channel segments. Most of the FPGA
routing algorithms are usually implemented to target older
generation of FPGAs. The recently developed FPGA ar-
chitectures have heterogeneous routing resources which in-
clude directly driven wires of different lengths and con-
nectivity. VPR [2], the academic placer and router targets
XC4000 style architecture, which also includes wires of
different length and connectivity, but these wires are not

directly driven. The new FPGA architectures (e.g., Xil-
inx Virtex-II and Altera Stratix) use directly driven rout-
ing switches which result in a decrease in the routing area.
The directly driven routing architecture is also more tol-
erant of routing stress and allows a smaller channel width
to achieve a given performance [5]. Longer wire segments
are intended for high-fanout and time critical signal nets.
Shorter wire segments are intended for short connections to
avoid wasting routing resources. It is very important for the
FPGA routing algorithms to fully utilize the limited routing
resources because they take up a significant portion of the
chip area [6]. In [14], the authors propose an architecture-
driven metric, which considers the available wire segments
and their lengths to optimize the wiring cost for placement
and global routing, but the targeted architecture was based
on Lucent Technologies ORCA2C and Xilinx XC4000EX.
In [7], authors present a wire-type assignment algorithm for
Xilinx Virtex-II architecture. The algorthm is intended as
an intermediate stage between global and detailed routing
and is based on iteratively applying min-cost max flow tech-
nique to simultaneously route many nets. The algorithm is
implemented for segments in a single channel only and the
wire segment utilization data is not provided.

In this paper, we present a simplified approach to build
the RRG for the latest FPGA routing architectures. We have
successfully implemented this approach to build a routabil-
ity driven router named Bison. We also present two dy-
namic weight update based heuristics, which we have incor-
porated into the router, so that efficient utilization of routing
resources can be achieved. The rest of the paper is orga-
nized as follows. The FPGA routing architecture targeted
in this paper is described in section 2, and the problem is
defined in section 3. In section 4, we present the simpli-
fied RRG construction scheme. In section 5, we present the
dynamic weight update heuristics for efficient utilization of
different wire types. Experimental results are shown in sec-
tion 6, and our conclusions are in Section 7.

Proceedings of the IEEE Computer Society Annual Symposium on VLSI
New Frontiers in VLSI Design

0-7695-2365-X/05 $20.00 © 2005 IEEE

Logic Block

Vertical Channel

Horizontal Channel

 CLB
Pad

Pad

Switch
Matrix

Internal Connections

Figure 1. Target FPGA architecture

2 Architecture Details

In this section we describe the simplified FPGA archi-
tecture that we have targeted to implement our router. The
fabric of latest FPGA architectures consists of CLBs (Con-
figurable Logic Blocks), RAM, Multiplier blocks, power
PC cores, and heterogeneous routing resources. In this pa-
per we assume a homogeneous FPGA fabric architecture
and only study the efficient utilization of heterogeneous
routing resources. As shown in Figure 1, our architecture
assumes an array-based FPGA, which consists of CLBs,
input-output pads, and horizontal/vertical channels of inter-
connect wires. Each CLB consists of a switch matrix, logic
blocks, and internal CLB local connections. Logic blocks
are made up of basic logic elements (BLEs). A BLE con-
sists of a 4-input look-up-table (LUT) and a flip-flop (FF).
The BLE output can be either the registered or unregistered
version of the LUT output. In Virtex-II architecture, a com-
bination of 2 LUTs and 2 FFs is referred to as a slice, and
each CLB can have 4 slices/CLB, thus each CLB has a max-
imum of 8 LUTs and 8 FFs. We simplify the creation of
routing tool by assuming that each of the BLE inputs can
be connected to any of the LB inputs or any of the BLE
output. In Figure 2, the wire types used in Virtex-II are
shown [1]. White squares denote CLBs and black squares
denote route switch boxes. The architecture assumed in this
paper contains all the routing resources available in Virtex-
II architecture. The only exception are the fast local inter-
connections from the logic block outputs to the logic block
inputs, which are not included in our architecture because
we are only concerned with global routing resources. We
assume that both horizontal and vertical channels have the
same structure. All wires except the long lines are unidirec-
tional and route signals in all the four directions. The long
lines, which span the width of a horizontal channel or the
height of a vertical channel, are bidirectional. Direct lines
route signals to neighboring blocks, double lines route sig-
nals to every first or second block, type 1 HEX lines route
signals to every third or sixth block and type2 HEX lines
route signals to all the blocks upto the sixth block away ex-

Double Lines

Long Lines

Type2 Hex Lines

Type1 Hex Lines

Direct Connections

Figure 2. Virtex-II Wires

cept the first one. All the switch matrices have the same
connection topology but different wires in the matrix have
irregular connection topologies.

