

Column-Based Precompiled Configuration Techniques for FPGA Fault Tolerance

Wei-Je Huang and Edward J. McCluskey
Center for Reliable Computing

Department of Electrical Engineering
Stanford University, Stanford, CA 94305

{weije, ejm}@crc.stanford.edu

Abstract

The abundance of configurable logic elements and
routing resources in recent Field-Programmable Gate
Arrays (FPGAs) provides a cost-effective method for
tolerating permanent faults in the system. Once a
permanent fault occurs, the FPGA can be reconfigured by
replacing the faulty part with previously unused resources
in the same hardware. In this paper, we present two
column-based precompiled configuration techniques for
tolerating permanent faults in FPGA-based systems. By
compiling alternative configuration versions in the design
phase, these approaches ensure fast reconfiguration, and
thus a tremendous increase in system availability. In
addition, intentional similarities are created among
different configuration versions so that the storage
overhead due to precompiled configurations is reduced by
orders of magnitude through differential coding and run-
length coding. Experimental and analytical results show
that our approaches achieve significant dependability
improvement with small configuration storage overhead.

1. Introduction

With the rapid progress of process technology and
device architecture, the capacity and performance of Field-
Programmable Gate Arrays (FPGAs) have been boosted by
orders of magnitude in recent years. Because of the
abundance of configurable logic and routing resources,
current FPGAs became widely used in various
applications. Typical applications that use FPGAs
extensively include not only logic emulation systems, but
also commercial networking and storage equipment that
may be used in mission-critical environment. Therefore, it
is crucial to enhance the fault tolerant capability and
improve the dependability of FPGA-based systems.

To tolerate permanent faults in a system, hardware
redundancy is the most commonly used approach
[Siewiorek 92][Pradhan 96]. Traditionally, hardware
redundancy is realized in a coarse-grained level. All
functional modules in the system are replicated such that
permanent faults in part of the system can be tolerated.

However, the coarse-grained hardware redundancy is
expensive in terms of area overhead. This is especially

noticeable in FPGA-based systems because one can find
alternative mappings of a functional module in FPGAs to
avoid certain parts of the device. Therefore, instead of the
coarse-grained hardware redundancy, a more cost-effective
method is to reconfigure the FPGA such that the faulty
parts are replaced with previously unused resources in the
same device. Equivalently, this method realizes the
hardware redundancy in a fine-grained level. In this way,
the system can still operate in the presence of faults, and
dependability is improved with very little hardware
redundancy [Saxena 98].

Extensive research has been done in the past in order to
achieve permanent fault recovery in FPGAs through
reconfiguration. This includes fast re-mapping and
rerouting techniques for dynamic run-time generation of
alternative configurations [Emmert 97, 98][Hanchek
98][Dutt 99][Mahapatra 99], and the tile-based pre-
compiled configuration approach that creates alternative
configurations in the design phase [Lach 98, 99].

Generally, the precompiled configuration approach
minimizes the system downtime because alternative
configuration versions are pre-generated. Thus, the re-
mapping and rerouting of user application circuitry is not
necessary once the fault location is diagnosed. However,
this approach also results in a significant storage overhead
for all possible configurations in order to achieve a high
coverage of faults. With the increasing size of FPGA
configuration data, the extra cost due to the configuration
storage overhead may outweigh the cost reduction through
the fine-grained hardware redundancy. In this situation,
such reconfiguration methods become unattractive for fault
tolerance, especially in deep-space and unmanned
applications.

Another drawback of previous approaches is the
assumption that high-precision fault location techniques
are available prior to reconfiguration. However, although
there are many fault location techniques in the literature
[Stroud 97, 98][Mitra 98][Das 99], these techniques
require high computation complexity to diagnose a fault in
the level of a Configurable Logic Block (CLB) or a
Programmable Interconnect Point (PIP). Consequently,
these techniques are difficult to implement at run-time and
increase the overall downtime of the system.

In this paper, we present the concept of a column-based
precompiled configuration technique for tolerating
permanent faults in FPGAs in a cost-effective way. Our
approach mitigates the configuration storage overhead and
fault location problems of previous techniques. Different
configurations are generated by shifting some or all of the
CLB columns in the initial configuration along one
direction in order to create similarities among
configurations. Such intentional similarities result in
smaller storage overhead through differential coding and
data compression techniques. In addition, high-precision
fault location operations prior to reconfiguration can be
replaced by gross fault location or different precompiled
configuration attempts.

