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Abstract

We propose a technique for online built-in self-test of Field Programmable Gate Arrays
(FPGAs). The goal of this system is to detect deviations from the intended functionality of an
FPGA without using special-purpose hardware, hardware external to the device, and without
interrupting system operation. A system that solves these problems would be useful for
mission-critical applications with resource constraints. We present here a fault detection
system which solves these problems through an online fault scanning methodology. Resources
internal to the device are configured to test for faults. Testing scans across an FPGA,
checking a section at a time. The viability and effectiveness of such a system is supported
through simulation of the system on a model FPGA.

1. Introduction

Field Programmable Gate Arrays (FPGAs) are the most common type of programmable
logic devices today. FPGAs are made up of an array of programmable gates. The
programmability of the FPGA resides in the ability to replace the function of each gate and to
change the connectivity among gates.

Recent advances in FPGAs have precipitated their use in consumer applications, in
addition to their more traditional use in logic emulation systems, prototyping, and low volume
applications. Unfortunately, many of the trends that make newer FPGAs more appealing and
affordable also make them less reliable. For example, smaller feature sizes, and the
corresponding lower threshold voltages, make high density programmable devices more
susceptible to gamma particle radiation. Also, larger die sizes make interference from such
radiation much more likely [1].

Ironically, while hardware reuse is a primary reason for utilizing an FPGA, external
hardware for fault testing and tolerance of FPGAs often requires large amounts of additional
system resources. Implementing these tasks external to the FPGA requires that the
functionality of the device be interrupted in order to detect and address faults. This approach
not only results in system functionality being interrupted periodically, but also in fault testing
only occurring periodically. Thus, the time between a fault occurring and being detected could
be significant. Most importantly, soft faults in the writable memory of an FPGA will not be
detected by such a system without adding a time consuming readback step.

Making use of resources internal to the FPGA to implement a fault detection system,
however, avoids these problems. A portion of the device resources are set aside to perform the
fault handling, but fewer system resources are consumed than with an external fault monitor.
An internal fault monitor can also run in the background on an FPGA that supports partial
reconfigurability. Such a fault monitor could run continuously while not impeding device
functionality. This approach allows for rapid detection of both hard and soft faults.
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The resources needed to perform fault testing can be kept to a minimum by using a fault
scanning methodology. Only a small section of the FPGA is tested at a time, but testing can
scan across the FPGA assuring that the entire FPGA will be tested eventually. It is also
necessary to take the resources being tested offline (but not the entire system) to perform the
fault detection tests. By testing only a small portion of the FPGA at a time the approach allows
fault testing to occur without impeding functionality.

1.1. FPGA architectures

FPGAs have cell-like structures. The cell is used to implement the functionality of a
number of gates, and it also commonly contains a small amount of memory. The number of
gates per cell is dependent on the FPGA architecture, but is usually anywhere from 1 to 6
gates. Part of the programmability of the FPGA comes from the fact that the designer can
change the actual type of gates implemented by each cell. In addition, the user also determines
if the combinational logic section of the cell or the memory section of the cell is used. It is also
sometimes possible to use both sections concurrently.

There are two basic models for the combinational logic portion of cells. One is called
Island based, the other is called fine-grained [2]. The island based FPGA uses one or more
look-up-tables (LUTs) per cell to provide the functionality of gates. These cells typically have
four or more inputs. In contrast, a fine-grained FPGA’s cells usually have only two inputs.
The small number of inputs often allows logic in a fine-grained cell to be implemented with
multiplexers [3].

There are also two types of programmable interconnect. One type of interconnect involves
point-to-point or segmented buses. This model has wires of varying lengths placed
horizontally and vertically throughout the FPGA, with switches connecting the pieces of
interconnect. Programming such an FPGA requires a routing step, where an attempt is made to
connect cells together using the least amount of interconnect. Since interconnect needs are
unknown a priori in such a model, it is possible that designs exceed the amount of available
interconnect.

The other form of interconnect is termed bus-based. This model involves long interconnect
lines which span all (or a significant portion) of the chip. Connections between cells are made
by writing to and reading from these buses. Bus-based interconnect tends to be slower than
point-to-point due to increased wire capacitance. However, bus-based interconnect has the
advantage of predictable timing, because the time to drive all signals is the same.