3 Problem Definition

Modern FPGA architectures incorporate heterogeneous
routing resources, and in [11] and [12], the authors have
shown that the number of different wire type segments
used, instead of geometric (Manhattan) distance between
the driver-driven pin is the most crucial factor in controlling
the routing delay and cost in an FPGA. For a distance of
2 CLBs between a driver-driven pair, the number of possi-
ble routes is limited. Such a distance can be routed using
either of the following: one double line, two double lines,
two direct lines, a direct line and a double line, a type1 HEX
line etc. The authors in [12], have shown that the delays for
these different types of lines are almost constant and have
no relation to each other. For example, delay of a HEX line
is not three times the delay of a double line or six times the
delay of a direct line but is only slightly larger than the delay
of a double or direct line. Hence, the FPGA routing prob-
lem in current architectures is no longer to find route that
travels the shortest geometric distance, but to find the route
that consumes the minimum total number of segments and
utilizes the wires of various lengths most effectively. The
efficient routing resource utilization (ERRU) problem can
thus be stated as the optimization of following two prob-
lems:

• Minimize the wastage of wire segment length for dou-
ble and HEX lines. For example, if a double line is
used for direct connection then there is wastage of 1
wire segment length.

• Maximize the utilization of wire segments available

Proceedings of the IEEE Computer Society Annual Symposium on VLSI
New Frontiers in VLSI Design

0-7695-2365-X/05 $20.00 © 2005 IEEE

 Channel

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

	 	 	
	 	 	
	 	 	

�
�
�

�
�
�

�
�
�
�
�
�
�

� � � � � � � �

� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �

� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �

� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �

� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

Type 2 Hex Wire Node

Type 1 Hex Wire Node

Double Wire Node

 Vertical
 Channel

Channel
Vertical

 Horizontal
 Channel

Horizontal

Figure 3. Typical Switch Matrix Connection.

with long lines. For example, if there are 10 CLBs
in a horizontal row and the horizontal long line only
connects two of these CLBs then there is a wastage of
8 long line segments.

4 Implementation Details

The presence of direct, double, long, type1 and type2
HEX wires make the construction of RRG a complex task.
In this section we present a simplified RRG construction
scheme, so that wires of different type can be accurately
modeled. Using our simplified RRG construction approach,
researchers can make changes to the graph and address
other FPGA routing problems easily. Our RRG construc-
tion scheme is similar to VPR, but we have made some
changes to accommodate the new routing resources avail-
able in Virtex-II style FPGA architectures.

4.1 Routing Resource Graph

Each wire is modelled as a node in the graph and to in-
sert correct number of wires in the graph, we associate each
wire with the CLB from where it (originates) is driven. Each
side of a CLB is used to route wires in a specific direction
as shown in Figure 3. Wire nodes on the top and the bot-
tom of the CLB, route nets in the horizontal channel, in the
west and the east direction respectively. Wire nodes on the
left and the right of the CLB, route nets in the vertical chan-
nel, in the south and the north direction respectively. The
presence of a direct wire from each CLB implies that there
exists a direct wire from each CLB in all the four directions.
This is true for all the wire types supported by the architec-
ture assumed in this paper except the long wire. Long wires
are bidirectional and can be driven from the end of any of
its segments. Each node has a parameter “capacity” associ-

ated with it, which is the maximum number of different nets
which can use this node in a legal routing. For example, if
three direct wires are originating from each switch matrix,
then each direct wire node on all the four sides of the CLB
has a capacity of three. Each switch is modeled as a di-
rected edge (for unidirectional switches, such as buffers), or
a pair of directed edges (for bidirectional switches, such as
pass transistors) between the two appropriate nodes. To re-
duce the size of RRG we model fixed number of wire nodes
for each CLB. Each side of the CLB is modeled with one
node of each wire type, and if more number of wires of that
wire type exists then we just increase the capacity of the
node. Since in our architecture, we have five different wire
types (direct, double, long, type1 and type2 HEX), each
CLB is modeled with five nodes for all the four sides. The
connection between long wire segments is different from
other wire types since it uses the long wire nodes present in
the horizontal and vertical channels. Each channel has two
nodes for long wires. In horizontal channel they are used to
route CLBs present at the top and bottom of the channel. In
vertical channels they are used to route CLBs present on the
left and right of the channel.

