
VPR and T-VPack User’s Manual (Version 4.30) March 27, 2000 1

VPR and T-VPack1 User’s Manual (Version 4.30)

Vaughn Betz (vaughn@eecg.toronto.edu)
March 27, 2000

1 Overview

VPR (Versatile Place and Route) is an FPGA placement and routing tool. VPR has four required and

many optional parameters; it is invoked by typing:

vpr net l is t . net a r chi t ect ur e. ar ch p l acement . p r out i ng. r [-o pt i ons]

Netlist.net is the netlist describing the circuit to be placed and/or routed, while architecture.arch

describes the architecture of the FPGA in which the circuit is to be realized. If VPR is placing a circuit, the

final placement wil l be written to placement.p; if VPR is routing a previously placed circuit, the placement

is read from placement.p. The final routing of a circuit is written to fil e routing.r. The format of each of

these files is described in Section 6.

VPR can be run in one of two basic modes. In its default mode, VPR places a circuit on an FPGA and

then repeatedly attempts to route it in order to find the minimum number of tracks required by the specified

FPGA architecture to route this circuit. If a routing is unsuccessful, VPR increases the number of tracks in

each routing channel and tries again; if a routing is successful, VPR decreases the number of tracks before

trying to route it again. Once the minimum number of tracks required to route the circuit is found, VPR

exits. The other mode of VPR is invoked when a user specifies a specific channel width for routing. In

this case, VPR places a circuit and attempts to route it only once, with the specified channel width. If the

circuit wil l not route at the specified channel width, VPR simply report that it is unroutable.

VPR can perform either global routing or combined global and detailed routing.

T-VPack is a packing program which can be used with or without VPR. It takes a technology-mapped

netlist (in blif format) consisting of lookup tables (LUTs) and flip flops (FFs) and packs the LUTs and FFs

together to form more coarse-grained logic blocks. The netlist it outputs is in the .net format required by

VPR, and hence can be fed directly into VPR. Its usage is:

t - vpack in put . bl i f o ut put . net [- opt i ons]

Typing either VPR or T-VPack with no parameters will print out a li st of all the available command

line parameters.

2 Compiling VPR and T-VPack

If your compiler of choice is gcc and you are running a Solaris-based Sparcstation, you can compile

VPR simply by typing make in the directory containing VPR’s source code and makefile. If your compiler

and/or architecture are different, however, you wil l have to make some small modifications to the make-

1. T-VPack is a timing-driven version of the VPack program that was provided with earlier versions of VPR. When
run in its non-timing-driven mode, T-VPack is equivalent to VPack.

VPR and T-VPack User’s Manual (Version 4.30) March 27, 2000 2

file. First, change the CC = gcc line in the makefile so that CC is set to the name of your desired compiler.

Second, you may want to change the line OPT_FLAGS = -O3 to set OPT_FLAGS to the value that gives

the highest level of optimization with your compiler, and it may be necessary to give the linker different

options so it f inds all the relevant libraries on your machine. If, during compilation, you get an error that

type XPointer is not defined, uncomment the “ typedef char *XPointer” line in graphics.c (many X Win-

dows implementations do not define the XPointer type). Finally, if you are compil ing VPR on a system

without X Windows (e.g. Windows NT), you should add a “#define NO_GRAPHICS” line to the top of

vpr_types.h. VPR’s built-in graphics will all be removed by this define, allowing compilation on non-X11

machines.

If you are using T-VPack to convert SIS output to VPR’s netlist format, you should make similar

modifications to T-VPack’s makefile.

3 Typical CAD Flow

Figure 1 illustrates the CAD flow we typically use. First, the SIS [1] synthesis package is used to per-

form technology-independent logic optimization of each circuit. Next, each circuit is technology-mapped

into 4-LUTs and fli p flops by FlowMap [2]. The output of FlowMap is a .bli f format netlist of LUTs and

Circuit

Logic Optimization (SIS)

Technology Map to LUTs (FlowMap)

T-VPack: Pack FFs and LUTs into Logic Blocks

Place Circuit or Read in an Existing Placement

Logic

Parameters

.blif Format Netlist of LUTs and
Flip Flops

Block

.net Format Netlist of Logic
Blocks

VPR:

Perform Either Global or Combined Global /
Detailed Routing

FPGA
Architecture

Description File

Existing Placement
or Placement from
Another CAD Tool

Placement and Routing Output Files,
Placement and Routing Statistics

Figure 1: CAD flow.

VPR and T-VPack User’s Manual (Version 4.30) March 27, 2000 3

flip flops. Our T-VPack program [3, 4, 5, 6] then packs this netlist of 4-LUTs and fli p flops into more

coarse-grained logic blocks, and outputs a netlist in the .net format VPR uses. VPR [3, 4, 7, 8, 9, 10, 11]

can then place the circuit and either globall y route it or perform combined global and detailed routing on it.

The output of VPR consists of a file describing the circuit placement, another file describing the circuit’s

routing, and various statistics concerning the minimum number of tracks per channel required to success-

fully route, the total wirelength, etc. In order to find the minimum number of tracks required for successful

routing, VPR actuall y attempts to route the circuit several times with different numbers of tracks allowed

per channel in each attempted routing.

Of course, many variations on this CAD flow are possible. One can use different logic optimizers and

technology mappers than SIS and FlowMap; just put the output netli st from your technology-mapper into

.bli f format and feed it into T-VPack. Alternatively, if the logic block you are interested in is not supported

by T-VPack, your CAD flow can bypass T-VPack altogether by outputting a netli st of logic blocks in .net

format. VPR can place and route netlists of any type of logic block -- you simply have to create the netlist

and describe the logic block in the FPGA architecture description fil e. Finally, if you want only to route a

placement produced by another CAD tool you can create a placement fil e in VPR format, and have VPR

route this pre-existing placement.

4 Operation of T-VPack

As stated earlier, T-VPack takes as input a technology-mapped netli st of lookup tables (LUTs) and

flip flops in .blif format, and outputs a .net format netlist composed of more complex logic blocks. The

logic block to be targeted is selected via command-line options. The simplest logic block T-VPack can tar-

get consists of a LUT and a FF, in the configuration shown in Figure 2. We call this logic block a basic

logic element.

To have T-VPack target a logic block of this form, use the command:

t - vpack < input.blif> <output.net> - l ut _s iz e <K> - no_c l ust er i ng

In the command above, the italicized values in angled brackets, <>, should be replaced by the fil e

names or numbers you are using, while unitali cized words are keywords and must be typed exactly as

shown.

The -lut_size <K> option specifies the number of inputs to a LUT (i.e. K in Figure 2). If - lut_size is

not specified, a default LUT size of 4 is assumed by T-VPack. The -no_clustering option indicates that

the logic block is a single basic logic element with no local routing to route the logic block output back to

the logic block inputs. By default, T-VPack marks all clock nets in the input netli st as global nets which

VPR should not route. Since clocks are typically routed via a dedicated network in FPGAs, this is usuall y

Inputs K-input
LUT

Clock
D FF Out

Figure 2: Basic logic element.

VPR and T-VPack User’s Manual (Version 4.30) March 27, 2000 4

the most realistic thing to do. If, however, you want clocks to be routed as using normal routing resources,

you should specify -global_clocks off on the T-VPack command line.

T-VPack is capable of targeting a more complex form of logic block, which we call a cluster-based

logic block [5]. Figure 3 depicts an example. A cluster-based logic block consists of N basic logic ele-

ments (i.e. N LUTs and N FFs), along with local interconnect that allows the N cluster outputs to be routed

back to LUT inputs. Since the number of logic block inputs, I, can be less than the total number of LUT

inputs (KN, where K is the number of inputs per LUT), the local interconnect also allows each of the I

inputs to be routed to any of the KN LUT inputs. Cluster-based logic blocks are very similar to the logic

blocks used in the Altera 8K and 10K FPGAs, and are reasonably similar to those used in the Xil inx 5200

and Virtex FPGAs.

To target such a logic block, use a command line of the form:

t - vpack input.blif output.net - l ut _s i ze <K> - cl us t er _si ze <N>
- i nput s_per _c l ust er <I> - cl ocks_per _cl us te r <C>

The meaning of the -inputs_per_cluster and -cluster_size parameters should be clear from Figure 3.

The -clocks_per_cluster option is used to specify how many distinct clocks can be used by each logic

block.

4.1 T-VPack Options

4.1.1 Architecture Description Options That Are Always Valid

-lut_size <int>: Number of inputs per LUT (i.e. K). Default: 4.

-no_clustering: Specifies that no clustering is to be performed -- i.e. the logic block consists of one

BLE (a LUT and a FF) with no local routing. Default: cluster.

-global_clocks {on | off}: Indicates whether clocks should be marked as being routed via a special,

global resource. VPR does not route global signals. Default: on.