The organization of this paper is as follows. In Sec. 2,
we describe the FPGA architectural model used in this
paper. In Sec. 3, we briefly discuss previous work for
constructing dependable FPGA-based systems. In Sec. 4,
we introduce two column-based precompiled configuration
techniques, the overlapping and the non-overlapping
schemes, for permanent fault recovery in FPGAs. A data
compression technique for storage reduction and a method
for replacing high-precision fault location techniques are
also presented. In Sec. 5, we compare the dependability
improvement of the two column-based precompiled
configuration techniques. In Sec. 6, configuration storage
overhead improvements for some of the MCNC
benchmarks are presented. Section 7 concludes the paper.

2. FPGA Architecture

Figure 1 shows the model of the programmable logic
core of an FPGA used in this paper. In this model, the
programmable logic core of an FPGA consists of an array
of three basic elements: Configurable Logic Blocks
(CLBs), Connection Boxes (CBs), and Switch Boxes (SBs).

CLB CLB CLB CLB

CLB CLB CLB CLB

CLB CLB CLB CLB

CB

SB

1 CLB Column
Figure 1: Architecture of the programmable logic core
in FPGAs.

In SRAM-based FPGAs, a CLB contains several
SRAM lookup tables (LUTs) to store user-defined logic
functions. A CLB also contains flip-flops, multiplexers,
and dedicated circuitry to optimize the performance of user
applications. CLBs are connected through horizontal and
vertical wiring channels between two neighboring rows or
columns. To enhance the connectivity, there are various

kinds of wires with different lengths for connecting CLBs
that are different blocks apart. For example, in Xilinx
Virtex-series FPGAs, single lines connect adjacent CLBs,
while hex lines connect CLBs that are three or six blocks
apart [Xilinx 01].

There are two types of routing devices, CBs and SBs,
to direct the signal flows among CLBs and wiring
channels. CBs serve as a local bridge between CLBs and
the adjacent wiring channels. SBs are switch matrices that
connect horizontal and vertical wiring channels. In
SRAM-based FPGAs, the state of connections in these
routing devices is controlled by SRAM cells, which are
configured according to the desired functionality.

In this architecture, a CLB column includes all CLBs
and the corresponding switch matrices (CBs and SBs) in
the same column of the array. The actual circuitry,
programmable logic and routing resources, and the
configuration architecture of each CLB column are
identical. A typical example of the FPGA architecture
used in this paper is the Xilinx Virtex-series FPGAs.
Figure 2 shows the configuration data frame architecture in
this type of FPGA [Xilinx 01].

L
ef

t
IO

B
 C

o
lu

m
n

(5
4

fr
am

es
)

B
lo

ck
 S

el
ec

tR
A

M
(6

4
fr

am
es

)

B
lk

. S
el

ec
tR

A
M

 In
te

rc
o

n
n

ec
t

(2
7

fr
am

es
)

C
L

B
 C

o
lu

m
n

(4
8

fr
am

es
)

2
IOBs

2
IOBs

C
L

B
 C

o
lu

m
n

(4
8

fr
am

es
)

C
en

te
r

C
o

lu
m

n
(8

 f
ra

m
es

)

2
IOBs

2
IOBs

2
GCLK

2
GCLK

C
L

B
 C

o
lu

m
n

(4
8

fr
am

es
)

2
IOBs

2
IOBs

C
L

B
 C

o
lu

m
n

(4
8

fr
am

es
)

2
IOBs

2
IOBs B

lk
. S

el
ec

tR
A

M
 In

te
rc

o
n

n
ec

t
(2

7
fr

am
es

)

B
lo

ck
 S

el
ec

tR
A

M
(6

4
fr

am
es

)

R
ig

h
t

IO
B

 C
o

lu
m

n
(5

4
fr

am
es

)

... ...

Figure 2: Configuration frame architecture in Xilinx
Virtex-series FPGAs.

3. Related Work

Previous research on dependable FPGA-based systems
can be classified into the following categories: the
dependable system architecture, Concurrent Error
Detection (CED) schemes for the applications mapped in
FPGAs, fault location and diagnosis techniques, transient
error recovery, and permanent fault recovery.

