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Abstract

Foult tolerant techniques are proposed which make
use of the reconfigurability of SRAM-based field pro-
grammable gate arrays (FPGAs). Based on the prin-
ciple of node-covering, a routing discipline is developed
that reserves unused wiring in the routing channels
to allow each cell to cover (to be able to replace) its
neighbor in a row. If testing identifies a faulty cell,
switches are set to reconfigure the faulty cell out of the
array. Not only can reconfiguration of the FPGA be
performed by the user, but it can also be done at the
factory in such a way as to be transparent to a user
programming the array. This can result in substantial
yield improvement.

1 Introduction

Our model characterizes a Field Programmable
Gate Array (FPGA) as being composed of an array
of programmable logic cells surrounded by channels of
segmented programmable interconnection wiring. The
channel wiring architecture is shown in Fig. 1, and
a logic cell consists of programmable combinational
functions with optional output registers. This model
is similar to the Xilinx FPGA architecture [7]. We
are interested in reprogrammable FPGAs, in which
data in a configuration memory overlaid on the ar-
ray defines the interconnection of the channel wiring
and the functions performed by the logic cells. Signals
from the memory control pass transistors to make or
break programmable connections and define the func-
tions realized by the array. Reprogrammability allows
a test configuration to be programmed into an FPGA
at the factory, or at power-up in a user’s system, be-
fore reprogramming to the desired configuration.

Fault tolerance (FT) in FPGAs is desirable from
two points of view. For the manufacturer, it can in-
crease the yield of usable chips. If faults can be de-
tected and reconfigured around at the factory in a
manner such that they are transparent to the user,
then these chips do not have to be discarded. For
the user, fault tolerance means reduced downtime and
lower maintenance costs. We propose a technique
whereby FPGAs may be reconfigured around faults
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detected at the factory in ways transparent to the user,
thus increasing the overall yield of usable chips. We
also show how the technique can be modified to al-
low the user to automatically reconfigure an FPGA
around faulty cells.
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Figure 1: FPGA generic channel wiring architecture
with segment length spanning one cell.

1.1 Existing Fault Tolerance Methods

Since FPGAs are composed of a large number of
identical cells in a highly regular array, two methods of
providing fault tolerance are readily apparent. One is
simply to note the locations of faulty cells and reroute
the user’s circuit to avoid them using spares or other
unused cells instead [3, 6]. However, requiring the
layout tools to perform a new routing of a circuit for
each new faulty cell location encountered puts a heavy
burden on the user, who must also keep track of all
of the different routings for a given circuit design. A
variation on this rerouting technique makes fault toler-
ance transparent to the user by using extra wiring and
factory-configured switches on the tracks to physically
“warp” the channel routing segments around a faulty
cell while maintaining the same logical routing config-
uration. The extra switch delay overhead is too high
for use in reconfiguring around individual FPGA cells,
but can be employed more efficiently using blocks of
cells [5]. However, the area overhead of spare blocks
of cells and extra wiring is also very high.

The other fault tolerant technique, adding spare
rows and/or columns of cells, is intended for recon-
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figuration at the factory, making the technique trans-
parent to the user. To reconfigure around a faulty
row, fuses are burned at the factory such that non-
faulty rows are remapped to include the spare row.
For the faulty row to be transparent, it is necessary to
maintain the original connectivity between the rows
on either side of the faulty one. One method of doing
this is to employ longer wiring segments in the verti-
cal channels, but then extra tracks (segmented channel
wires) must be added to these channels to retain the
original routing flexibility [4].

1.2 Proposed Fault Tolerant Method

Variations on our proposed method of fault toler-
ance allow reconfiguration around faults to be per-
formed by the user, by the factory, or by both. We
require neither the factory nor the user to generate
new routing maps to reconfigure around faulty cells.
Instead, the original configuration data can be reused.
No extra switches need to be added in the channel
wiring, as is done in [5], but the method involves a
routing strategy that requires the use of additional
wiring segments. On the other hand, no additional
tracks are needed in the channels in order to avoid the
loss of connection flexibility seen in [4]. Our method
has the low overhead of spare rows or columns, but
promises greater yield improvement because it is a
finer-grained FT method and is able to tolerate more
fault patterns.

2 Node Covering Method

Under the principle of node-covering [2], each pri-
mary node, or cell, » in the FPGA is assigned a cover
cell which can be reconfigured to replace it in the event
that cell © becomes faulty. Primary cells are assigned
to cover other primary cells in a chain-like manner,
with a spare cell covering the last primary cell in the
chain. If a faulty cell is identified through testing, the
FPGA can be reconfigured such that the faulty cell is
replaced by its cover, which in turn is replaced by its
own cover, and so on until a spare cell in the chain is
reached.