BLE

BLE

. .
 .

. .
 .

N

N

BLEs
N

Outputs

Clock

I
Inputs

I

#1

#N

Figure 3: A cluster-based logic block.

VPR and T-VPack User’s Manual (Version 4.30) March 27, 2000 5

4.2 Architecture Options Valid Only When -no_clustering Is Not Specified

-cluster_size <int>: Number of BLEs in a cluster-based logic block (i.e. N). Default: 1.

-inputs_per_cluster <int>: Number of distinct inputs in a logic cluster (i.e. I). Default: lut_size *

cluster_size.

-clocks_per_cluster <int>: Number of distinct clocks in a logic cluster. Default: 1.

-muxes_to_cluster_output_pins {on | off}: If “off ” , each BLE output is hooked directly to a cluster

output pin. If “ on” , a set of N (one per cluster output) N:1 multiplexers allows each output pin to be driven

by any of the N BLEs within a cluster. Default: off .

4.3 CAD Optimization Options

-timing_driven {on | off}: Controls whether the clustering algorithm attempts to optimize circuit

timing by attempting to capture critical connections within a logic cluster. Default: on.

-connection_driven {on | off}: Controls whether or not T-VPack attempts to absorb, within one clus-

ter, connections from the output of one BLE to the input of another. Default: off.

-hill_climbing {on | off}: Controls whether the algorithm used to pack BLEs into clusters allows hill

climbing or is strictly greedy. Default: on.

-cluster_seed {timing | max_inputs}: Specifies the way in which the cluster packing algorithm picks

the first BLE to be placed in an empty cluster. Max_inputs picks the BLE with the most used inputs, while

timing picks the BLE on the most critical path. Default: timing if timing_driven is on, max_inputs other-

wise.

-allow_unrelated_clustering {on | off}: Controls whether or not BLEs with no attraction to the cur-

rent cluster can be packed into it. Default: on.

-alpha <float>: A tradeoff parameter that controls the optimization of delay in packing vs. the opti-

mization of signal sharing. A value of 0 focuses solely on signal sharing, while a value of 1 focuses solely

on timing. This option is meaningful only when timing_driven is on. Default: 0.75.

-recompute_timing_after <int>: T-VPack will recompute its estimate of how timing-critical each

connection is after packing the specified number of BLEs into clusters. This option is meaningful only

when timing_driven is on. Default: 32 000.

-block_delay <float>: The relative delay of a BLE. This option is meaningful only when

timing_driven is on. Default: 0.1.

-intra_cluster_net_delay <float>: The relative delay of a signal that goes from one BLE to another

using the local routing within a cluster. This option is meaningful only when timing_driven is on. Default:

0.1.

-inter_cluster_net_delay <float>: The relative delay of a signal that goes from one BLE to another

BLE that is in a different cluster, or an IO pad. This option is meaningful only when timing_driven is on.

Default: 1.0.

-allow_early_exit {on | off}: If on, the clusterer will stop re-timing analyzing a circuit once it

believes the current, partiall y complete packing, has fixed (“ locked”) the critical path. Default: off.

VPR and T-VPack User’s Manual (Version 4.30) March 27, 2000 6

5 Operation of VPR

Invoke VPR by typing:

vpr input.net input.arch placement.p output.routing [-options]

This section outlines how VPR’s graphics and options work; Section 6 describes the format of each of

the four fil es used by VPR.

5.1 Graphics

The graphics included in VPR are very easy to use. Click any mouse button on the arrow keys to pan

the view, or click on the Zoom-In, Zoom-Out and Zoom-Fit keys to zoom the view. Click on the Window

button, then on the diagonally opposite corners of a box, to zoom in on a particular area. Selecting Post-

Script creates a PostScript fil e (in pic1.ps, pic2.ps, etc.) of the image on screen. Proceed tell s VPR to con-

tinue with the next step in placing and routing the circuit, while Exit aborts the program. The menu buttons

will be greyed out to show they are not selectable when VPR is working, rather than interactively display-

ing graphics.

The Toggle Nets button toggles the nets in the circuit visible/invisible. When a placement is being

displayed, routing information is not yet known so nets are simply drawn as a “star;” that is, a straight line

is drawn from the net source to each of its sinks. Click on any clb in the display, and it will be highlighted

in green, while its fanin and fanout are highlighted in blue and red, respectively. Once a circuit has been

routed the true path of each net wil l be shown. Again, you can click on Toggle Nets to make net routings

visible or invisible, and cli cking on a clb or pad will highlight their fanins and fanouts.

When a routing is on-screen, clicking on Toggle RR wil l switch between various views of the routing

resources available in the FPGA. Wiring segments and clb pins are drawn in black, connections from wir-

ing segments to input pins are shown in blue, connections from output pins to wiring segments are shown

in red, and connections between wiring segments are shown in green. The points at which wiring segments

connect to clb pins (connection box switches) are marked with an “X” . Switch box connections wil l have

buffers (triangles) or pass transistors (circles) drawn on top of them, depending on the type of switch each

connection uses. Clicking on a clb or pad wil l overlay the routing of all nets connected to that block on top

of the drawing of the FPGA routing resources, and will label each of the pins on that block with its pin

number. The routing resource view can be very useful in ensuring that you have correctly described your

FPGA in the architecture description fil e -- if you see switches where they shouldn’ t be or pins on the

wrong side of a clb, your architecture description needs to be revised.

When a routing is shown on-screen, clicking on the Congestion button wil l show any overused rout-

ing resources (wires or pins) in red, if any overused resources exist. Finall y, when a routing is on screen

you can click on the Crit. Path button to see each of the nets on the critical path in turn. The current net on

the critical path is highlighted in cyan; its source block is shown in yellow and the critical sink is shown in

green.

VPR and T-VPack User’s Manual (Version 4.30) March 27, 2000 7

5.2 Command-Line Options

To get a list of all the available options type vpr with no parameters.

VPR has a lot of options. The four options most people will be interested in are -fast, -inner_num, -

route_chan_width, and -route_type. In general for the other options the defaults are fine, and only peo-

ple looking at how different CAD algorithms perform wil l try many of them. To understand what the more

esoteric placer and router options actuall y do, buy [3] or download [7, 8, 9, 10] from the author’s web page

(http://www.eecg.toronto.edu/~vaughn).

In the following text, values in angle brackets, e.g. <int>, should be replaced by the appropriate file-

name or number. Values in curly braces separated by vertical bars, e.g. { on | off } , indicate all the permissi-

ble choices for an option.

5.2.1 General Options

-fast: Sets various placer and router parameters so that a circuit will be placed and routed more

quickly, at the cost of some (~10 - 15%) degradation in quality. Note: -fast should probably not be used

with the timing-driven router, as it can degrade the circuit speed by over 30%, without significantly speed-

ing the router.

-nodisp: Disables all graphics. Useful if you're not running X Windows. Default: graphics enabled.

-auto <int>: Can be 0, 1, or 2. This sets how often you must cli ck Proceed to continue execution after

viewing the graphics. The higher the number, the more infrequently the program will pause. Default: 1.

-route_only: Take an existing placement from the placement fil e specified on the command line and

route it. Default: off.

-place_only: Place the circuit, but do not route it. Default: off.

-timing_analysis_only_with_net_delay <float>: Do not place or route the circuit; just assume the

delay of every net has the specified value (in seconds), and perform a timing analysis of the circuit. Nets

marked as .global in the netli st still have a zero delay (normall y these are just clocks); every other net is

assumed to have the specified delay.

-aspect_ratio <float>: Specifies the aspect ratio (number of columns / number of rows) of an FPGA.

Default 1 (square FPGA).

-nx <int>: Number of columns in the FPGA logic array. Default: set to minimum required to fit cir-

cuit.

-ny <int>: Number of rows in the FPGA logic array. Default: set to minimum required to fit circuit.

-full_stats: Print out some extra statistics about the circuit and its routing useful for wireabilit y analy-

sis. Default: off .

-timing_analysis { on | off }: Turn timing analysis of the routing on or off. If it is off , you don’ t have

to specify the various timing analysis parameters in the architecture file. Default: on.

VPR and T-VPack User’s Manual (Version 4.30) March 27, 2000 8

5.2.2 Placer Options

By default, the automatic annealing schedule [3, 9] is used. This schedule gathers statistics as the

placement progresses, and uses them to determine how to update the temperature, when to exit, etc. This

schedule is generall y superior to any user-specified schedule. If any of init_t, exit_t or alpha_t is specified,

the user schedule, with a fixed initial temperature, final temperature and temperature update factor is used.

-seed <int>: Sets the initial random seed used by the placer. Default: 1.