Figure 3 shows a dual-FPGA architecture for the
dependable adaptive computing systems proposed in
Stanford CRC ROAR project [Mitra 00b]. In this
architecture, each FPGA is configured to run certain
applications with some CED schemes. The controller on
each FPGA monitors the error signal from the CED
schemes on the other FPGA and performs the fault
location and recovery for the other FPGA when necessary.

Various CED techniques can be found in [Saxena
00][Huang 00a][Mitra 00a]. These approaches verify the
correctness of the system by additional redundant
computations either in the space or time domain. The error
detection latency for these techniques is small in order to
report the occurrence of errors rapidly and reduce the
performance degradation.

 Controller

FPGA 1 FPGA 2

Reconfigurable Reconfigurable

Memory EPROM Memory EPROM

 Controller

Figure 3: Dependable dual-FPGA architecture.

Generally, the first response of a system to the
detection of errors is the transient error recovery operation
because transient errors occur more frequently than
permanent faults in the hardware. Traditional system-level
approaches, such as rollback or roll-forward schemes
[Siewiorek 92][Pradhan 96][Huang 00b], can be used to
recover from transients that do not affect the FPGA
configuration memory. Also, for FPGAs with the partial
reconfiguration feature, configuration readback and
writeback operations can be performed simultaneously
with system-level recovery approaches to recover from
transients that alter the data stored in the FPGA
configuration memory [Carmichael 99][Huang 01].

When transient error recovery schemes fail to recover
the chip from an error in several attempts, fault location
and permanent fault recovery schemes are initiated to
repair the system from permanent faults. For fault location
in FPGAs, the Built-In Self-Test (BIST) technique can be
used. In the BIST approach, a diagnostic circuit including
test pattern generators and response analyzers is
configured in part of the FPGA to test another part pseudo-
exhaustively and vice-versa. The diagnosis can be
application-dependent [Mitra 98][Das 99] or application-
independent [Stroud 97, 98], according to whether the
circuit under tests is configured in the same way as the
original application circuitry. In both cases, however, a
considerable number of configurations are required to test
all the hardware resources thoroughly and locate the fault.
For high precision and resolution, these techniques
generally require high computation complexity and long
diagnostic latency.

After the faulty part of an FPGA is located, permanent
fault recovery schemes that reconfigure the FPGA to
replace the faulty part with originally unused resources are
applied to repair the system. Several approaches were
proposed in the literature in order to generate alternative
configuration rapidly at run-time. Emmert and Bhatia
proposed a minimax grid matching technique to re-map the
functional units that are originally placed in faulty CLBs
[Emmert 97]. They also proposed an incremental routing
technique to reroute the corresponding signals [Emmert
98]. For cluster-based FPGAs that group multiple LUT
and flip-flop pairs into a single cluster to take the
advantage of design locality, Lakamraju and Tessier
proposed a localized swapping technique to effectively
tolerate intra-cluster faults [Lakamraju 00]. Also, Dutt et.

al. proposed node covering techniques that reserve spare
resources in order to facilitate the search for the optimal
replacement for faulty parts [Dutt 99][Hanchek 98]
[Mahapatra 99].

To further reduce the system downtime for permanent
fault recovery, Lach et. al. [Lach 98, 99] proposed a tile-
based precompiled configuration approach that move the
generation of alternative configurations to the design
phase. The mapped circuitry is partitioned into tiles, and
alternative configurations for each tile are pre-generated
and stored in the system. The drawback of the
precompiled configuration approach is the significant
storage overhead in the system for all possible alternative
configurations. Although the tile-partitioning approach in
[Lach 98] reduces the storage requirement for alternative
configurations to some extent, such storage overhead is
still several times of the original configuration size.

In this paper, we assume that the dependable dual-
FPGA architecture in Fig. 3 is used. CED and transient
error recovery schemes for applications in each FPGA are
also applied prior to permanent fault recovery. Our goal is
to develop a permanent fault recovery scheme for FPGAs
that minimizes the system downtime and has small
configuration storage overhead. To minimize the system
downtime, we use the precompiled configuration approach
for fast reconfiguration. To reduce the configuration
storage overhead, we propose two column-based design
methodologies and a coding scheme for effective
compression of configuration data. In addition, unlike
previous permanent fault recovery techniques, our
approach does not require high-precision, high-complexity
fault location techniques prior to reconfiguration.