Our FT FPGA designs will be able to tolerate one
fault in each row (or column), and this will subse-
quently be called the node-covering method. In order
for a cell to cover another cell (the dependent cell), two
conditions must be met. First, the cover cell must be
able to duplicate the functionality of the dependent
cell. This is easy in an FPGA, since all cells are iden-
tical. Configuration data for the dependent cell itself
is simply transposed to the cover cell. Second, the
cover cell must be able to duplicate the connectivity
of the dependent cell with respect to the rest of the ar-

ray. Our method of ensuring connectivity is described
next.

2.1 Cover Segments

Consider a row of the FPGA to be a fault tolerant
group, with the rightmost cell being a spare. We will
assume the generic channel wiring of Fig. 1, though the
technique also applies to segments of longer lengths.
The channel segment interconnections will be consid-
ered to be separate from the cell-to-channel-segment
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connections, which will be associated with the cell con-
figuration. Therefore, when cell configuration data is
transposed to a cover cell, all of the cell-to-channel
connection data is transposed as well. Figure 2 shows
some representative nets routed to allow the replace-
ment of each cell by its cover cell. These nets are
shown as (a) initially configured, and (b) reconfigured
around faulty cells.

To meet the connectivity requirement, each net con-
nected to a cell through a channel segment must also
include the corresponding channel segment—a cover
segment—bordering the cover cell. Cover segments
are included in a net in one of two ways. First, seg-
ments in the net may already be in positions to act as
covers. For example, in Fig. 2a, the channel segment
connecting to Cell A is covered by the net channel seg-
ment connecting to Cell B. In case the above condition
does not hold, additional segments, termed reserved
segments, should be attached to the net to provide
covers, and these constitute overhead since they are
only in use when the circuit is reconfigured around a
faulty cell. For example, the channel segment connect-
ing to Cell B must be covered by a reserved segment
that can be connected to Cell C, which covers Cell B.
With fault tolerant groups defined along rows, cover-
ing a cell connection to a horizontal channel segment
requires, at most, one reserved segment. Covering a
cell connection to a vertical channel segment, however,
can require up to two reserved segments if the cover is
not already provided in the net. This is illustrated in
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Figure 2: (a) Fault tolerant routing of nets using cover
segments. (b) Reconfiguration around faulty cells.



Fig. 2a, where it can be seen that the vertical chan-
nel segment connecting to Cell C is already covered by
channel segments of the same net connecting to Cell D.
However, for the net connection to Cell D two reserved
segments are required for the connection to Cell D’s
cover, the spare cell at the end of that row. One is the
vertical cover segment that can be connected to the
spare cell if and when the spare replaces Cell D; the
other is a horizontal segment to connect the vertical
segment to the net.

A point-to-point path is defined as a connection ei-
ther between a pair of cell terminals or between an
I/0 pad and a cell terminal. A net consists of such in-
tersecting point-to-point paths. When two paths of a
net connect at some point, the unused track segments
available might not allow them to share the same seg-
ment at the connection point, and thus be connected
along a single track. In such a situation, the router
may perform a “track-hop,” in which the two point-
to-point paths are routed along different tracks (in the
same channel), using the cell terminal to connect the
tracks. This is illustrated in Fig. 2a with a track-hop
at the connection to Cell E. In such a situation, there
are two segments of the same net connected to Cell E,
and both must be covered. The cover segment for the
lower one is already part of the net, and a reserved
segment over cover Cell F must be added to cover the
other, as seen in Fig. 2a. A reconfiguration is shown
in Fig. 2b, where the track-hop is now performed at
the new Cell E (previously Cell F).

2.2 Reconfiguration

The reconfiguration procedure described here as-
sumes that cover segments necessary for reconfigura-
tion around a faulty cell are provided by the routing
tools and included in the initial configuration data.
Our model of the configuration memory assumes that
its data is loaded serially.
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Figure 3: (a) Row of factory reconfigurable FPGA
cells. (b) Reconfigured around faulty cell with config-
uration data for the faulty cell reset to the null state.
Flow path of configuration data is highlighted.