-inner_num <float>: The number of moves attempted at each temperature is inner_num times the

total number of blocks4/3 in the circuit. The number of blocks in a circuit is the number of pads plus the

number of clbs. Changing inner_num is the best way to change the speed/qualit y tradeoff of the placer, as

it leaves the highly-eff icient automatic annealing schedule on and simply changes the number of moves per

temperature. Default: 10. Note: specifying -inner_num 1 wil l speed up the placer by a factor of 10 while

typically reducing placement quali ty only by 10% or less (depends on the architecture). Hence users more

concerned with CPU time than quality may find this a more appropriate value of inner_num.

-init_t <float>: The starting temperature of the anneal for the manual annealing schedule. Default:

100.

-exit_t <float>: The (manual) anneal will terminate when the temperature drops below the exit tem-

perature. Default: 0.01.

-alpha_t <float>: The temperature is updated by multiplying the old temperature by alpha_t when the

manual annealing schedule is enabled. Default: 0.8.

-fix_pins {random | <file.pads>}: Do not allow the placer to move the I/O locations about during the

anneal. Instead, lock each I/O pad to some location at the start of the anneal. If -fix_pins random is spec-

ified, each I/O block is locked to a random pad location to model the effect of poor board-level I/O con-

straints. If any word other than random is specified after -fix_pins, that string is taken to be the name of a

file li sting the desired location of each I/O block in the netlist (i.e. -fix_pins <file.pads>). This pad loca-

tion file is in the same format as a normal placement fil e, but only specifies the locations of I/O pads, rather

than the locations of all blocks. Default: off (i.e. placer chooses pad locations).

-place_algorithm {bounding_box | net_timing_driven | path_timing_driven}: Controls the algo-

rithm used by the placer. Bounding_box focuses purely on minimizing the bounding box wirelength of the

circuit, while path_timing_driven focuses on minimizing both wirelength and the critical path delay.

Net_timing_driven is similar to path_timing_driven, but assumes that all nets have the same delay when

estimating the critical path during placement, rather than using the current placement to obtain delay esti-

mates. Default: path_timing_driven.

-place_cost_type {linear | nonlinear}: Select the (wirelength portion of the) placement cost function.

For FPGAs in which all channels have the same width the linear cost function reduces to a bounding box

wirelength cost function. The nonlinear cost function, on the other hand, considers both wirelength and

congestion during placement. Default: linear.

VPR and T-VPack User’s Manual (Version 4.30) March 27, 2000 9

-place_cost_exp <float>: Only relevant for FPGAs in which the channel width varies from channel

to channel. Sets the exponent (α) used in the linear cost function to penalize routing in narrow channels.

Default: 1.

-place_chan_width <int>: Can be used with the nonlinear cost function to tell VPR how many tracks

a channel of relative width 1 is expected to need to complete routing of this circuit. VPR will then place the

circuit only once, and repeatedly try routing the circuit as usual. If place_chan_width is not specified and

the nonlinear cost is used, VPR will replace and reroute the circuit for each channel width at which it

attempts to map the circuit.

-num_regions <int>: Used only with the nonlinear cost function. VPR wil l compute congestion on

an array of num_regions X num_regions subareas. Large values of num_regions greatly slow the placer.

Default: 4.

-enable_timing_computations {on | off}: Controls whether or not the placement algorithm prints

estimates of the circuit speed of the placement it generates. This setting affects statistics output only, not

optimization behaviour. Default: on if timing-driven placement is specified, off otherwise.

-block_dist <int>: Specifies that the placement algorithm should print out an estimate of the circuit

criti cal path, assuming that each inter-block connection is between blocks a (horizontal) distance of

block_dist logic blocks apart. This setting affects statistics output only, not optimization behaviour.

Default: 1. (Currently the code that prints out this lower bound is #ifdef ’ed out in place.c -- #define

PRINT_LOWER_BOUND in place.c to reactivate it.)

5.2.3 Placement Options Valid Only With Timing-Driven Placement

-timing_tradeoff <float>: Controls the trade-off between bounding box minimization and delay

minimization in the placer. A value of 0 makes the placer focus completely on bounding box (wirelength)

minimization, while a value of 1 makes the placer focus completely on timing optimization. Default: 0.5.

-recompute_crit_iter <int>: Controls how many temperature updates occur before the placer per-

forms a timing analysis to update its estimate of the criticalit y of each connection. Default: 1.

-inner_loop_recompute_divider <int>: Controls how many times the placer performs a timing

analysis to update its criticalit y estimates while at a single temperature. Default: 0.

-td_place_exp_first <float>: Controls how critical a connection is considered as a function of its

slack, at the start of the anneal. If this value is 0, all connections are considered equally critical. If this

value is large, connections with small slacks are considered much more critical than connections with

small slacks. As the anneal progresses, the exponent used in the criticality computation gradually changes

from its starting value of td_place_exp_first to its final value of td_place_exp_last. Default: 1.

-td_place_exp_last <float>: Controls how critical a connection is considered as a function of its

slack, at the end of the anneal. See discussion for -td_place_exp_first, above. Default: 8.

5.2.4 Router Options

-route_type {global | detailed}: Specifies whether global routing or combined global and detailed

routing should be performed. Default: detailed (i.e. combined global and detailed routing).

VPR and T-VPack User’s Manual (Version 4.30) March 27, 2000 10

-route_chan_width <int>: Tells VPR to route the circuit with a certain channel width. No binary

search on channel capacity will be performed to find the minimum number of tracks required for routing --

VPR simply reports whether or not the circuit wil l route at this channel width.

-router_algorithm {breadth_first | timing_driven}: Selects which router algorithm to use. The

breadth-first router focuses solely on routing a design successfully, while the timing-driven router focuses

both on achieving a successful route and achieving good circuit speed. The breadth-first router is capable

of routing a design using slightly fewer tracks than the timing-driving router (typically 5% if the timing-

driven router uses its default parameters; this can be reduced to about 2% if the router parameters are set so

the timing-driven router pays more attention to routability and less to area). The designs produced by the

timing-driven router are much faster, however, (2x - 10x) and it uses less CPU time to route. Default:

timing_driven.

-max_router_iterations <int>: The number of iterations of a Pathfinder-based router that will be

executed before a circuit is declared unrouteable (if it hasn’ t routed successfull y yet) at a given channel

width. Default: 30. Speed-quality trade-off: reduce this number to speed up the router, at the cost of some

increase in final track count. This is most effective if -initial_pres_fac is simultaneously increased.

-initial_pres_fac <float>: Sets the starting value of the present overuse penalty factor. Default: 0.5.

Speed-quality trade-off: increase this number to speed up the router, at the cost of some increase in final

track count. Values of 1000 or so are perfectly reasonable.

-first_iter_pres_fac <float>: Similar to -initi al_pres_fac. This sets the present overuse penalty fac-

tor for the very first routing iteration. -initial_pres_fac sets it for the second iteration. Default: 0.5.

-pres_fac_mult <float>: Sets the growth factor by which the present overuse penalty factor is multi -

plied after each router iteration. Default: 2.

-acc_fac <float>: Specifies the accumulated overuse factor (historical congestion cost factor).

Default: 1.

-bb_factor <int>: Sets the distance (in channels) outside of the bounding box of its pins a route can

go. Larger numbers slow the router somewhat, but allow for a more exhaustive search of possible routes.

Default: 3.

-base_cost_type [demand_only | delay_normalized | intrinsic_delay]: Sets the basic cost of using

a routing node (resource). Demand_only sets the basic cost of a node according to how much demand is

expected for that type of node. Delay_normalized is similar, but normalizes all these basic costs to be of

the same magnitude as the typical delay through a routing resource. Intrinsic_delay sets the basic cost of a

node to its intrinsic delay. Default: delay_normalized for the timing-driven router and demand_only for

the breadth-first router.

-bend_cost <float>: The cost of a bend. Larger numbers will lead to routes with fewer bends, at the

cost of some increase in track count. If only global routing is being performed, routes with fewer bends

will be easier for a detailed router to subsequently route onto a segmented routing architecture. Default: 1

if global routing is being performed, 0 if combined global/detailed routing is being performed.

VPR and T-VPack User’s Manual (Version 4.30) March 27, 2000 11

5.2.5 Routing Options Valid Only for Timing-Driven Routing

-astar_fac <float>: Sets how aggressive the directed search used by the timing-driven router is. Val-

ues between 1 and 2 are reasonable, with higher values trading some qualit y for reduced CPU time.

Default: 1.2.

-max_criticality <float>: Sets the maximum fraction of routing cost that can come from delay (vs.

coming from routabilit y) for any net. A value of 0 means no attention is paid to delay; a value of 1 means

nets on the critical path pay no attention to congestion. Default: 0.99.

-criticality_exp <float>: Controls the delay - routabili ty tradeoff f or nets as a function of their slack.