4. Column-Based Precompiled Configuration
Techniques

In order to reduce the storage overhead in the system
due to precompiled configurations, data compression
techniques that reduce redundancy in the information can
be applied. Most of the data compression techniques
reduce data size by encoding highly correlated information
with shorter codewords. Consequently, for a good
compression ratio, the configuration data should be highly
correlated.

For the data within one configuration version, it is not
guaranteed to obtain highly correlated configuration bit-
stream in arbitrary applications. However, for the data
among different configuration versions, high correlation
can be created intentionally by proper selections of re-
mapping, rerouting, and configuration data partitioning
methods when different configuration versions are
constructed during the design phase.

As mentioned in Sec. 2, the target FPGA architecture
in this paper has identical circuitry, routing resources, and
configuration architecture in every CLB column.
Therefore, our precompiled configuration approach is

designed to create intentional similarities based on CLB
columns in different configuration versions. According to
the part of FPGA used in the original configuration and
alternative configuration versions, we can classify our
column-based precompiled configuration technique into
two schemes: the overlapping scheme and the non-
overlapping scheme.

4.1 The Overlapping Scheme

The key concept of the overlapping precompiled
configuration scheme can be illustrated by an example
shown in Fig. 4. In Fig. 4(a), suppose that the original
fault-free configuration, or the base configuration, is
mapped in four consecutive CLB columns (column 1 to
column 4). The column-based functional modules that are
mapped in each of the four columns are function A, B, C,
and D, respectively. The entire circuitry is thus defined by
the four column-based functional modules and the
interconnects among these modules.

Let us consider the case for tolerating faults within any
single CLB column. To this objective, we reserve one
column outside of the mapped area (column 5) in the base
configuration as backup resources for alternative
configurations. All CLBs and switch matrices in the
reserved column are unused. Also, the configuration of
each column-based functional module in the mapped area
is stored separately as a basis to construct alternative
configurations.

In this case, four alternative configurations are required
in order to guarantee 1-column fault tolerance in the
FPGA. In each alternative configuration, one of the
mapped columns (column 1 to 4) in the base configuration
is intentionally unused. All functional modules originally
mapped in CLB columns with smaller column indices than
the intentionally unused column remain in the same places
in the alternative configuration. The other functional
modules are shifted rightwards by one column in the
alternative configuration to avoid the intentionally unused
column.

For example, Figure 4(b) shows one of the alternative
configurations, where column 3 is intentionally unused.
Functional modules mapped in column 1 and column 2 in
the base configuration (function A and B) remain in the
same places. Functional modules mapped in column 3 and
column 4 in the base configuration (function C and D) are
shifted rightwards to column 4 and column 5, respectively,
to avoid using column 3.

In the overlapping precompiled configuration scheme,
the above re-mapping procedure in each alternative
configuration creates several corresponding column sets.
A corresponding column set is defined as a set of CLB
columns in which certain functions are mapped in different
configuration versions. For example, column 3 in Fig. 4(a)
and column 4 in Fig. 4(b) belong to the same
corresponding column set in which function C is mapped,
and there are four corresponding column sets in this case.

Corresponding columns in different configurations are
defined as CLB columns in the same corresponding
column set that holds a certain column-based functional
module.

In Fig. 4(b), the re-mapping of the functional modules
forms two mapped regions that are separated by the
intentionally unused column. The left mapped region
contains column 1 and 2 (function A and B), and the right
mapped region contains column 4 and 5 (function C and
D). In this way, only inter-region signals that connect
functional units in different mapped regions need to be
rerouted due to the shifted functional modules. Intra-
region signals that connect functional units within the
same mapped region, however, can be routed in the same
way as their counterparts in the corresponding base
configuration column. This is because every CLB column
has the same programmable logic and routing resources.
Equivalently, the routing information of intra-region
signals can be obtained directly by shifting the states of
switches in corresponding base configuration columns
using the same method described in the re-mapping
procedure for column-based functional modules.

F
u

n
ct

io
n

 A

F
u

n
ct

io
n

 B

Col 1 Col 2 Col 3

F
u

n
ct

io
n

 C

F
u

n
ct

io
n

 D
Col 4

U
n

u
se

d

Col 5

F
u

n
ct

io
n

 A

Col 1

F
u

n
ct

io
n

 B

Col 2

U
n

u
se

d

Col 3

F
u

n
ct

io
n

 C

Col 4

F
u

n
ct

io
n

 D

Col 5

(a) (b)
Figure 4: The overlapping precompiled configuration.
(a) Base configuration. (b) Alternative configuration
when column 3 is intentionally unused.