We assume that all the pins are logically equivalent. This
means that a router can complete a given connection using
any one of the input pins of a LUT. We model this logical
equivalence in the RRG by adding source and sink nodes.
Each CLB is modeled with two nodes, a CLB source node,
and a CLB sink node for all the logically equivalent out-
put and input pins. Each pad is modeled with one node, a
pad source node, or a pad sink node depending on whether
the pad is input or output. To model the connections be-
tween input/output pins and wires in a CLB we have an edge
from each CLB wire node to the CLB sink node. Similarly
we have an edge from the CLB source node to all the wire
nodes modeled by a CLB. The capacity of each source and
sink node depends on the number of slices present in the
logic block. In Virtex-II, all the switch matrices have the
same connection topology, but different wire types in the
matrix have irregular connection topologies. For example,
a type2 HEX wire in a vertical channel has connection to
vertical double wires, vertical type1 HEX wires, horizontal
type1 HEX wires, and horizontal double wires. But a verti-
cal double wire has connection to horizontal double wires
and vertical double wires in the same switch matrix [7].
Since we have modeled wire nodes of each wire type for
all the four sides of a CLB, any switch matrix connection
topology can be created easily. In Figure 3, switch matrix
connection topology for type2 HEX wire and double wire
as described above has been shown. The Figure only shows
the connection of type2 HEX and double wires present in
the left vertical channel for the purpose of clarity, but the
same connection topology is also present for type2 HEX
and double wires present in the right vertical channel. In

Proceedings of the IEEE Computer Society Annual Symposium on VLSI
New Frontiers in VLSI Design

0-7695-2365-X/05 $20.00 © 2005 IEEE

this paper, we have performed our experiments assuming
fully connected switch matrix, i.e., each wire node is con-
nected to all the other wire nodes on all the other three sides.

4.2 Routing Algorithm

The routing algorithm for our router, Bison, is the
Pathfinder negotiated congestion algorithm [9]. Pathfinder
repeatedly rips-up and re-routes every net in the circuit until
all congestion is resolved. Ripping-up and re-routing every
net in the circuit once is called a routing iteration. A circuit
routing in which some routing resource is overused, such as
a wire being used by two different nets, is not a legal rout-
ing. When overuse exists at the end of a routing iteration,
another routing iteration is performed to resolve this con-
gestion. After each routing iteration the cost of overusing a
routing resource is increased, so that the probability of re-
solving all congestion increases. In our implementation, we
use the VPRs [3] cost function of using a routing resource
node n, which is given by

NodeCost(n) = B(n) ∗ P (n) ∗ H(n)

B(n) is the base cost of the node n. H(n) is the historical
congestion of node n and is increased after every routing
iteration in which node n is overused and gives the router
congestion memory. P (n) is the present congestion cost of
node n and it increases with the amount of overuse of the
node. We then perform a breadth-first search by using the
TotalCost(n) of a node n as the sort value in the Priority
Queue:

TotalCost(n) = NodeCost(n) + CostFromRT (n)

where CostFromRT (n) is the total cost of the path from
the current partial routing tree to node n.

5 Dynamic Weight Heuristics

The pathfinder algorithm iteratively routes one net at a
time. If there is no criteria on using the various wire seg-
ments, then we can end up with a routing solution, with low
fan-out nets using long wires and direct connections using
double wires. Therefore, the resources need to be assigned
weights in some proportion to their lengths and scarcity to
avoid wastage of precious routing resources. B(n) i.e., the
base cost of the node is used to assign weights to all the
wires, so that we can study the effective wire utilization of
the static and dynamic weight update approaches. All the
wire types are assigned B(n) = 1 for our static weight-
ing scheme. This encourages the router to use as few of
these resources as possible to route each connection. In the
following sections we present two dynamic weight update
schemes which optimize the ERRU problem.