If this value is 0, all nets are treated the same, regardless of their slack. If it is very large, only nets on the

criti cal path wil l be routed with attention paid to delay. Other values produce more moderate tradeoffs.

Default: 1.

6 File Formats

In all the fil e format that follow, a sharp (#) character anywhere in a line indicates that the rest of the

line is a comment, while a backslash (\) at the end of a li ne (and not in a comment) means that this line is

continued on the line below.

6.1 Circuit Netlist (.net) Format

Three different circuit elements are available: input pads, output pads, and logic blocks, and are spec-

ified using the keywords .input, .output, and .clb, respectively. The format is shown below.

el ement _ty pe_keywor d blockname
 pi nl i st : net_a net_b net_c ...
 subbl ock : subblock_name pin_num1 pin_num2 ... # Only needed if a clb

A circuit element is created by specifying a keyword at the start of a li ne, followed by the name to be

used to identify this block. The line immediately below this keyword line starts with the identifier pinlist:

and then li sts the names of the nets connected to each pin of the logic block or pad. Input and output pads

(.inputs and .outputs) have only one pin, while logic blocks (.clbs) have as many pins as the architecture

file used for this run of VPR specifies. The first net listed in the pinlist connects to pin 0 of a clb, and so on.

If some pin of a clb is to be left unconnected, the corresponding entry in the pinlist should specify the

reserved word open instead of a net name.

Logic blocks (.clbs) also have to specify the internal contents of the logic block with subblock l ines.

Each clb must have at least one subblock line, and can have up to subblocks_per_clb subblock lines, where

subblocks_per_clb is set in the architecture fil e. A clb may have less than subblocks_per_clb subblock

lines, since some of the subblocks in the clb may be unused. Each subblock is a BLE -- a K-input LUT

(where K is set via the subblock_lut_size li ne in the architecture description file) and a flip flop, as shown

in Figure 2. The subblock line first gives the name of the subblock, and then gives the clb pin or a sub-

block output pin within this logic block to which each BLE pin is connected. If a BLE pin is unconnected,

the corresponding pin entry should be set to the keyword open. The order of the BLE pins is:

subblock_lut_size LUT input pins, the BLE output, and the clock input (subblock_lut_size + 2 pins total).

VPR and T-VPack User’s Manual (Version 4.30) March 27, 2000 12

Each of the subblock LUT input pins can be connected to any of the clb (logic block) input pins, or to

the output of any of the subblocks in this logic block. A connection to a clb input pin is specified by giving

the number of the clb pin in the appropriate place, while a connection to a subblock output is specified by

“ble_<subblock_number>” . For example, to connect to clb pin 0, one lists 0 in the appropriate place,

while to connect to the output of subblock 0, one lists ble_0 in the appropriate place. Each subblock clock

pin can similarly be connected to either a clb input pin or the output of a subblock in the same logic block.

If the subblock clock pin is “open” the BLE output is the unregistered LUT output; otherwise the BLE out-

put is assumed to be registered. The entry corresponding to the subblock output pin specifies the number

of the clb output pin to which it connects, or open if this subblock output is doesn’ t connect to any clb out-

put pin (which happens when a subblock output is used only locally, within a logic block).

The only other keyword is .global. Use .global li nes to specify that a net or nets should not be consid-

ered by the placement cost function or routed. It is assumed that some global routing resources exist to

route these very high fanout signals (generally clocks). The syntax of the .global statement is:

. gl obal net_a net_b ...

An example netlist in which the logic block is a single BLE is given below.

#Thi s n etl i st d escr i bes a s mal l c i r cui t wi t h t wo i nput s
#and o ne out put . T her e is o nl y o ne c l b b lo ck, w hi ch i s
#a 3 - i nput B LE (LUT+FF) t hat h as o ne u nconnec t ed i nput .
#Thi s n etl i st a ssumes t hat t he a r chi t ect ur e i nput f i l e d efi nes
#a c l b a s a 3 - i nput B LE wi t h p i ns 0 , 1 , an d 2 b ei ng t he L UT i nput s ,
#pi n 3 b ei ng t he L UT o utp ut , a nd p i n 4 b ei ng t he B LE c l ock.

. i nput a #I nput p ad.
pi nl i s t : a #Bl ocks ca n h ave t he s ame name a s n et s w it h n o c onf l i ct .

. i nput b pad
pi nl i s t : b

. c l b s i mpl e # Lo gi c b l ock .
pi nl i s t : a b o pen a nd2 o pen # 2 LU T i nput s u sed, cl ock i nput u nconnec t ed.
subbl ock : sb_one 0 1 o pen 3 o pen # S ubbl ock l i ne s ays th e s ame t hi ng.

. out put ou t _and2 #Out put pa d.
pi nl i s t : and2

In the netli st above the subblock line adds no new information -- since the logic block only contains

one BLE, which pins are hooked to this BLE is obvious. Consider a netlist in which each logic block is a

cluster-based logic block containing two subblocks, or BLEs, however.

. i nput a
pi nl i s t : a

. i nput b pad
pi nl i s t : b

. i nput c
pi nl i s t : c

. i nput c lk
pi nl i s t : c l k

VPR and T-VPack User’s Manual (Version 4.30) March 27, 2000 13

. gl obal cl k # T ypic al c ase: c l ock needn’ t b e r out ed, a s t her e’ s a
 # s peci al n et wor k f or it .

E xampl e l ogi c b l ock : 4 i nput s , 2 o ut put s , 1 c l ock.
I nt er nal l y, t he l ogi c bl ock c ont ai ns t wo B LEs,
e ach o f whi ch c onsi st s of a 3 - LUT a nd a FF.
L ocal ro ut i ng a l l ows su bbl ock o ut put s to c onnec t t o s ubbl ock i nput s i n t he s ame
l ogi c bl ock .

. c l b m or e_compl ex
pi nl i s t : a b c o pen o ut _1 out _2 c l k
subbl ock : sb_zer o 0 1 o pen 4 o pen # B LE i nput s a r e a a nd b, o ut put

 # goes t o o ut _1. Ou t put i sn’ t r egi st er ed.
subbl ock : sb_one b l e_0 1 2 5 6 # B LE i nput s a r e t he ou t put o f s ubbl ock 0,

 # and n et s b a nd c. T he o ut put g oes t o o ut _2.
 # The o ut put i s r egi st er ed.

. out put op ad_1
pi nl i s t : out _1

. out put op ad_2
pi nl i s t : out _2

In the netlist above, one needs the subblock statements to know what connections are made internall y

to the logic block by local routing. Figure 4 shows the connections this netli st describes for the clb

“more_complex.” Note also that while the subblock lines describe the internal structure of a clb in terms

of BLEs, the BLE structure is general enough that the timing behaviour of essentially arbitrary logic blocks

can be described in terms of subblock lines. VPR needs the subblock information in a netli st only for tim-

ing analysis.

6.2 FPGA Architecture File (.arch) Format

Each line in an architecture file consists of a keyword followed by one or more parameters. In the

description below, strings between curly braces, {} , denote all the possible choices for an option. All of the

following keywords must be specified in the architecture file.

Figure 4: Connections within logic block “more_complex” specified by subblock lines of netli st above.

pin 0
a

pin 1
b

pin 2
c

pin 3

pin 6
clk

out_1
pin 4

out_2
pin 5

VPR and T-VPack User’s Manual (Version 4.30) March 27, 2000 14

io_rat <int>: Sets the number of pads (inputs or outputs) that fit into the space occupied by one clb.

This is the number of pads in each row or column of the FPGA.

6.2.1 Description of Relative Channel Widths in the FPGA

The next three keywords are used to describe the relative widths of the various channels in the FPGA.

If global routing is to be performed, channels in different directions and in different parts of the FPGA can

be set to different relative widths. If detailed routing is to be performed, however, all the channels in the

FPGA must have the same width.

chan_width_io < float>: Width of the channels between the pads and core relative to the widest core

channel.

chan_width_x {gaussian | uniform | pulse | delta} <peak> <width> <xpeak> <dc>: The italicized

quantiti es are needed only for pulse, gaussian, and delta (which doesn’ t need width). Most values are from

0 to 1. Sets the distribution of tracks for the x-directed channels -- the channels that run horizontall y.

If uniform is specified, you simply specify one argument, peak. This value (by convention between 0

and 1) sets the width of the x-directed core channels relative to the y-directed channels and the channels

between the pads and core. Figure 5 should make the specification of uniform (dashed line) and pulse

(solid line) channel widths more clear. The gaussian keyword takes the same four parameters as the pulse

keyword, and they are all i nterpreted in exactly the same manner except that in the gaussian case width is

the standard deviation of the function.