The overlapping precompiled configuration scheme
with 1-column fault tolerance can be generalized to a
scheme for tolerating multiple faulty CLB columns as
follows. First, if the desired number of tolerable faulty
columns is m, which indicates that the scheme can tolerate
faults within any m CLB columns, we need to reserve m
unused columns as backup resources in addition to the
mapped area in the base configuration. In this case, if the
number of column-based functional modules in the base
configuration is k (i.e., k CLB columns are used to map the
original circuit in the base configuration), the overlapping
scheme with m-column fault tolerance requires (k+m) CLB
columns in the FPGA. The (k+m) CLB columns are
indexed from left to right.

Second, for the overlapping scheme with m-column
tolerance, m out of (k+m) CLB columns are intentionally
unused in each configuration version. The total number of
configurations required is thus C(k+m, m) = (k+m)! /
(m!k!), with one configuration being the base
configuration. Therefore, one needs to construct [C(k+m,
m) – 1] alternative configurations in order to achieve m-
column tolerance in a k-column circuit.

Next, in each alternative configuration, all column-
based functional modules (in unit of a CLB column) that
are originally mapped in CLB columns with smaller
column indices than the least-indexed intentionally unused
column remain in the same places. The other column-
based functional modules are shifted rightwards by one
column. If a column-based functional module is shifted to
another intentionally unused column in this alternative
configuration, it is shifted one more column rightwards
along with all the subsequent functional modules. In this
way, the (k+m) columns can be partitioned into several
mapped regions that are separated by m intentionally
unused columns. Switch states that route intra-region
signals are shifted in the same way as the k column-based
functional modules.

Finally, inter-region signals are rerouted to complete
the alternative configuration. In order to avoid using the
switch resources in intentionally unused columns, wires
that connect CLBs of multiple blocks apart can be used in
rerouting inter-region signals. For example, in Xilinx
Virtex-series FPGAs [Xilinx 01], hex lines can be used to
route signals across different mapped regions without
using the switch resources in intentionally unused
columns.

One drawback of this scheme is that the maximum
number of horizontal routes used in each column is limited
by the number of horizontal multiple-block wires available
to reroute inter-region signals. When horizontal multiple-
block wires are not available, another solution for
rerouting signals across intentionally unused columns is to
use single-block wires and the corresponding switches that
are not used in the base configuration. In both cases, at
least half of the routing resources for horizontal wires are
reserved for rerouting.

Nevertheless, the utilization of routing resources for
vertical wires is not limited by this rerouting scheme
because all vertical connections are intra-region and need
not be rerouted. Therefore, to accommodate the horizontal
routing constraint, the base configuration should be
constructed such that most of the signals flow in the
vertical direction.

The advantage of this scheme is that different
configurations are very similar because each alternative
configuration is created by shifting part of the base
configuration in units of columns. More similarity in
configuration data leads to a good compression ratio, and
thus small storage overhead, when data compression
techniques are applied. This property will be further
examined in Sec. 4.3 when we discuss the configuration
data compression technique

4.2 The Non-overlapping Scheme

If the target circuitry is small enough to fit within half
of the FPGA, a simple way to construct alternative
configurations is to shift the entire mapped circuitry to
originally unused regions. This is the non-overlapping

precompiled configuration scheme, where there is no
overlap between the base configuration and alternative
configurations.

In order to tolerate up to m faulty columns in the
FPGA, the total number of alternative non-overlapping
configurations required in addition to the base
configuration is m. In this case, the base configuration has
to be mapped within 1/(m+1) of the entire FPGA columns.
Therefore, one drawback is the limitation in the size of the
mapped region in the base configuration.

Still, the non-overlapping scheme can be feasible in
situations where various applications are implemented in
an FPGA in a time-multiplexed manner to minimize cost.
In such cases, the FPGA is chosen to accommodate the
largest circuit size among all target applications. Because
of variations in circuit sizes, there may be small
application circuits in which the size constraint in the non-
overlapping scheme is satisfied.

Compared to the overlapping scheme, the non-
overlapping scheme has smaller storage overhead for
alternative configurations. This is caused by two factors.
First, there are only m alternative configuration required
for m-column fault tolerance, which is fewer than the
[C(k+m, m) – 1] configurations in the overlapping scheme.