To illustrate a commercial FPGA design, consider the Flex10K by Altera [4]. The
Flex10K uses static memory based LUTs, with a single flip-flop (Figure 1). In addition to the
basic cell structure, the Flex10K groups eight cells, or Logic Elements (LEs), into what is
called a Logic Array Block (LAB). These LABs provide point-to-point interconnect on a small
scale, for fast local communication. The LABs are arrayed in a grid pattern, and are connected
by chip-length buses (Figure 2). The place-and-route software for the Flex10K attempts to
constrain designs to units that fit within a LAB, and buses make routing after placerment trivial.

1.2. Motivational example

An online internal fault detection system would be of particular use in space-based
applications. Limited resources such as volume, weight, and power make the use of FPGAs
particularly appealing due to the opportunity to use time-sharing among the circuits to increase
functional density. Furthermore, the use of additional hardware to perform fault testing and
fault tolerance is particularly unappealing because of the resource constraints. Thus,
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traditional approaches such as triple modular redundancy [1] are tolerated, but at a great
expense. Space based systems are also subject to much more operational interference from
radiation and charged particles than terrestrial\systems. The probability of faults in a space
situation is much higher. As such, it is imperative that faults be located and addressed quickly.

Also, in space based systems, proper functionality is mission-critical. If an FPGA fails, it
is vital to the mission that the fault be detected and handled as soon as possible. The system
must be capable of autonomous and automatic fault detection and handling.

A fault scanning system would address most of these concerns. The fact that the fault
scanner uses resources internal to the FPGA precludes an increase in the use of system
resources. The transparent nature of the fault scanner also allows it to run continuously, thus
providing quick detection of faults. If the fault tolerance mechanism discussed below is
implemented, the fault scanner could even allow the FPGA to tolerate the fault and continue to
function.

1.3. Paper organization

This paper presents multiple possible internal online fault scanning monitors for FPGAs,
and simulations showing the proof-of-concept for one implementation in particular. We will
discuss the available design options and the simulation in Section 2. This section will also
address the specific FPGA used for the simulation and how it compares to current FPGA
models. We will also discuss previous work in the area, and its implications on the work
presented here in Section 3. The basic fault scanning system is developed in Section 4.
Alternative faults scanners will be presented in Section 5, along with a discussion of the
relative advantages of the various systems. Simulation resuits demonstrating the functionality
of the fault scanner are considered in Section 6. Some concluding remarks are given in Section
7.

2. Preliminaries

The assumptions used in implementing the fault scanning system will be discussed here.
The types of faults addressed by this system are the Single-Stuck Fault (SSF) [5] and the
Single-Event Upset (SEU) [5, 6]. This fault model is sufficient to verify LUTs and flip-flops.
Faults in the interconnect and control paths are not considered in the current design of the
system.

The focus of the current fault detection system on the LUTs and flip-flops is reasonable.
This is true even though the majority of the FPGA area is taken up by interconnect. This is
because the fault detection system is interested in detecting, and can only be reasonably
expected to detect, persistent faults, i.e. faults that will affect system operation until they are
addressed. These types of faults are most likely to occur in the LUTs and flip-flops due the
fact that both of these elements have state.

Another assumption is that configuration memory and flip-flops are fault-free when the
original configuration is loaded into the FPGA. Physical defects in the configuration elements,
or errors in configuration data are not addressed by this testing system. A mechanism has been
included, however, to help detect faults in the configuration elements and datapaths. The
ability to readback the configuration data which has been loaded into the FPGA would help to
catch such FPGA physical defects. This capability is important as the online fault scanning
system does not deal with faults in the configuration elements or datapaths. A readback
capability would provide a high level check of the FPGA every time a new configuration is
loaded.
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Additionally, the FPGA cells must be modified as described below. The global control
signals must be maskable, so that control signals can target certain cells when necessary.
Finally, the FPGA must be partially reconfigurable. Some FPGAs do not have the ability to
change the functionality of only some cells, while leaving the remaining cells untouched. The
ability to change the functionality of only a section of the FPGA is at the heart of this online
fault system, and is absolutely necessary to implement the system. However, it is not necessary
that the system present a partial configuration capability to the designer.

3. Related work

There has been much work in areas related to the fault system described here. This work
falls into four general categories: built-in self-test (BIST), built-in self-repair (BISR), FPGA
yield enhancement, and FPGA faults in space based systems.