The delta function is used to specify a channel width distribution in which all the channels have the

same width except one. The syntax is chan_width_x delta peak xpeak dc. Peak is the extra width of the sin-

gle wide channel. Xpeak is between 0 and 1 and specifies the location within the FPGA of the extra-wide

channel -- it is the fractional distance across the FPGA at which this extra-wide channel li es. Finall y, dc

specifies the width of all the other channels. For example, the statement chan_width_x delta 3 0.5 1 speci-

fies that the horizontal channel in the middle of the FPGA is four times as wide as the other channels.

chan_width_y {gaussian | uniform | pulse | delta} peak <width> <xpeak> <dc>: Sets the distribu-

tion of tracks for the y-directed channels.

Fractional Distance across FPGA

Channel
Width

Relative

0.

1.

1.

uniform 0.5

pulse

width

peak

dc

xpeak is pulse midpoint

Figure 5: Specification of relative channel widths.

VPR and T-VPack User’s Manual (Version 4.30) March 27, 2000 15

6.2.2 Logic Block Description

inpin class: <int> [global] {top | bottom | left | right} {top | bottom | left | right} ...: Declares an

input pin, determines the class to which this pin belongs, and sets the side(s) of CLBs on which the physi-

cal output pin connection(s) is (are). All pins with the same class number are logicall y equivalent -- such as

all the inputs of a LUT. Class numbers must start at zero and be consecutive. The global keyword is

optional; i f specified, it comes after the class number. Global input pins can connect only to signals

marked as global in the netlist (typically clocks). Global input pins are not connected into the normal rout-

ing; it is assumed they connect to a special, dedicate resource used for special nets like clocks.

outpin class: <int> {top | bottom | left | right} {top | bottom | left | right} ...: All parameters have

the same meanings as their counterparts in the inpin statement.

NOTE: The order in which your inpin and outpin statements appear must be the same as the order in

which your netlist (.net) fil e li sts the connections to the clbs. For example, if the first pin on each clb in the

netlist file is the clock pin, your first pin statement in the architecture fil e must be an inpin statement defin-

ing the clock pin.

Pads are always assumed to have only one pin (either an input or an output), and this pin is accessible

from the one channel bordering that pad. Hence no inpin or outpin statements are given for pads.

subblocks_per_clb <int>: Specifies the maximum number of subblocks, or BLEs, in each logic

block. This information is used only for timing analysis.

subblock_lut_size <int>: The number of LUT inputs to each of the subblock BLEs (i.e. K). Again,

this information is only needed for timing analysis. Even if your logic block is not constructed from BLEs,

it is possible to describe the timing relations between inputs and outputs in terms of BLEs, as one of the

examples below ill ustrates.

The li sting below is for an FPGA with all channels of the same width, and a clb compatible with that

produced by T-VPack with the -no_clustering option. This clb contains a 4-input LUT and a flip flop; the

input pins are listed first, followed by the clb output pin, followed by the clock pin. Notice that the four

inputs all have the same pin class, indicating that they are logicall y equivalent and the router may connect

nets to any one of them. Notice also that pins can be physicall y accessible from several sides.

U ni f or m channel a r chi te c t ur e, 4 - i nput LU T a nd a F F (one BLE) p er c l b.

i o_r at 2 #2 P ads p er r ow or c ol umn.
chan_wi dth _i o 1 #Same a s c or e c hannel s .
chan_wi dth _x u ni f or m 1 #Al l s ame w i dt h
chan_wi dth _y u ni f or m 1

4 - i nput LUT. L UT i nputs f i r s t , t hen o utp ut , t hen c l ock.
i npi n c l ass : 0 b ot t om t op #Physi cal pi ns a t b ot h t op an d b ot t om o f c l b.
i npi n c l ass : 0 l ef t r i ght
i npi n c l ass : 0 b ot t om t op
i npi n c l ass : 0 l ef t r i ght
out pi n c la ss: 1 t op b ot to m
i npi n c l ass : 2 t op # C l ock p i n

C l ass 0 i s L UT i nput s , c l ass 1 i s t he ou t put , c l ass 2 i s t he c l ock

VPR and T-VPack User’s Manual (Version 4.30) March 27, 2000 16

i n t hi s case.

subbl ocks_per _c l b 1 # O ne B LE i n each l ogi c b l ock
subbl ock_l ut _si ze 4 # T he L UT i n a B LE h as 4 i nput s

As a second example of an architecture fil e, consider a logic block consisting of a cluster-based logic

block, where each logic block has 5 inputs for use by its BLEs, 2 outputs and one clock input. Each logic

block contains two separate BLEs, and each BLE consists of a 4-input LUT and a flip flop. If the .net fil e

was created with T-VPack, the pin ordering we need to match the .net file is: inputs for use by BLEs, out-

puts, clock.

U ni f or m channel a r chi te c t ur e, c l us t er - based l ogi c b l ock cont ai ni ng
2 B LEs.

i o_r at 2 #2 P ads p er r ow o r c ol umn.
chan_wi dth _i o 1 #Same a s c ore c hannel s .
chan_wi dth _x u ni f or m 1 #Al l s ame w id t h
chan_wi dth _y u ni f or m 1

L ogi c bl ock w i t h 2 B LEs. 5 I nput s f or use b y B LEs f i r s t, t hen t wo
o ut put s, t hen t he c l ock .

i npi n c l ass : 0 b ot t om
i npi n c l ass : 0 l ef t
i npi n c l ass : 0 r i ght
i npi n c l ass : 0 t op
i npi n c l ass : 0 b ot t om
out pi n c la ss: 1 t op b ot to m #Out put 1
out pi n c la ss: 1 l ef t r i ght #Out put 2
i npi n c l ass : 2 g l obal t op #Cl ock - > accessi bl e o nl y by g l obal n et s i n t hi s c ase

C l ass 0 i s L UT i nput s , c l ass 1 i s t he ou t put , c l ass 2 i s t he c l ock
i n t hi s case.

subbl ocks_per _c l b 2 # T wo B LEs in e ach l ogi c b l ock
subbl ock_l ut _si ze 4 # T he L UT i n a B LE h as 4 i nput s

Notice that all the inputs are of the same class, indicating they are all logicall y equivalent, and all the

outputs are of the same class, indicating they are also logicall y equivalent. This is true of all cluster-based

logic blocks, as the local routing within the block provides full connectivity. However, for most logic

blocks all the inputs and all the outputs are not logically equivalent. For example, consider the logic block

in Figure 6, which consists of a 3-input and gate and a 2-input or gate. In this case, the set { in1, in2, in3}

is logically equivalent, and could all be made class 0. Similarly, the set { in4, in5} is logically equivalent,

and could be made class 1. Out1 and out2 are obviously not logically equivalent, so each must be a differ-

ent class, say class 2 and class 3.

VPR and T-VPack User’s Manual (Version 4.30) March 27, 2000 17

i npi n c l ass : 0 t op #i n1
i npi n c l ass : 0 l ef t #i n2
i npi n c l ass : 0 r i ght #i n3
i npi n c l ass : 1 bot t om #i n4
i npi n c l ass : 1 r i ght #i n5
out pi n c la ss: 2 l ef t #out 1
out pi n c la ss: 3 t op #out 2

If we want to perform timing analysis on the logic block of Figure 6, we must describe the timing rela-

tionship between the inputs and outputs. Clearly out1 depends only on in1, in2 and in3, while out2

depends only on in4 and in5. Therefore we could model this logic block as consisting of two BLEs, with

each BLE having 3 inputs.

subbl ocks_per _c l b 2
subbl ock_l ut _si ze 3

One line of a .net file of a circuit made out of such logic blocks might therefore be:

. c l b b l ock _1
pi nl i s t : i n1 i n2 i n3 i n4 i n5 out 1 out 2
subbl ock : and_gat e 0 1 2 5 open # o ut1 d epends o n i n1, i n2 a nd i n3,

 # and i s n ot r egi st er ed.
subbl ock : or _gat e 3 4 o pen 6 o pen # o ut2 d epends o n i n4 and i n5

 # and i s n ot r egi st er ed.

6.2.3 Detailed Routing Architecture Description

The following information is only required to be in the architecture description fil e if combined glo-

bal/detailed routing is to be performed. Note that currently combined global/detailed routing is possible

only when all channels have been specified to have the same width.

switch_block_type {subset | wilton | universal}: All the switch blocks [12] have Fs = 3. That is,

whenever horizontal and vertical channels intersect, each wire segment can connect to three other wire

segments. The exact topology of which wire segment connects to which can be one of three choices. The

subset switch box is the planar or domain-based switch box used in the Xili nx 4000 FPGAs -- a wire seg-

ment in track 0 can only connect to other wire segments in track 0 and so on. The wilton switch box is

described in [13], while the universal switch box is described in [14]. To see the topology of a switch box,

simply hit the “Toggle RR” button when a completed routing is on screen in VPR. In general the wilton

switch box is the best of these three topologies and leads to the most routable FPGAs.