Figure 3a shows the configuration memory for a
fault tolerant row of an FPGA, where the last cell in
the row is a spare. Configuration data for a cell and
its connections to the channel wiring is grouped con-
tiguously in its shift register. Configuration data for
the channel segment interconnections is kept separate
from the cell data for a row, either in its own portion
of the same shift register or else in its own shift reg-
ister. The last (spare) cell in the row is initially reset
to a null configuration to disconnect it from the array.
Configuration data produced by the user’s placement
and routing tools assumes that the primary cells are
non-faulty and maps them to the user’s circuit ac-
cordingly. However, it also includes channel segment
covers to allow for reconfiguration around one faulty
cell per row. Both spares and faulty cells are trans-
parent to the user. When configuration data is loaded
in the absence of faults, it simply bypasses the spare
cell enroute to the other rows, and a factory-enabled
signal forces the configuration pass-transistors of the
spare cell to the OFF state in order to disconnect that
cell from the array, as shown in Fig. 3a. If a cell is
faulty, the faulty cell’s configuration pass-transistors
are turned off instead. The user does not need to
know the location of factory-detected faulty cells and
does not need to modify the configuration data ob-
tained from the router. Instead, laser-programmable
links burned at the factory allow configuration data to
bypass the detected faulty cells and travel to the cover
cells when it is loaded into the FPGA. Configuration
data originally intended for the faulty cell and the
cells following it in that row is rerouted by a factory-
programmed mux in the cell so that it automatically
flows instead to the cover cells, including the spare cell,
as shown in Fig. 3b. Since the F'T routing rules ensure
that cover segments are already programmed into the
channel segment configuration data, a correct recon-
figuration is automatically achieved when the configu-
ration data is loaded, and any factory-detected faults
are transparent to the user adhering to these rules.

If the laser-programmable links are replaced by
switches controlled by non-volatile microconfiguration
memory bits (e.g. EEPROM), reconfiguration can be
performed by both the factory and the user. As with
laser-programmable links, reconfiguration performed
at the factory is transparent to the user. However, a
user detecting any additional fault now has the capa-
bility of reading from and writing to the microconfig-
uration memory to reconfigure around the new fault.

3 Eliminating Reserved Segment De-

lay

Due to the additional parasitic capacitance, the
propagation delay of a net will increase if reserved seg-
ments are left attached to the nets before any reconfig-
uration. This effect can be minimized and even elimi-
nated if reserved segments are not actually connected
to the nets until they are needed. We present two
different methods to facilitate this. The first requires
additional memory external to the FPGA, while the
second requires additional circuitry inside the FPGA.

In the first method, the routing tools would produce
two separate maps of track interconnections for each
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Figure 4: Automatic connection of reserved segments
to a cover cell for reconfiguration. (a) Top cell-to-
channel connection. (b) Right cell-to-channel connec-
tion.

channel row. The reconfiguration map would have all
of the reserved segments connected, and the normal
map would connect only those segments necessary for
fault-free operation. Both maps would be loaded into
the FPGA upon initialization, one after the other for
each channel row. A faulty cell present in a row would
cause the reconfiguration maps for the channels above
and below that row to be selected for shifting into the
channel configuration memory. Otherwise, the nor-
mal maps would be shifted in and the reconfiguration
maps shunted aside. Only those nets affected by the
reconfiguration would experience a propagation delay
penalty, and it would be much less than if all of the
reserved segments were connected. Only the track seg-
ment connection data needs to be duplicated, and is
estimated to be about .30% of the total configuration
data. ‘

The second method makes use of the fact that there
is a simple relationship between the locations of the
cell-to-channel connections and the locations of the
pass transistors in the segment-to-segment connection
switches required to connect the reserved segments for
a reconfigured cell. Circuitry associated with each cell
would sense that the cell has been reconfigured as a
cover and would force ON the appropriate pass transis-
tors to connect cover segments-as directed by the cell-
to-channel connection data then in effect. This can
be seen for a top cell-to-channel connection in Fig. 4a,
where the output of the cell configuration memory bit
controlling the cell-to-channel pass transistor also con-
trols which channel routing configuration pass transis-
tor to turn ON. Figure 4b applies to either a left or
right. cell connection, where it must be assured that
two pass transistors are ON.

4 Yield Improvement

An important benefit of fault tolerance is an im-
provement in chip yield, where chip yield is defined as
the percentage of usable chips. We present a compari-
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son of our technique to the spare rows and/or columns
techniques based on a set of common parameters. It is
necessary in all of the techniques that channel wiring
must remain fault-free in order to reconfigure around
faulty cells. Wiring is also more robust than logic and
so we will consider yield improvement based only on
active cell area. A 16 X 16 array of cells is defined,
to which will be added one spare row and/or column
of cells or one spare cell per row. We use the Poisson
yield model [1}, in which defects are assumed to occur
uniformly and independently. For each of the fault
tolerant techniques, the yield of an array is computed
as the sum of the probabilities of all usable configu-
rations of defective and defect-free cells. These fault
tolerant yields are plotted in Fig. 5 against the yield of
the array without fault tolerance. It can be seen that
the node-covering technique offers much greater yield
improvement than using a spare column, although it
has the same low area overhead in spare cells—about
6%. Also, it offers significantly more yield improve-
ment than the technique of spare rows and columns,
which has twice as much area overhead.
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Figure 5: Fault tolerant yield comparison.