5.1 Directed Search Heuristic

In this section we present heuristics to optimize the first
part of the ERRU problem i.e., to minimize the wastage
of wire segment length for double and HEX lines. The
pathfinder algorithm is very well suited for FPGAs since
it adapts very well to the RRG. It can be used to search
for sinks in either a breadth-first or a A* directed search
manner. The timing driven implementation of VPR router
uses the A* method because it is faster than the breadth-first
technique. To perform a directed-search we must be able

Algorithm 1 Directed Search Heuristic
/*
wiresVector[WireType][CLBSide][x][y]
WireType(0: Direct; 1: Double; 2: HEX-1; 3: HEX-2)
CLBSide (0: South; 1: West; 2: North; 3: East)
nodeWeight[Node][DistanceFromCLB]
(x1, y1): Coordinate of node n
(x2, y2): Coordinate of sink k
deltaX = x2 - x1; deltaY = y2 - y1;
*/
if(deltaX != 0 && deltaY == 0) {
//Update weight in horizontal direction

CLBSide = (deltaX > 0) ? 0 : 2
DistanceFromCLB =

(abs(deltaX) >= 6) ? 6 : abs(deltaX);
for(int i=0; i <= WireType; ++i) {
node = wiresVector[i][CLBSide][x1][y1];
ExpectedCost(n,k) =
nodeWeight[node][DistanceFromCLB]*P(n)*H(n);

}
}else if(deltaY != 0 && deltaX == 0) {
//Update weight in vertical direction
}else if(deltaX != 0 && deltaY != 0) {
//Update weight in horizontal & vertical direction
}else // deltaX = deltaY = 0
//No weight update required

to estimate the total remaining cost, ExpectedCost(n, k),
from the current node n to the sink node j. If the
ExpectedCost(n, k) is a lower bound, i.e., it is always less
than or equal to the actual cheapest path cost from node n to
sink k, then the directed-search is an A* search and it finds
an optimal path. To compute the ExpectedCost(n, k) to
route from a wire segment, n, to the target sink k, VPR as-
sumes that the connection to the sink k will be completed
using wires of the same type (length) as node n. In the
Virtex-II device different wire types in the switch matrix
have irregular connection topologies. For example, a type2
HEX wire in a vertical channel has connection to vertical
double wires, vertical type1 HEX wires, horizontal type1
HEX wires, and horizontal double wires. Thus, given the
placement of two pins, estimating the number and types of
wires that will be used to route them is a non-trivial prob-
lem [12]. As discussed in section 3, the FPGA routing
problem in current architectures is to find a route that con-
sumes the minimum total number of segments and utilizes

Proceedings of the IEEE Computer Society Annual Symposium on VLSI
New Frontiers in VLSI Design

0-7695-2365-X/05 $20.00 © 2005 IEEE

the wires of various lengths most effectively. Our directed-
search heuristic achieves this objective by using a dynamic
weighting scheme as shown in Algorithm 1. We perform a
directed-search by using the TotalCost(n) of a node n as
the sort value in the Priority Queue:

TotalCost(n) = CostFromRT (n)+ExpectedCost(n, k)

where CostFromRT (n) is the total cost of the path
from the current partial routing tree to node n.
ExpectedCost(n, k) helps the pathfinder algorithm to
search in the direction of the sink. If deltaX for a driver
driven pair of pins is 5 and deltaY is 0, then some of the
correct solutions are: 5 direct lines, 2 double and 1 direct
line, 1 type1 HEX (length 3 segment) and 1 double line, 1
type2 HEX (length 5 segment) line. All of these connec-
tions are correct, but the best solution is the last one, be-
cause it uses 1 type1 HEX line and there is wastage of only
1 wire segment length. Therefore, from any source node
in the RRG we can calculate the best possible way to reach
any sink node at most 6 distance away from it. We store this
information in

nodeWeight[Node][DistanceFromCLB]

array as B(n), the base cost weight of the nodes. If the sink
node is at a distance greater than 6 then we first calculate the
best route to reach the node 6 distance away from the source
and from there calculate new values of deltaX, deltaY and
CLBSide to find the best route to the sink.

5.2 Long Line Heuristic

In this section we present heuristic to optimize the sec-
ond part of the ERRU problem i.e., to maximize the utiliza-
tion of wire segments available with long lines. Our long
line heuristic is similar to the dynamic weighting scheme
proposed by Nag and Rutenbar [10] and is shown in Algo-
rithm 2. The heuristic is based on the semi-perimeter length

Algorithm 2 Long Line Heuristic
bbCost = semiPerimeter(boundingBox);
if (wireType == LONG) {

B(longWireNode) =
(bbCost >= 0.7 * legthOfLongLine * 2)? 0.1:1.0

}else
B(n) = 1.0; // For Direct, Double & HEX

of the bounding box of each net that is to be routed. For
example, if more than 70% of twice the length of long line
is inside the net’s bounding box then we reduce the B(n)
value for long lines. This encourages the router to route the
net using long lines with minimum wastage of segments.