Figure 6: Example logic block where many pins are not logically equivalent.

in1
in2
in3

in4

in5

out1

out2

VPR and T-VPack User’s Manual (Version 4.30) March 27, 2000 18

Fc_type {absolute | fractional}: Indicates whether the three Fc [12] values (see below) should be

interpreted as the number of tracks to which each pin connects (absolute), or the fraction of tracks in a

channel to which each pin connects (fractional).

Fc_input <float>: Sets the number of tracks to which each logic block input pin connects in each

channel bordering the pin. The Fc value used is always the minimum of the specified Fc and the channel

width, W, so you can set Fc to be huge if you want Fc to always be W.

Fc_output <float>: Sets the number of tracks to which each logic block output pin connects in each

channel bordering the pin.

Fc_pad <float>: Sets the number of tracks to which each I/O pad connects in the channel bordering

the pad.

 segment frequency: <float> length: <int | longline> wire_switch: <int> opin_switch: <int>

Frac_cb: <float> Frac_sb: <float> Rmetal: <float> Cmetal: <float>

Describes a type of segment. You can specify as many types of segments as you like -- just use one seg-

ment line for each. The meaning of each value is:

• frequency: The fraction (from 0 to 1) of routing tracks composed of this type of segment. The sum

of the frequency values for all the segment li nes must be 1 -- i. e. 100% of the tracks have been

described.

• length: Either the number of logic blocks spanned by each segment, or the keyword longline. Lon-

gline means segments of this type span the entire FPGA array.

• wire_switch: The index of the switch type used by other wiring segments to drive this type of seg-

ment. That is, switches going to this segment from other pieces of wiring will use this type of

switch.

• opin_switch: The index of the switch type used by clb and pad output pins to drive this type of seg-

ment.

• Frac_cb: Describes the internal population of the segment for connection boxes (connections to

logic blocks). This number gives the fraction (from 0 to 1) of logic blocks passed by this segment

to which it wil l have a connection box. A switch exists from a segment to a logic block pin only if

(1) the segment wants a connection box to that logic block and (2) the logic block connection box

pattern for that pin wants a connection to that segment.

• Frac_sb: Describes the internal population of the segment for switch boxes (connections to other

routing tracks). This number gives the fraction (from 0 to 1) of the length + 1 switch blocks which

could exist along the segment that do in fact exist. So, a segment of length 9 that had a Frac_sb

value of 0.5 would have 5 switch boxes along its length. Exactly which tracks a segment connects

to at each switch box is determined by the switch_box_type parameter.

• Rmetal: Resistance per unit length (in terms of logic blocks) of this wiring track, in Ohms. For

example, a segment of length 5 with Rmetal = 10 Ohms / logic block would have an end-to-end

resistance of 50 Ohms.

VPR and T-VPack User’s Manual (Version 4.30) March 27, 2000 19

• Cmetal: Capacitance per unit length (in terms of logic blocks) of this wiring track, in Farads. For

example, a segment of length 5 with Cmetal = 2e-14 F / logic block would have a total metal capac-

itance of 10e-13F.

For example, let’s say an architecture fil e describes two types of segments.

segment fr equency : 0 . 5 l engt h: 2 wi r e_swi t ch: 0 opi n_swi t ch: 0 Fr ac_cb: 1. \
 Fr ac_sb: 0 . 666 Rmet al: 5 Cmet al : 5 e- 15
segment fr equency : 0 . 5 l engt h: 4 wi r e_swi t ch: 0 opi n_swi t ch: 0 Fr ac_cb: 0. 5 \
 Fr ac_sb: 1 . Rmet al : 3 Cmet al : 2 e- 15

If the FPGA you wish to route has a channel width of 4, one channel will look as shown in Figure 7.

Notice that 2 tracks (50% of the tracks) are segments of length 2, and 2 tracks are segments of length four.

Also notice that the number of switch boxes and connection boxes along each segment has been set in

accordance with the Frac_sb and Frac_cb values for each segment type.

switch <int> buffered: { yes | no } R: <float> Cin: <float> Cout: <float> Tdel: <float>

Describes a a type of switch. This statement defines what a certain type of switch is -- segment statements

refer to a switch types by their number (the number right after the switch keyword). The various values

are:

• buffered: yes, if this switch is a tri-state buffer, no if this switch is a pass transistor.

• R: resistance of the switch.

• Cin: Input capacitance of the switch.

• Cout: Output capacitance of the switch.

• Tdel: Intrinsic delay through the switch. If this switch was driven by a zero resistance source, and

drove a zero capacitance load, its delay would be Tdel + R * Cout.

R_minW_nmos <float>: The resistance of minimum-width nmos transistor. This data is used only

by the area model built into VPR.

R_minW_pmos <float>: The resistance of minimum-width pmos transistor. This data is used only

by the area model built into VPR.

The lines below give an example of a detailed routing description from a .arch file.

Switch Box

Connection Box

Figure 7: Example of a segmented routing channel with four tracks per channel.

VPR and T-VPack User’s Manual (Version 4.30) March 27, 2000 20

swi t ch_blo ck_t ype p l anar # U ses t he f ewest s wi t ches o n a segment ed a r chi te c t ur e.
Fc_t ype fr act i onal # F c v al ues b el ow a r e i n t er ms of f r act i on o f W .

Fc_out put 1. # c l b o ut put p i ns c onnec t t o a l l W t r acks i n a dj acent c hannel s
 # (i f e ach o f t hose t r acks w ant s a c onnec ti on b ox t her e) .

Fc_i nput 0 . 5 # c l b i nput p i ns c onnect t o h al f (0. 5 * W) of a dj acent t r ack s
 # (i f e ach o f t hose t r acks w ant s a c onnec ti on b ox t her e) .

Fc_pad 0. 7 # I / O p ads c onnect t o 7 0% (0. 7 * W) o f a dja cent t r acks
 # (i f e ach o f t hose t r acks w ant s a c onnec ti on b ox t her e) .

5 0% of segment s a r e l engt h 2 , 5 0% ar e le ngt h 4 . Lengt h t wo s egment s a r e dr i ven b y
t ype 1 swi t ches w hen th e c onnect i on i s comi ng f r om anot her w i r e, a nd a r e dr i ven
b y t ype 0 s wi t ches w hen t he c onnec t i on comes f r om a c l b out put p i n.
T he l engt h f our s egment s a r e a l ways d r iv en b y t ype 0 s wit ches.

segment fr equency : 0 . 5 le ngt h: 2 w i r e_swit ch: 1 opi n_swi tc h: 0 Fr ac_cb: 1. \
 Fr ac_sb: 0 . 666 Rmet al : 5 Cmet al : 5 e-1 5
segment fr equency : 0 . 5 le ngt h: 4 Fr ac_cb: 0 . 5 F r ac_sb: 1 . Rmet al : 3 \
 Cmeta l : 2 e- 15

I n t hi s case, t ype 1 sw i t ches a r e p ass t r ansi st or s, w hi le t ype 0 s wi t ches ar e
t r i - st at e b uf f er s .

swi t ch 1 b uf f er ed: n o R: 1 00 C i n: 2 e- 15 Cout : 2 e- 15 T del : 0 # P ass t r ansi st or
swi t ch 0 b uf f er ed: y es R : 5 0 C i n: . 5e- 15 Cout : 4 e- 15 T del : 1 e- 11 # T r i - st at e b uf f er

R_mi nW_nmos 1 00 # U sed b y a r ea m odel . Mi n- wi dt h t r ansi s t or r esi st ances.
R_mi nW_pmos 2 00

6.2.4 Timing Analysis Parameters

The following parameters are required if timing analysis is to be performed on the placed and routed

circuit, or the timing-driven router is to be used.

C_ipin_cblock <float>: Input capacitance of the buffer isolating a routing track from the connection

boxes (multiplexers) that select the signal to be connected to an logic block input pin. One of these buffers

is inserted in the FPGA for each track at each location at which it connects to a connection box. For exam-

ple, a routing segment that spans three logic blocks, and connects to logic blocks at two of these three pos-

sible locations would have two isolation buffers attached to it. If a routing track connects to the logic

blocks both above and below it at some point, only one isolation buffer is inserted at that point. If your

connection from routing track to connection block does not include a buffer, set this parameter to the

capacitive loading a track would see at each point where it connects to a logic block or blocks.

T_ipin_cblock <float>: Delay to go from a routing track, through the isolation buffer (if your archi-

tecture contains these) and a connection block (typicall y a multiplexer) to a logic block input pin.

T_ipad <float>: Delay through an input pad.

T_opad <float>: Delay through an output pad.