BIST and BISR methods for detecting and handling faults have been used extensively in
memory designs {5, 7, 8], as well as in FPGAs in an offline manner [9, 10]. There has been
much work done using BIST and even BISR to detect and handle fabrication faults in order to
improve fabrication yields [11-14]. There has also been work done dealing specifically with
FPGA'’s susceptibility to faults in space based situations [15, 16].

None of the above work, however, deals with online fault detection. Some of these
systems provide fault detection, using BIST, on FPGAs. The major difference between our
fault scanner system and previous work is that with the new approach the FPGA need not be
taken offline before fault testing can occur, i.e. the functionality of the system is not interrupted
for testing purposes.

4. Approach

The discussion here is broken down into a system overview, presentation of the basic
algorithm, and a discussion of the general FPGA architecture used in testing.

4.1. System overview

The basis of the internal FPGA fault system is a scanning methodology. The system
allocates a portion of the FPGA to fault testing. Testing is accomplished by sweeping the test
functions across the entire FPGA. If the functionality of a small number of FPGA elements
can be replicated on another portion of the FPGA, then those components can be taken off-line
and tested for faults in a transparent manner (i.e. without interrupting functionality). The fault
scanning system can then move on to another set of elements to copy and then test, and can
move throughout the whole FPGA systematically testing for faults.

4.2. Basic algorithm

Built in fault testing for FPGAs requires that some of the resources of the FPGA be used
for testing purposes. Allocating too many resources reduces the functionality of the FPGA,
while allocating too few resources results in slow testing. The basic unit of testing is the
column. Focusing on a column at a time allows for parallel testing of multiple cells, while not
excessively constraining the FPGA functionality.

Our basic online testing algorithm reserves two columns of the FPGA for testing. One of
these columns, the Testing Column (TC), contains the testing state machine. This state
machine produces the control signals that implement testing. If the state machine is too large
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for a column in an FPGA architecture, then the state machine must be run off-chip, with the
control signals as chip inputs. At the moment, a second state machine, which keeps track of
the column being tested, is modeled as being off-chip. For designs of 20 cells per column or
larger, this state machine could also be implemented on-chip. The output of this state machine
is used to mask the global testing control signals such that they only affect a single column.
The other reserved column is the Free Column (FC), which acts as a buffer space during
testing.

The online testing algorithm consists of three basic steps: copy, test, and move (Figure 5).
In the copy step, a functional duplicate is made of the next column to be tested. Copying is
done by writing the data from the configuration memory and the configuration flip-flop to the
configuration data (CDATA) bus (Figure 3). This data on the CDATA bus is written to the
FC, thus making a functional duplicate of the column to be tested. Since only a single LUT bit
can be accessed at a time, both the configuration memory and the FC’s LUTs are sequenced
through all possible input vectors in parallel, by connecting their inputs to a counter.

After the configuration memory is copied, the inputs and outputs of the FC are switched
over to those of the cells in the column to be tested. The bus-based architecture of the FPGA
makes this relatively simple. The FC cells simply tap the input buses of the cells being
duplicated and the switch information in the configuration memory is used to set the outputs to
drive the appropriate buses.

Next, the values in the flip-flops in the column to be tested are sent over the CDATA bus.
These values are written to the FC flip-flops. If there is a write to a flip-flop in the column to
be tested, while it is being copied, the write always wins over the copy. This priority ensures
that outdated values are not copied into the FC flip-flops. If a write to a flip-flop of a cell in
the column to be tested occurs during the copying process, the new value is also written into
the flip-flop of the corresponding cell in the FC (because both flip-flops have the same inputs).
Once the column to be tested has been copied, the FC outputs are turned on. Both columns are
active with the same inputs, outputs, and functionality for a clock cycle in order to avoid
glitches on the outputs. The outputs from the column to be tested are then tri-stated.

The next step is to perform the actual testing. The inputs to the column under test are
connected to the output of the counter that is driving the configuration memory. The functions
of the LUT and configuration memory are sequenced in parallel. Any difference between the
output of the LUT and memory of any cell being tested indicates a fault. The outputs of the
flip-flops and configuration flip-flops are then compared. Any difference between those also
indicates a fault. These procedures test for both SSF and SEU faults. It is necessary to have
two copies of the correct cell functionality (i.e. the LUT and configuration memory and the two
flip-flops) in order to detect SEU faults.