6 Experimental Results

Our router, Bison, was implemented in
C++/STL/BOOST. Boost Graph Library (BGL) was
used to construct the RRG. We routed 20 MCNC bench-
marks [13] using our router on Pentium-IV 3.0 GHz
machine running Redhat Linux with 512 MB of memory.
The properties of the benchmarks are summarized in Table
1. First, T-VPack [2] is used to map the netlist (in blif for-
mat) into logic clusters of 8 4-input LUTs and FFs to model
the Virtex-II CLB which has 4 slices/CLB. Next, VPR
placement tool is used for placement and the Bison routing
tool is used to route the circuit. The circuit is repeatedly
routed with different number of wires until the router finds
the minimum number of wires required from each CLB.
Finally, we use the routing information to calculate the
effective wire segment utilization (EU). EU for long lines
is equal to the number of wire segments used to route a
net. If a long line has 10 segments and 5 of them are used,
then EU = 50% for that long line. For double, type1 and
type2 HEX lines, EU is equal to the percentage utilization
of the length of the wire. For example, If a double line
is used for direct connection then there is utilization of
1 wire segment length and EU = 50%. In Table 1, static
and dynamic EU for double, long, type1 and type2 HEX
lines is shown. The dynamic heuristic EU of all the wires
for almost all the circuits show significant improvement.
The only circuits (bigkey, des, dsip, and tseng), which do
not show any significant long line improvement are pad
limited in our architecture. In our implementation, we use
the VPRs approach and each circuit is mapped into the
smallest square FPGA that can accommodate it. For the
pad limited circuits the size of FPGA is increased from its
minimum size, and this causes our long line heuristic to
fail. The source code for our router Bison is available at:
http://www.cs.ndsu.nodak.edu/∼rautela/router.html.

7 Conclusions

In this paper, we presented a simplified scheme to build
RRG for current FPGA architectures with heterogeneous
routing resources. Although we target the Virtex-II style
routing architecture, we believe that our RRG construction
scheme can be used to model most of the recent architec-
tures. We also presented two dynamic weighting heuris-
tics to efficiently utilize different types of wires present in
Virtex-II architecture. To experimentally show the merits
of our approach, we used the RRG construction scheme and
the heuristics, to build a routability driven router, named Bi-
son. The results show significant improvement in effective
utilization of double, long, type1 and type2 HEX lines when
dynamic weight heuristics were used over static weighting
scheme.

Proceedings of the IEEE Computer Society Annual Symposium on VLSI
New Frontiers in VLSI Design

0-7695-2365-X/05 $20.00 © 2005 IEEE

Table 1. Dynamic Weight Heuristic Results
Min Effective Utilization %

Circuit LUT CLBs Pads Nets # of Double HEX–1 HEX–2 Long
/FFs wires Static Dyn Static Dyn Static Dyn Static Dyn

alu4 1522 191 22 780 3 78.56 90.44 75.45 74.21 65.69 69.91 6.56 50.36
apex2 1878 235 41 1227 3 77.84 87.71 71.54 77.56 64.43 68.83 10.38 29.19
apex4 1262 158 28 858 3 77.52 88.20 72.94 79.29 66.14 69.97 13.48 35.24
bigkey 1707 214 426 1040 2 78.07 87.84 79.71 85.27 77.30 78.70 3.10 3.70
clma 8383 1048 144 5394 4 78.83 88.75 76.65 81.72 67.33 72.46 4.63 23.02
des 1591 199 501 1210 2 75.36 89.25 74.75 82.78 72.72 76.98 3.32 4.25
diffeq 1497 188 103 1023 3 75.05 86.29 66.03 70.44 59.67 66.34 8.33 25.04
dsip 1370 172 426 762 2 74.80 83.56 79.87 86.52 75.95 78.45 2.85 5.68
elliptic 3604 451 245 2281 3 77.94 87.79 75.53 82.37 67.94 72.64 4.84 14.28
ex1010 4598 575 20 3014 4 79.40 89.08 71.82 77.23 64.66 69.52 6.03 24.81
ex5p 1064 133 71 765 3 76.71 87.96 71.10 75.86 65.09 69.25 13.86 36.60
frisc 3556 445 136 2013 3 77.35 87.30 74.03 80.22 66.95 71.37 7.05 19.99
misex3 1397 175 28 841 3 78.75 88.33 71.43 75.06 64.16 68.69 11.48 35.94
pdc 4575 572 56 2548 4 79.90 89.45 76.05 82.28 67.98 72.27 6.94 27.39
s298 1931 242 10 789 3 77.81 89.79 70.93 77.60 64.67 71.07 9.59 51.54
s38417 6406 801 135 4362 3 73.85 83.11 71.34 76.04 61.89 68.50 4.76 18.85
s38584.1 6447 806 342 4164 3 74.76 84.75 73.80 78.60 65.37 70.41 3.65 9.88
seq 1750 219 76 1054 3 77.09 87.17 72.89 78.33 64.81 69.29 10.41 35.09
spla 3690 462 62 2076 4 78.56 89.84 75.45 81.33 65.69 70.52 6.56 27.00
tseng 1407 131 174 798 2 77.23 87.45 73.46 79.29 65.60 71.82 7.04 9.55
Avg 77.27 87.70 73.74 79.10 66.70 71.35 7.24 24.37