VPR and T-VPack User’s Manual (Version 4.30) March 27, 2000 21

T_clb_ipin_to_sblk_ipin <float>: Delay from an input pin of a clb (logic block) to an input pin of a

subblock within that clb. For architectures without local routing (i.e. clb input pins connect directly to

some logic element, like a LUT or multiplexer) this delay is essentiall y zero.

T_sblk_opin_to_sblk_ipin <float>: Delay from the output of a subblock to the input of another sub-

block within the same clb. For architectures without local routing (e.g. the output of one subblock is hard-

wired to the input of another) this delay is essentiall y zero.

T_sblk_opin_to_clb_opin <float>: Delay from the output of a subblock to a clb (logic block) output

pin. For architectures without local routing (e.g. the output of a LUT is hardwired to each logic block out-

put), this delay is essentially zero.

T_subblock T_comb: <float> T_seq_in: <float> T_seq_out: <float>

Describes the delays within a subblock. There must be one T_subblock line for each subblock a logic

block can contain -- i.e. there must be subblocks_per_clb of these T_subblock lines. The first line specifies

the delays of subblock zero, which is the first subblock listed in each clb in the circuit netlist fil e. The sec-

ond T_subblock line specifies the delay of subblock one, (the second subblock in each clb in the circuit

netlist file), and so on. If the subblocks within a clb have different delays then, you must list them in the

same order in the architecture and netli st fil es.

Figure 8: Routing track to logic block connection structure.

Connection
Block

Logic Block

Routing Track
Isolation Buffer

CLB

Inputs

CLB
Outputs

Subblock
0

Subblock
1 T_sblk_opin_to_clb_opin

T_clb_ipin_to_sblk_ipin

T_sblk_opin_to_sblk_ipin

Figure 9: Local routing delays within a logic block (CLB).

VPR and T-VPack User’s Manual (Version 4.30) March 27, 2000 22

• T_comb: The delay from any subblock input to the subblock output when this subblock is used in

combinational mode. A subblock is used in combinational mode when the netli st leaves its clock

pin OPEN.

• T_seq_in: The delay from any subblock input pin to the FF storage element when this subblock is

used in sequential mode. A subblock is used in sequential mode when the netli st hooks its clock

pin to some signal. If this subblock was a simple flip flop, for example, then T_seq_in is the setup

time. If this subblock corresponds to, say, a LUT feeding into a fli p flop, then T_seq_in should be

set to the LUT delay plus the setup time.

• T_seq_out: The delay from the subblock storage element (FF) to the subblock output pin when this

block is used in sequential mode. A subblock is used in sequential mode when the netlist hooks its

clock pin to some signal. If this subblock had a flip flop hooked to its output pin, for example, then

T_seq_out would be the clock-to-Q delay of the flip flop.

6.3 Placement File Format:

The first line of the placement fil e li sts the netlist (.net) and architecture (.arch) files used to create this

placement. This information is used to ensure you are warned if you accidentally route this placement with

a different architecture or netlist f ile later. The second line of the file gives the size of the logic block array

used by this placement.

All the following lines have the format:

block_name x y subblock_number

The block name is the name of this block, as given in the input netli st. X and y are the row and col-

umn in which the block is placed, respectively. The subblock number is meaningful only for pads. Since

we can have more than one pad in a row or column when io_rat is set to be greater than 1 in the architec-

ture file, the subblock number specifies which of the several possible pad locations in row x and column y

contains this pad. Note that the first pads occupied at some (x, y) location are always those with the lowest

subblock numbers -- i.e. if only one pad at (x, y) is used, the subblock number of the I/O placed there will

be zero. For clbs, the subblock number is always zero.

The placement fil es output by VPR also include (as a comment) a fifth field: the block number. This

is the internal index used by VPR to identify a block -- it may be useful to know this index if you are mod-

ifying VPR and trying to debug something.

Figure 10 shows the coordinate system used by VPR via a small 2 x 2 clb FPGA. The number of clbs

in the x and y directions are denoted by nx and ny, respectively. Clbs all go in the area with x between 1

and nx and y between 1 and ny, inclusive. All pads either have x equal to 0 or nx + 1 or y equal to 0 or ny +

1.

An example placement file is given below.

VPR and T-VPack User’s Manual (Version 4.30) March 27, 2000 23

Net l i s t fi l e: x or 5. net Ar chi t ect ur e f i le : s ampl e. ar ch
Ar r ay s i ze : 2 x 2 l ogi c bl ocks

#bl ock n ame x y subbl k bl ock n umber
#- - - - - - - -- -- - -
a 0 1 0 #0 - - N B: b l ock n umber i s a c omment .
b 1 0 0 #1
c 0 2 1 #2
d 1 3 0 #3
e 1 3 1 #4
out : xor 5 0 2 0 #5
xor 5 1 2 0 #6
[1] 1 1 0 #7

The blocks in a placement file can be listed in any order.

6.4 Routing File Format

The first line of the routing file gives the array size, nx x ny. The remainder of the routing fil e lists the

global or the detailed routing for each net, one by one. Each routing begins with the word net, followed by

the net index used internall y by VPR to identify the net and, in brackets, the name of the net given in the

netlist file. The following lines define the routing of the net. Each begins with a keyword that identif ies a

type of routing segment. The possible keywords are SOURCE (the source of a certain output pin class),

SINK (the sink of a certain input pin class), OPIN (output pin), IPIN (input pin), CHANX (horizontal

channel), and CHANY (vertical channel). Each routing begins on a SOURCE and ends on a SINK. In

Figure 10: Coordinate system used by VPR.

Pad
(1,3)

Pad
(2,3)

Pad
(0,2)

Pad
(0,1)

Pad
(3,2)

Pad
(3,1)

Pad
(1,0)

Pad
(2,0)

Clb
(1,2)

Clb
(2,2)

Clb
(1,1)

Clb
(2,1)

Chanx
(1,0)

Chanx
(2,0)

Chanx
(1,1)

Chanx
(2,1)

Chanx
(1,2)

Chanx
(2,2)

Chany
(0,2)

Chany
(0,1)

Chany
(1,1)

Chany
(1,2)

Chany
(2,2)

Chany
(2,1)

VPR and T-VPack User’s Manual (Version 4.30) March 27, 2000 24

brackets after the keyword is the (x, y) location of this routing resource. Finally, the pad number (if the

SOURCE, SINK, IPIN or OPIN was on an I/O pad), pin number (if the IPIN or OPIN was on a clb), class

number (if the SOURCE or SINK was on a clb) or track number (for CHANX or CHANY) is li sted --

whichever one is appropriate. The meaning of these numbers should be fairly obvious in each case. If we

are attaching to a pad, the pad number given for a resource is the subblock number defining to which pad at

location (x, y) we are attached. See Figure 10 for a diagram of the coordinate system used by VPR. In a

horizontal channel (CHANX) track 0 is the bottommost track, while in a vertical channel (CHANY) track

0 is the leftmost track. Note that if only global routing was performed the track number for each of the

CHANX and CHANY resources listed in the routing wil l be 0, as global routing does not assign tracks to

the various nets.

For an N-pin net, we need N-1 distinct wiring “paths” to connect all the pins. The first wiring path

will always go from a SOURCE to a SINK. The routing segment listed immediately after the SINK is the

part of the existing routing to which the new path attaches. It is important to realize that the first pin after

a SINK is the connection into the already specified routing tree; when computing routing statistics be sure

that you do not count the same segment several times by ignoring this fact. An example routing for one net

is listed below.

Net 5 (xor 5)

SOURCE (1, 2) Cl ass : 1 # S our ce f or p i ns o f c l ass 1.
 OPI N (1, 2) Pi n: 4
 CHANX (1, 1) Tr ack : 1
 CHANX (2, 1) Tr ack : 1
 I PI N (2, 2) Pi n: 0
 SI NK (2, 2) Cl ass : 0 # S i nk f or pi ns o f c l ass 0 on a c l b.
 CHANX (1, 1) Tr ack : 1 # N ot e: Connec t i on t o e x i s ti ng r out i ng!
 CHANY (1, 2) Tr ack : 1
 CHANX (2, 2) Tr ack : 1
 CHANX (1, 2) Tr ack : 1
 I PI N (1, 3) Pad: 1
 SI NK (1, 3) Pad: 1 # T hi s s i nk i s an o ut put p ad a t (1, 3) , s ubbl ock 1.

Nets which are specified to be global in the netlist fil e (generally clocks) are not routed. Instead, a list

of the blocks (name and internal index) which this net must connect is printed out. The location of each

block and the class of the pin to which the net must connect at each block is also printed. For clbs, the class

is simply whatever class was specified for that pin in the architecture input fil e. For pads the pinclass is

always -1; since pads do not have logicall y-equivalent pins, pin classes are not needed. An example li sting

for a global net is given below.