Second, the non-overlapping scheme results in more
similarity among different configuration versions because
the relative positions among the mapped column-based
functional modules are preserved. In this way, the only
difference between the corresponding columns in different
configurations is from the connections to primary inputs
and outputs of the device. More similarity between
configurations result in a better compression ratio, which
will be examined in Sec. 4.3.

4.3 Configuration Data Compression

In the proposed precompiled configuration schemes,
CLB columns of different configurations in the same
corresponding column set have the greatest similarity. The
only difference between such corresponding columns in
different configurations is the inter-region reroutes and the
wires to the primary I/O’s of the device. All LUT entries
and the switch states that control the vertical connections
and the intra-region horizontal connections, on the other
hand, are identical in the corresponding columns in
different configurations

In this case, the bit-wise difference vectors in the
corresponding columns between the base configuration
and alternative configurations contain strings of long,
consecutive 0’s and scattered 1’s (may have short run-
lengths). Therefore, run-length coding, which encodes a
string of 0’s with its length, is expected to be very
effective in reducing the storage of these difference
vectors.

In our proposed scheme, we use Golomb codes
[Golomb 66] to encode the difference vectors between the
corresponding columns in the base configuration and

alternative configurations. Also, note that it is not
necessary to store the mapping relationship of
corresponding columns. This is because such information
can easily be derived given that the intentionally unused
columns are already specified in each alternative
configuration.

Given the configuration data, Cb, of the corresponding
base configuration column, the encoding algorithm for the
configuration data of a CLB column, Ca, in an alternative
configuration is described as follows:

(1) Find the bit-wise difference vector Cd = Ca ⊕ Cb.
The difference vector consists of strings of Sz’s,
which are defined as z leading 0’s (run-length z ≥ 0)
followed by a 1.

(2) A group size g = 2n (n is a positive integer) is
selected in encoding each string Sz in Cd.

(3) Each string Sz, with z leading 0’s, is encoded as a
codeword Cw. Each codeword is the concatenation
of a group code and a tail code. The group code is
defined as z / g leading 1’s followed by a 0, and
the tail code is the n-bit binary representation of (z
mod g). An example with group size g = 4 is
shown in Table 1.

Table 1: Example of Golomb code with group size = 4.

z Source String Sz Group Code Tail Code

0 1 00
1 01 01
2 001 10
3 0001

0

11
4 00001 00
5 000001 01
6 0000001 10
7 00000001

10

11
8 000000001 00
9 0000000001 01
10 00000000001 10
11 000000000001

110

11

Golomb code with group size g transforms a (z+1)-bit

source data string into a codeword of (z / g + 1 + log2 g)
bits. When the run-length of 0’s in the source data string is
significantly larger than the group size g, the compression
ratio approximates to 1/g.

Clearly, the compression ratio improves with
increasing run-length of 0’s in the source data string.
Because of intentional similarities created among different
configurations, the proposed column-based schemes are
expected to obtain long run-lengths in difference vectors,
and thus, a good compression ratio. Also, using run-length
coding, the non-overlapping scheme achieves more data
compression than the overlapping scheme due to greater
similarity in the corresponding CLB columns.

In addition to a good compression ratio, another factor
that makes the proposed differential and run-length coding
suitable for encoding configuration data is the simple

decoding process. Given the base configuration column,
Cb, whose index can be derived from the intentionally
unused columns specified for the alternative configuration,
the decoding process of a codeword, Cw, is described as
follows:

(1) Count the length, L1, of the leading 1’s in Cw before
encoutering the first zero.

(2) Multiply L1 by the group size g. Since g = 2n, the
multiplication is equivalent to shifting L1 towards
the most-significant-bit (MSB) by n bits.

(3) Add the following n-bit tail code in the Cw to the
result in (2) to obtain the run-length z of 0’s in the
original difference vector. Equivalently, this is to
append the n-bit tail code to the end of L1 obtained
in (2). The difference vector, Cd, is then
constructed by appending a 1 to z leading 0’s.

(4) Reconstruct the alternative configuration column,
Ca, by Ca = Cb ⊕ Cd. Equivalently, we can flip the
(z+1)-th bit in Cb to obtain Ca.