The next phase of testing is to write the inverse of the values in the configuration memories
and configuration flip-flops to the LUTs and flip-flops. This allows the system to check for
SSF faults. The outputs of the LUT are then compared to the inverted output of the
configuration memory to test for differences. Any discrepancy between the two outputs
indicates a fault. The outputs of the flip-flops are compared in a similar fashion to the inverted
outputs of the configuration memories. It is important to note that, while testing a cell for
faults, it is possible to write to the cell’s flip-flop independently of writing to the configuration
flip-flop, although the converse is not true.

Once the testing is completed, the move step begins. This step involves transferring the
original functionality back into the column that was just tested. This phase begins by writing
the non-inverted values in the configuration memories back into the LUTs. The inputs to the
LUTs are then switched back to the correct buses. Next, the values stored in the FC flip-flops
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are written back to both the original flip-flops and configuration flip-flops. Writes take priority
over copies, as with the previous copying to the FC flip-flops.

Finally, the outputs of the column that was just tested are turned on, and after waiting an
extra clock cycle to avoid glitches, and the FC outputs are tri-stated. The algorithm is then
applied to the column to the right of the column that was just tested. If there is no column to
the right, testing begins at the leftmost column. This algorithm can be applied to both the TC
and FC themselves, thus testing the entire FPGA.

4.3. System architecture

The basic cell configuration can be seen in Figure 3. The main functionality of the cell
consists of a four-input, one-output memory based LUT, and a single flip-flop. The LUT is
simply a static memory with the four address bits used as the inputs to the LUT. The values in
the LUT are stored during configuration of the FPGA. The cell has multiple possible
functional modes that utilize the main cell elements differently: LUT alone, flip-flop alone,
flip-flop controlled by LUT inputs, and LUT and flip-flop together.

In addition to functionality similar to that of a typical FPGA cell, the cell in Figure 3 has
extra elements that allow for fault testing. The major changes to the design are the addition of
the configuration memory and the configuration flip-flop. In order to copy a cell, the LUT must
be sequenced through all possible inputs, and the results written to the corresponding FC cell.
The flip-flop data must also be copied. These elements allow the configuration data of a
specific cell to be accessed without affecting the operation of that cell. The configuration
elements are also used in fault detection by comparing their output with the LUT and flip-flop
outputs. It is important to note that, during normal functionality, all writes to a cell’s flip-flop
write the same data, simultaneously, to the configuration flip-flop. This guarantees that the
data in the configuration flip-flop is updated and valid.

The cells are arrayed in a grid pattern in the FPGA and are connected by device-length
buses (Figure 4). Horizontal buses carry the cell inputs, which are 4 bits wide, and the vertical
buses carry the cell outputs, which are 1 bit wide. There are as many horizontal buses
associated with each row of cells as there are cells in a row, and as many vertical buses as there
are cells in a column. A bus also exists for the output of each cell in that column.

Switches connect each vertical bus to every horizontal bus in the FPGA. For example, if
the output of cell (1,1) is to be used as the LSB and MSB inputs into cell (2,3) the switches
connecting the vertical output bus of cell (1,1) to the first and fourth bits of the input bus to cell
(2,3) would be turned on. The state of these switches is set by the configuration data loaded
into the FPGA. A copy of the state loaded into all of the switches at a juncture is also stored in
the configuration memory at that juncture. So the state of all switches at the juncture of row 3
and column 2 are stored in the configuration memory of cell (2,3). The switches have the
ability to write their state value to the CDATA bus (see below). This means that during the
testing phase the state of each switch at a juncture can be compared with its intended value,
which is stored in the configuration memory. Any discrepancy between the two values signals
a fault. Additionally, this allows switch settings to be copied to the FC during the copy phase.

In addition to the cell-to-cell connections, there are also global connections within the
FPGA. Many of the global connections carry control signals to the cells. Global signals can
be masked to affect only specific cells, or columns of cells, in addition to all cells.

Most of the global connections not used for control signals are used to carry configuration
data, that is, data that specifies the values to be stored, or currently stored, in the LUT and flip-
flip. Of particular interest is the CDATA bus. There is a CDATA bus for each row in the
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FPGA. The bus is used to access the configuration data of a cell so that a copy of that cell can
be made. This capability is necessary for online fault testing to occur.