References

[1] Xilinx Inc. Virtex-II platform FPGAs: Complete data sheet,
2004.

[2] V. Betz and J. Rose. VPR: A new packing, placement and
routing tool for FPGA research. In Proceedings of the 7th
International Workshop on Field-Programmable Logic and
Applications, pages 213–222. Springer-Verlag, 1997.

[3] V. Betz, J. Rose, and A. Marquardt. Architecture and CAD
for Deep-Submicron FPGAs. Kluwer Academic Publishers,
1999.

[4] Y.-W. Chang, S. Thakur, K. Zhu, and D. F. Wong. A
new global routing algorithm for FPGAs. In Proceed-
ings of the 1994 IEEE/ACM International Conference on
Computer-Aided Design, pages 356–361. IEEE Computer
Society Press, 1994.

[5] D. L. et. al. The Stratix routing and logic architecture. In
FPGA ’03: Proceedings of the 2003 ACM/SIGDA eleventh
International Symposium on FPGAs, pages 12–20. ACM
Press, 2003.

[6] R. Jayaraman. Physical design for FPGAs. In Proceedings
of the 2001 International Symposium on Physical Design,
pages 214–221. ACM Press, 2001.

[7] S. Lee, H. Xiang, D. F. Wong, and R. Y. Sun. Wire type
assignment for FPGA routing. In Proceedings of the 2003
ACM/SIGDA eleventh International Symposium on FPGAs,
pages 61–67. ACM Press, 2003.

[8] G. G. F. Lemieux, S. D. Brown, and D. Vranesic. On two-
step routing for FPGAs. In Proceedings of the 1997 Interna-

tional Symposium on Physical Design, pages 60–66. ACM
Press, 1997.

[9] L. McMurchie and C. Ebeling. Pathfinder: a negotiation-
based performance-driven router for FPGAs. In Proceedings
of the 1995 ACM third International Symposium on FPGAs,
pages 111–117. ACM Press, 1995.

[10] S. K. Nag and R. A. Rutenbar. Performance-driven simulta-
neous place and route for island-style FPGAs. In Proceed-
ings of the 1995 IEEE/ACM International Conference on
Computer-Aided Design, pages 332–338. IEEE Computer
Society, 1995.

[11] T. Taghavi, S. Ghiasi, A. Ranjan, S. Raje, and M. Sar-
rafzadeh. Innovate or perish: FPGA physical design. In
Proceedings of the 2004 International Symposium on Phys-
ical Design, pages 148–155. ACM Press, 2004.

[12] M. Wang, A. Ranjan, and S. Raje. Multi-million gate FPGA
physical design challenges. In Proceedings of the 2003 In-
ternational Conference on Computer-Aided Design, page
891. IEEE Computer Society, 2003.

[13] S. Yang. Logic synthesis and optimization benchmarks user
guide version. In Yang, S. Logic synthesis and optimization
benchmarks user guide version 3.0. Tech. rep., Microelec-
tronics Center of North Carolina, Jan. 1991., 1991.

[14] C. Yao-Wen and C. Yu-Tsang. An architecture-driven met-
ric for simultaneous placement and global routing for FP-
GAs. In Proceedings of the 37th Conference on Design Au-
tomation (DAC’00), pages 567–572. IEEE Computer Soci-
ety, 2000.

Proceedings of the IEEE Computer Society Annual Symposium on VLSI
New Frontiers in VLSI Design

0-7695-2365-X/05 $20.00 © 2005 IEEE