5 Overheads of Fault Tolerance
Although the potential of this FT technique for im-
proving yield is significant, it can have an effect on the
routability of a circuit. Some nets may have a high re-
served channel segment overhead, and this may reduce
the circuit’s routability. In order to quantify this ef-
fect, we analyze the number of routing tracks required -
with and without our FT techniques.

5.1 Analysis Procedure

We have obtained FPGA routing software from the
University of Toronto, and also several MCNC bench-
mark circuits whose netlists are in a format compat-
ible with the routing tools. The software consists of
a global router which assigns channels to the route
ofeach point-to-point signal connection in a net, and
a detailed router which chooses the actual track seg-
ments within the channels to be used by the nets.
Thus, we are able to compare the number of tracks
required in a non-FT circuit to the number after FT
techniques have been applied.

We input the node covering specifications to the
global router. However, since it is not known at that



Without Track-hopping With - Uncovered Track-hopping Segment Usage with

segments used tracks used segments used tracks used Covered Track-hopping

MCNC circuit | non- ovhd.| non- ovhd.| non- ovhd.| non- ovhd. ovhd.
benchmark | nets FT FT % { FT FT % | FT FT % { FT FT % FT %
too_large 186 1730 | 2332 | 35 14 24 | 71 | 1822 | 2604 | 43 12 17 | 42 2876 58
example2 205 1707 | 2190 | 28 21 24 | 14 | 1762 | 2379 | 35 19 19 0 2568 46
vda 225 2644 | 3408 | 29 17 26 | 53 | 2774 | 3802 | 37 16 20 | 25 4196 51
alu2 153 1453 | 2009 | 38 13 23 | 77 | 1542 | 2280 | 48 12 16 | 33 2551 65
alu4 256 3024 | 3944} 30 17 28 | 65 | 3193 | 4424 | 39 16 18 | 12 4904 54

average | [ 32 | 56 | 40 | 22 ] 55 |

Table 1: Fault tolerance overheads for MCNC benchmark circuits.

time where the detailed router might perform a track-
hop, it will be necessary to modify the detailed router
to add the reserved segments necessary to cover the
instances of track-hopping. Also, note that while the
track-hopping technique results in efficient use of track
resources, it inserts two additional pass transistors
into the path of a signal traveling from one point-to-
point path to the other, thus increasing the propaga-
tion delay. It is useful, therefore, to present results
from our current version of the detailed router, which
eliminates track-hopping and instead always requires
contiguous track segments, although the requirement
leads to greater track usage. We then estimate the
track usage overhead expected when detailed router
modifications to allow track-hop covering are com-
pleted.

5.2 Results

Table 1 compares non-FT circuits to the FT cir-
cuits routed to include cover segments. When track-
hopping is not allowed, the average increase in tracks
required for fault tolerance is 56%. However, we arrive
at a reasonable estimate of the track overhead incurred
for fault tolerance where track-hopping is allowed, as
follows. Tests run with track-hopping allowed, but
with no attempt to add the track-hopping reserved
segments, show an average track usage increase of only
22% (due only to the non-track-hopping reserved seg-
ments). Segment usage in this case increases by an
average of 40%, as seen in the table. If the additional
number of segments needed to cover all of the track-
hops observed in these tests were added, the total seg-
ment usage would be as shown in the final two columns
of Table 1—a total increase of 55%. Extrapolating the
track usage accordingly gives a track usage overhead
of (55/40) x 22% = 30% that we should expect to see
after completing modifications to the router to allow
track-hop covering. This means that circuits mapped
to FPGAs that use up to 77% (1.3 x 77% = 100%)
of the available tracks can be mapped to FPGAs with
one cell defect per row (or be reconfigured around one
faulty cell per row, in the case of operational faults).
This should be quite tolerable, since most circuits do
not use all of the tracks in an FPGA, anyway.

6 Conclusions

We have presented a fault tolerant technique to in-
crease the reliability, availability, and yield of FPGAs.
This technique makes use of a node-covering method

which allows a cell in the array to be replaced by
its neighbor if it becomes faulty. Reconfiguration is
simplified by a routing discipline that provides the
“hooks” for cell replacement by placing the neces-
sary channel segments near the cover cells beforehand.
Channel segments reserved for use in reconfiguration
do not add extra parasitic delay to nets in a non-
reconfigured array, since they are connected (auto-
matically) only when needed. No rerouting is nec-
essary in the event of a fault, and the configuration
data for the faulty cell, including the connections to
the channel wiring, is simply transposed to.the cover
cell. The simplicity of the reconfiguration method is
an improvement over other techniques that require a
new rerouting for each different faulty cell location.
Our technique is also an improvement over row and /or
column replacement done at the factory in that it can
be done either at the factory or by the user. Addi-
tionally, it offers substantially greater yield improve-
ment than either of those methods—for example, 10%
greater than spare rows and columns and 50% greater
than spare rows alone when non-FT yield is 30%.
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