The other configuration data global connections are used whenever a new configuration is
input into the FPGA. It should be noted, however, that it is possible to eliminate the global
nature of these configuration connections by simply tying them to the CDATA bus. This
would provide the same functionality, but would theoretically slow down the reconfiguration
process, as there is only one CDATA bus per row. Thus, configuration data would have to be
input sequentially by cell, in each row, instead of just configuring all cells in parallel.
However, since /O pins on an FPGA are usually limited, configuring all cells in parallel is
generally not possible, thus making the elimination of the extra connections preferable.

The only other type of global connection is the Fault Bus (FB). The FB is similar to the
CDATA bus in that there is one such bus per row, which stretches the entire length of the
FPGA. Each cell in a row is connected to the FB, but the fault output of each these cells is tri-
stated if that cell is not currently being tested. The use of the FB in fault notification will be
discussed later.

The simulated FGPA was loosely based upon the Altera Flex10K part. The main
similarities consisted of the use of chip-wide buses as interconnect, and the use of four-input,
one-output lookup tables in the cells. The simulated FPGA, however, does not make use of
grouped cells (LABs) and dedicated memory blocks as does the Flex10K.

4.4. Testing issues

An important aspect of the fault scanner is that the time between subsequent scans of any
cell is relatively low, this reducing operating time in a faulty mode. The time between
consecutive scans of a given cell is:

T = 7% (cll)+ 55 (2" clk )« N

where clk is the scanning clock period, [ is the number of input bits to each LUT, N is the
number of columns in the FPGA, and the constants seven and five represent the number of
steps of each length in the testing algorithm. The longer step size (i.e. 2 * clk) represents steps
in which the functionality of a LUT must be sequenced through. It should be noted that the
scanning clock period may be a multiple of the system clock. Figure 7 shows the number of
scans per second for an FPGA with 4-input LUTs as the clk period and number of columns
varies, and the numbers represented in the figure are shown in Table 1.

# of cells Scanning Clock Frequency
in 100MHz | 50MHz | 25MHz |12.5MHz|6.25 MHz|3.125 MHz
Column

16 Cells| 71839 35920 17960 8980 4490 2245

32 Cells| 35920 17960 8980 4490 2245 1123

64 Cells| 17960 8980 4490 2245 1123 561
128 Cells| 8980 4490 2245 1123 561 281

Table 1: Number of Scans of an FPGA in a second
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4.5. Fault identification

An T/O pin is used to indicate that a fault has occurred. The input to this pin is the logic
OR of the data on all of the FBs. If a fault is detected, the entire FPGA is reconfigured to some
default state. If the fault was a SEU, then this will fix the fault and operation continues. If a
fault in the same cell persists, then it is most likely a SSF. The only way to fix such a fault,
without replacing the FPGA, is to avoid using that cell.

The first step in avoiding the use of the faulty cell is to identify which cell contains the
fault. When a fault occurs FPGA functionality is stopped. Most FPGAs have a readback
function for debugging purposes. Readback allows the internal state of the FPGA to be viewed
externally when the FPGA is inactive. Using readback it can be determined which FB
indicated a fault. That FB corresponds to a specific row. The state stored in the state machine
that keeps track of the current column being tested denotes in which column the fault occurred.
Once the row and column of the faulty cell have been determined the fault has been identified.
The fault can then be handled by a number of fault tolerance schemes. A possible fault
tolerance scheme is discussed in a later section.

5. Alternate implementations

In addition to the testing scheme described above, there are multiple variations on this
scheme which could be implemented.

5.1. Multiple column testing

It is possible to speed up the time it takes to scan the entire FPGA by having multiple FCs.
This would allow scanning of multiple sections of the chip in parallel. The FPGA could be
partitioned into sections with an equal number of columns in each section. Each section would
have its own FC, and the CDATA and FB for each section would be independent. The
CDATA buses must be segmented so that all sections can transfer cell data to their respective
FC concurrently. The FB must be segmented so that faults can be detected independently in
each section, and so that there is no contention on the buses. Since the control signals from the
TC are distributed on a masked version of the global control signals, it is possible to implement
this scheme using only a single TC. If the sections do not contain exactly the same number of
columns, however, the current column to be tested must be stored separately for each section
width.

This scheme has the obvious disadvantage of requiring more of the FPGA resources to be
dedicated to testing purposes. However, it will increase the speed of testing for faults by
approximately the number of sections. The percentage overhead for varying number of TCs on
multiple sizes of FPGAs can be seen in Table 2.