Net 1 46 (p c l k) : g l obal ne t c onnect i ng:
Bl ock p c lk (#146) a t (1, 0) , p i ncl ass - 1.
Bl ock p ksi _17_ (#431) a t (3, 2 6) , p i nc l ass 2 .
Bl ock p ksi _185_ (#432) at (5, 4 8) , p i ncl ass 2 .
Bl ock n _n2879 (#433) a t (49, 2 3) , p i nc l ass 2 .

VPR and T-VPack User’s Manual (Version 4.30) March 27, 2000 25

7 Debugging Aids

After parsing the netli st and architecture files, VPR dumps out an image of its internal data structures

into net.echo and arch.echo. These fil es can be examined to be sure that VPR is parsing the input files as

you expect. The critical_path.echo file li sts details about the critical path of a circuit, and is very useful for

determining why your circuit is so fast or so slow. Various other data structures can be output if you

uncomment the calls to the output routines; search the code for echo to see the various data that can be

dumped.

If the preprocessor flag DEBUG is defined in vpr_types.h, some additional sanity checks are per-

formed during a run. I normall y leave DEBUG on all the time, as it only slows execution by 1 to 2%. The

major sanity checks are always enabled, regardless of the state of DEBUG. Finally, if VERBOSE is set in

vpr_types.h, a great deal of intermediate data will be printed to the screen as VPR runs. If you set verbose,

you may want to redirect screen output to a file.

The initial and final placement costs provide useful numbers for regression testing the netli st parsers

and the placer, respectively. I generate and print out a routing serial number to allow easy regression test-

ing of the router.

Finall y, if you need to route an FPGA whose routing architecture cannot be described in VPR’s archi-

tecture description file, don’ t despair! The router, graphics, sanity checker, and statistics routines all work

only with a graph that defines all the available routing resources in the FPGA and the permissible connec-

tions between them. If you change the routines that build this graph (in rr_graph*.c) so that they create a

graph describing your FPGA, you should be able to route your FPGA. If you want to read a text fil e

describing the entire routing resource graph, call the dump_rr_graph subroutine.

8 References

[1] E. M. Sentovich et al, “SIS: A System for Sequential Circuit Analysis,” Tech. Report No. UCB/ERL
M92/41, University of Cali fornia, Berkeley, 1992.

[2] J. Cong and Y. Ding, “FlowMap: An Optimal Technology Mapping Algorithm for Delay Optimiza-
tion in Lookup-Table Based FPGA Designs,” IEEE Trans. CAD, Jan. 1994, pp. 1 - 12.

[3] V. Betz, J. Rose and A. Marquardt, Architecture and CAD for Deep-Submicron FPGAs, Kluwer
Academic Publishers, 1999.

[4] V. Betz, “Architecture and CAD for the Speed and Area Optimization of FPGAs,” Ph.D. Disserta-
tion, University of Toronto, 1998.

[5] V. Betz and J. Rose, “Cluster-Based Logic Blocks for FPGAs: Area-Efficiency vs. Input Sharing
and Size,” CICC, 1997, pp. 551 - 554.

[6] A. Marquardt, V. Betz and J. Rose, “Using Cluster-Based Logic Blocks and Timing-Driven Packing
to Improve FPGA Speed and Density,” ACM/SIGDA Int. Symp. on FPGAs, 1999, pp. 37 - 46.

[7] V. Betz and J. Rose, “Directional Bias and Non-Uniformity in FPGA Global Routing Architec-
tures,” ICCAD, 1996, pp. 652 - 659.

[8] V. Betz and J. Rose, “On Biased and Non-Uniform Global Routing Architectures and CAD Tools for
FPGAs,” CSRI Technical Report #358, Department of Electrical and Computer Engineering, Uni-

VPR and T-VPack User’s Manual (Version 4.30) March 27, 2000 26

versity of Toronto, 1996. (Available for download from http://www.eecg.toronto.edu/~vaughn/
papers/techrep.ps.Z).

[9] V. Betz and J. Rose, “VPR: A New Packing, Placement and Routing Tool for FPGA Research,”
Seventh International Workshop on Field-Programmable Logic and Appli cations, 1997, pp. 213 -
222.

[10] A. Marquardt, V. Betz and J. Rose, “Timing-Driven Placement for FPGAs,” ACM/SIGDA Int. Symp.
on FPGAs, 2000, pp. 203 - 213.

[11] V. Betz and J. Rose, “Automatic Generation of FPGA Routing Architectures from High-Level
Descriptions,” ACM/SIGDA Int. Symp. on FPGAs, 2000, pp. 175 - 184.

[12] S. Brown, R. Francis, J. Rose, and Z. Vranesic, Field-Programmable Gate Arrays, Kluwer Aca-
demic Publi shers, 1992.

[13] S. Wilton, “Architectures and Algorithms for Field-Programmable Gate Arrays with Embedded
Memories,” Ph.D. Dissertation, University of Toronto, 1997. (Available for download from http://
www.ee.ubc.ca/~stevew/publi cations.html).

[14] Y. W. Chang, D. F. Wong, and C. K. Wong, “Universal Switch Modules for FPGA Design,” ACM
Trans. on Design Automation of Electronic Systems, Jan. 1996, pp. 80 - 101.

	VPR and T-VPack User’s Manual (Version 4.30)
	Vaughn Betz (vaughn@eecg.toronto.edu)
	March 27, 2000
	1 Overview
	2 Compiling VPR and T-VPack
	3 Typical CAD Flow
	Figure 1: CAD flow.

	4 Operation of T-VPack
	Figure 2: Basic logic element.
	Figure 3: A cluster-based logic block.
	4.1 T-VPack Options
	4.1.1 Architecture Description Options That Are Always Valid

	4.2 Architecture Options Valid Only When -no_clustering Is Not Specified
	4.3 CAD Optimization Options

	5 Operation of VPR
	5.1 Graphics
	5.2 Command-Line Options
	5.2.1 General Options
	5.2.2 Placer Options
	5.2.3 Placement Options Valid Only With Timing-Driven Placement
	5.2.4 Router Options
	5.2.5 Routing Options Valid Only for Timing-Driven Routing

	6 File Formats
	6.1 Circuit Netlist (.net) Format
	Figure 4: Connections within logic block “more_complex” specified by subblock lines of netlist ab...

	6.2 FPGA Architecture File (.arch) Format
	6.2.1 Description of Relative Channel Widths in the FPGA
	Figure 5: Specification of relative channel widths.

	6.2.2 Logic Block Description
	Figure 6: Example logic block where many pins are not logically equivalent.

	6.2.3 Detailed Routing Architecture Description
	Figure 7: Example of a segmented routing channel with four tracks per channel.

	6.2.4 Timing Analysis Parameters
	Figure 8: Routing track to logic block connection structure.
	Figure 9: Local routing delays within a logic block (CLB).

	6.3 Placement File Format:
	Figure 10: Coordinate system used by VPR.

	6.4 Routing File Format

	7 Debugging Aids
	8 References
	[1] E. M. Sentovich et al, “SIS: A System for Sequential Circuit Analysis,” Tech. Report No. UCB/...
	[2] J. Cong and Y. Ding, “FlowMap: An Optimal Technology Mapping Algorithm for Delay Optimization...
	[3] V. Betz, J. Rose and A. Marquardt, Architecture and CAD for Deep-Submicron FPGAs, Kluwer Acad...
	[4] V. Betz, “Architecture and CAD for the Speed and Area Optimization of FPGAs,” Ph.D. Dissertat...
	[5] V. Betz and J. Rose, “Cluster-Based Logic Blocks for FPGAs: Area-Efficiency vs. Input Sharing...
	[6] A. Marquardt, V. Betz and J. Rose, “Using Cluster-Based Logic Blocks and Timing-Driven Packin...
	[7] V. Betz and J. Rose, “Directional Bias and Non-Uniformity in FPGA Global Routing Architecture...
	[8] V. Betz and J. Rose, “On Biased and Non-Uniform Global Routing Architectures and CAD Tools fo...
	[9] V. Betz and J. Rose, “VPR: A New Packing, Placement and Routing Tool for FPGA Research,” Seve...
	[10] A. Marquardt, V. Betz and J. Rose, “Timing-Driven Placement for FPGAs,” ACM/SIGDA Int. Symp....
	[11] V. Betz and J. Rose, “Automatic Generation of FPGA Routing Architectures from High-Level Des...
	[12] S. Brown, R. Francis, J. Rose, and Z. Vranesic, Field-Programmable Gate Arrays, Kluwer Acade...
	[13] S. Wilton, “Architectures and Algorithms for Field-Programmable Gate Arrays with Embedded Me...
	[14] Y. W. Chang, D. F. Wong, and C. K. Wong, “Universal Switch Modules for FPGA Design,” ACM Tra...