The implementation of the proposed decoding process
in hardware requires only a counter to compute the run-
length and XOR circuitry to reconstruct alternative
configuration columns from difference vectors. This
simple decoding property is critical in minimizing both the
area overhead and the system downtime due to the fault
recovery process by FPGA reconfiguration.

Note that corresponding columns can be configured
exactly in the same way for different configuration
versions. For example, in the case of Fig. 4, the CLB
column that holds the function A can have the same
settings for the base configuration and any alternative
configuration where no inter-region reroute is required for
this function.

Therefore, for each alternative configuration, we store
the pointers to the encoded difference vectors instead of
the actual data of such vectors. In this way, the actual data
of each encoded difference vector are stored only once,
and different configuration versions can share the same
difference vector without redundant storage. In addition,
for each alternative configuration, we store the column
indices of intentionally unused columns that are required
to locate the corresponding base configuration columns.

4.4 Fault Location

In the precompiled configuration approach, if the fault
location is specified, reconfiguration can be initiated
promptly by downloading an appropriate alternative
configuration stored with the system. Previous approaches
require fine-grained resolution, usually in the level of one
CLB, in the fault location techniques. For the proposed
schemes, on the contrary, this high-resolution requirement
for fault location techniques is avoided.

For the proposed precompiled configuration schemes,
the requirement for fault location resolution is to specify a
faulty column instead of a faulty CLB. The coarse
resolution requirement generally reduces the complexity of

fault location techniques and thus makes such techniques
more feasible.

If fault location techniques are not available, all
possible configurations stored with the system can be tried
alternately until an appropriate configuration that operates
successfully is set up in the system. CED schemes for the
application circuitry, as discussed in Sec. 3, are used to
determine if the reconfiguration attempt is successful.
Equivalently, this “blind” reconfiguration scheme replaces
high-complexity fault location techniques with CED
techniques on various configuration attempts at run-time.

Generally, CED schemes have shorter error detection
latency than the diagnostic latency in fault location
techniques. Although CED schemes are unable to
diagnose the fault location, they are effective in detecting
the occurrence of errors online. Therefore, this approach
has great potential to reduce the system downtime caused
by fault location operations prior to reconfiguration and is
useful for mission-critical and deadline-critical
applications.

5. Dependability Improvement

In this section, we analyze the dependability
improvement of the proposed schemes using the parameter
of Mean Time to Failure (MTTF). MTTF is defined as the
expected time of the first failure in the system, given
successful startup at time zero [Siewiorek 92].

Without any permanent fault recovery scheme, a
system could fail to function properly once a permanent
fault occurs in part of the circuitry. Therefore, to simplify
the analysis, we define the failure in an FPGA-based
system without permanent fault recovery schemes as the
occurrence of a permanent fault in any part of the mapped
columns in the FPGA.

In contrast, we define the failure with the proposed
precompiled configuration schemes as the situation when
no precompiled configuration version is available to avoid
the faulty part of the FPGA. There are two assumptions in
this definition. First, we assume that the target FPGA
remains configurable throughout the period of interest.
This assumption allows us to focus on the dependability
improvement in the programmable logic core of the FPGA
using the proposed scheme.

Second, we assume that the system downtime due to
reconfiguration is negligible compared to the duration
between the occurrence of permanent faults in the FPGA.
Practically, this is a reasonable assumption because of the
low occurrence rate for permanent faults and the fast
reconfiguration of current-generation FPGAs.

In addition, the following assumptions are made for the
analysis:

(1) A constant failure rate λ is associated with each
CLB column in the FPGA. This is the probability
of the occurrence of a permanent fault in a CLB
column.

(2) k CLB columns are used in the base configuration.

(3) The occurrence of faults in each CLB column is
independent.

The reliability of a functional module is defined as the
probability that the module operates successfully from
time zero to time t, given that it commences successfully at
time zero [Siewiorek 92]. For a constant failure rate in
each CLB column, the reliability of a CLB column, Rcol(t),
follows the exponential failure law, which states that

t
col e)t(R

λ−= .

Because there are k CLB columns in the base
configuration with independent occurrence of faults, the
reliability of the base configuration without any fault
recovery scheme, Rbase(t), is

() ktk
colbase e)t(R)t(R

λ−== .

From [Siewiorek 92], the MTTF of a system can be
calculated by the integral of the reliability function:

∫=
∞

0
dt)t(RMTTF .