# of cells % Overhead
in 1 2 3
Column | Scanner | Scanners | Scanners
16 Cells} 12.50% | 25.00% | 37.50%
32 Cells] 6.25% 12.50% 18.75%
64 Celis| 3.13% 6.25% 9.38%
128 Cells| 1.56% 3.13% 4.69%

Table 2 : Resource overhead for scanning system vs. humber of testing
columns used for concurrent scanning
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5.2. Moving free column

One alternate implementation of fault scanning would be to have a moving FC that scanned
across the FPGA following the column to be tested. This would require copying the functional
of each column to be tested no further than an adjacent column. After each column is tested it
becomes the new FC. This change avoids the two steps in the testing scheme which write the
original configuration back into the column which was testing, and then the one extra step of
having a handoff to bring the tested column back online. This modification decreases the time
to scan a chip to:

T =[5 (clh)+ 42" = clk)|x N

sean

Another advantage of such a scheme is that all columns are functionally identical. In the
original scheme the FC needed extra capability at its input and output to allow it to connect to
the inputs and outputs of any other column. In this scheme, a single cell and interconnect
model can be used to create the entire chip, which makes simplifies the design.

There are some disadvantages to this scheme. The first of these is that, while data
interconnect is point-to-point, control interconnect is still global. The TC does not move, and
as such, the control signals must travel across the chip. This long interconnect could limit the
scanning speed of the FPGA. This issue will be addressed in the next section.

This approach also results in a variation in time between testing of each column. The
original scheme simply swept from one side of the FPGA to the other, and then restarted at the
beginning. Thus, the time between testing passes of any column is always the same. This
modified scheme has to scan back and forth across the chip, so the time between passes of a
given column alternates depending on the scanning direction (Figure 7).

A moving FC scheme could be implemented on a bus-based FPGA. This approach would
provide the advantage of identical columns, but at the expense of increased resources. Instead
of expanding the input and output capabilities of a single column, as in the current scheme, the
input and output capabilities of every column would have to be expanded to allow each column
to function as its neighbor.

5.3. Moving testing and free columns

Another option is to have both the FC and the TC move together. This approach removes
the problem of having the control signals travelling across the chip. Using a moving TC means
that local interconnect could be used to distribute control signals. There are other issues that
arise, however. First, cell-to-cell interconnections must be increased by one column more than
in the scheme where only the FC moved, so that signals can be passed to columns across the
TC and FC. Second, the extra algorithm steps saved in switching to a moving FC are replaced
by steps to move the TC. It is still not necessary to re-implement a column’s function after it
has been tested, but the column that was just tested now becomes host for the TC.

5.4. Multiple testing columns

Another possible implementation variation is to have multiple TCs with the above scheme.
That is, to have a similar scenario as describe in the Multiple Column Testing case, but with a
dedicated TC for each section. This would decrease the amount of time between scans for each
column, as in the Multiple Column Testing case, but would require an increase of two times the
number of sections in resource usage for testing purposes. A major advantage of this approach
over that of the Multiple Column Testing case is that the control signal interconnect can be
partitioned for each section. This would allow control signals to arrive slightly more quickly.
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This case has the disadvantages, however, of requiring an extra column for each new TC, and
of requiring the segmentation of the control signal interconnect a priori in order to take
advantage of the multiple TCs.

5.5. Point-to-point interconnect

Many FPGAs utilize point-to-point (or segmented) interconnect for routing (e.g. Xilinx
4K). It is possible to implement fault scanning on such FPGAs, but with some modifications.
Interconnect would have to be added that allowed the transfer of configuration data to a FC
without interrupting the normal function of a cell. The cell-to-cell interconnections would also
have to be lengthened to allow a FC to share the same input and output connections as the
column it is mimicking. The last major modification is to the concept of the FC itself. Instead
of having a stationary FC, the FC would migrate across the FPGA. Having the FC localized to
the column being tested minimizes the amount of interconnect necessary. Interconnect
increases for testing can limit the scanning speed of the FPGA, so it is vital that these increases
be minimized.

5.6. Fault tolerance

It is possible to increase the capability of the fault scanning system to include fault
tolerance as follows. If a fault is found in a cell, the cell’s configuration is loaded into the FC
cell on the same row as the faulty cell. If the fault is determined to be an SSF fault, then the
FC cell can be switched to the inputs and outputs of the faulty cell and the faulty cell itself can
simply be taken offline. This method of fault tolerance can only accommodate a single fault in
each row for each FC. An approach similar to this one is used during manufacturing test for
the Altera Flex10K, though resources are switched through OTP fuses in manufacturing.

6. Evaluation

Simulation and testing was originally done using the Cadence toolset (HDL desktop,
Leapfrog VHDL simulator, and Waveview wave display) on a Sparc20. Later, simulation was
moved to a Pentium Pro making use of the V-System simulator by ModelTech.

The FPGA simulation has been implemented in VHDL. A PERL script generates some of
the VHDL files, allowing the simulation to be independent of the size of the FPGA. This script
takes as input the number of rows and columns in the FPGA to be simulated, and generates
VHDL for an FPGA of the specified size.

In addition to the VHDL code, the simulation makes use of six files that specify control
signal and input data. These files provide external input to the simulated FPGA.

The FPGA simulated here has 4 rows and 4 columns. A 4x4 array is large enough to
implement non-trivial functions in the two active columns and allow scanning to be tested, but
is small enough that creating configuration data by hand is feasible.

The scanning clock rate for the simulated FPGA was 25 MHz, a reasonable rate for
existing FPGAs. The scanning clock rate should be the highest possible multiple of the clock
rate of the FPGA. This will allow scanning to proceed as fast as possible, while not requiring
excessive amounts of resources to implement multiple clocks or synchronization of scanning
with the operation of the rest of the FPGA.

Two different designs, each requiring four cells, were implemented simultaneously on the
FPGA (Figure 8). One design utilized only the combinational logic features of the cells to
implemented two comparators. Each comparator took as input two three-bit words, A and B,
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and tested if A>B. Two comparators were implemented so that twice as many input vectors
could be tested in a given period of time. Each comparator required two cells, spaced out over
two adjacent columns.

The second design was a state machine that made use of both flip-flops and LUTs. The
state machine itself was a simple design requiring only the remaining four cells. Three of the
cells held state information, while the fourth implemented logic based on the current state. The
state machine took as its inputs the system clock and a state machine reset signal. Unlike the
comparators, the state machine implemented functionality across row boundaries in addition to
column boundaries.

The simulation demonstrates that the online fault testing system is feasible. Avoiding
glitches during the hand-off between the FC and column being tested, both when the control is
given to the FC and when it is returned to the column being tested, is critical. Glitches are
avoided by driving both columns with the same inputs, and enabling both columns’ outputs to
drive the same bus during the hand-off. Since the columns are configured identically, this
technique results in the same output being driven onto the bus by both columns. The column to
be taken off-line can then be disabled, and the other column takes over providing the function.
This process is shown in Figure 9, which displays the output signal for row 1 while control is
being passed from the column being tested, column 2, to the FC, column 1. The dashed line in
the figure represents tri-stating. Control is passed seamlessly, without any glitches on the
output. The output shown here is from one of the comparator circuits.

A second critical system property is the assurance that writes to the flip-flops always occur
properly. It is vital that no writes be lost during the copying process. A mechanism of having
writes take priority over the copy ensures that flip-flop values are copied as necessary, but that
a stale value is never written. Figure 10 shows a flip-flop write taking place during the copy
operation, and shows that the correct value is written and produced by the flip-flop. There is a
delay between writes and a change in the flip-flop output because the system is falling-edge
triggered, while the flip-flops are rising-edge triggered.

A last critical system element is that faults be properly detected. Figure 11 shows the
discovery of an induced fault in the flip-flip element of a tested cell. The system accurately
detects faults in both LUTs and flip-flops.

7. Conclusion

The ability of reconfigurable systems to self-diagnose and even self-repair online is
important to the viability of their use in many environments. Techniques for online fault
identification, and fault tolerance have been presented here. Such techniques provide the
assurance of proper device functionality in a continuous manner with little overhead. This
capability allows faults to be identified and handled as quickly as possible, in the least intrusive
manner possible. The multiple different fault detection techniques allow a tailoring of the fault
monitor used to the system on which the monitor will be implemented.

A simulation has been created in order to prove the feasibility of such techniques. The
simulation shows that fault detection can occur without affecting device functionality, and at a
high enough rate to ensure an appreciably small amount of time between a fault’s occurrence
and its detection.
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Figure 7: Scanning routes for moving FC and TC

Figure 8: A write taking place during a copy operation
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Figure 10: A fault is detected in the LUT of cell (1,3)
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