Therefore, the MTTF of the base configuration without
any fault recovery scheme, MTTFbase, is

k
dteMTTF kt

base λ
λ 1

0
=∫=

∞
− .

For the overlapping scheme with m-column fault
tolerance, m CLB columns are reserved to tolerate up to m
faulty columns in the base configuration. Therefore, the
reliability of the overlapping scheme, Rov(t), becomes

[]

[].e))(j,n(C)n,mk(C

)e()j,n(Ce)n,mk(C

)e(e)n,mk(C

columns)mk(ofout

columnsfaultymthanmoreno
prob)t(R

m

n

n

j

t)jnmk(j

m

n

jt
n

j

)nmk(t

m

n

nt)nmk(t

ov

∑ ∑ −+=

∑ −∑+=

∑ −⋅⋅+=

+
=

= =
+−+−

=
−

=
−+−

=
−−+−














0 0

0 0

0

1

1

λ

λλ

λλ

The MTTF of the overlapping scheme, MTTFov, is thus

∑ ∑
+−+

+−
=

∫=

= =

∞





m

n

n

j

j

ovov

)jnmk(

)j,n(C)n,mk(C)(

dt)t(RMTTF

0 0

0

1

λ

 .
k

)jnmk(

)j,n(C)n,mk(kC
)(

m

n

n

j

j

λ

∑ ∑












+−+
+

−

=
= =0 0

1

For the non-overlapping scheme with m-column

tolerance capability, m disjoint k-column regions are
reserved in addition to the original k-column base

configuration. Therefore, the reliability of the non-
overlapping scheme, Rno(t); becomes

()

()[]
()[]

()[].e)n,m(C

e)n,m(C

e

ttimeatfaultyareregionsallprob

ttimetoupgoodisregions

)m(theofoutoneleastat
prob)t(R

m

n

nktn

m

n

nkt

mkt

no

∑ +−=

∑ −+−=

−−=

−=

+
=

+

=
−−

+

=
−

+
−









1

1

1

1

0

1

11

11

11

1

1

λ

λ

λ

The MTTF of the non-overlapping scheme, MTTFno, is
thus

()
.

k

n

)n,m(C

dt)t(RMTTF

m

n

n

nono

λ

∑
+

−

=

∫=

+

=

−

∞





1

1

1

0

1
1

Figure 5 shows the normalized MTTF for the two

proposed schemes with respect to different numbers of
tolerable faulty columns, m. The MTTF’s for both
schemes are normalized to MTTFbase (i.e., multiplied by
λk) to indicate the dependability improvement relative to
the original circuitry without any fault recovery technique.
Note that only the overlapping scheme is dependent on the
circuit size, k. In Fig. 5, we choose three different circuit
sizes (k = 10, 20, and 50) for the overlapping scheme. As
a comparison, current-generation FPGAs, such as the
Xilinx Virtex-E family, have choices ranging from 24 to
156 CLB columns in a chip.

In Fig. 5, it is clear that both schemes can achieve
significant MTTF improvement. With the same number of
tolerable faulty columns, the overlapping scheme has a
better MTTF than the non-overlapping scheme.
Intuitively, this can be explained in two reasons. First, in
order to guarantee m-column fault tolerance, the non-
overlapping scheme requires more CLB columns (totally
(m+1)k columns) to implement than the overlapping
scheme (totally (k+m) columns). A greater number of
CLB columns used in the non-overlapping scheme results
in a larger area and becomes more susceptible to faults.

Second, given the same number of columns, Ncol, in the
FPGA for implementing a k-column circuit using both
schemes, the overlapping scheme is guaranteed to tolerate
(Ncol – k) faulty columns, whereas the non-overlapping
scheme is guaranteed to tolerate only (Ncol / k - 1) faulty
columns. The difference is more noticeable when the
circuit size, k, is large.

Figure 6 shows the normalized MTTF increment for
each additional column of tolerance in both schemes. The
normalized MTTF increment represents the incremental
MTTF improvement resulted from adding the fault-
tolerance capability by one more column in both schemes.
The result follows the law of diminishing return, which
indicates that the maximal gain in MTTF improvement is
obtained when the system is changed from a no-recovery
scheme to a scheme with 1-column tolerance capability.

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8
m = Number of Tolerable Faulty Columns

N
o

rm
al

iz
ed

 M
T

T
F

Overlapping, k = 10 columns
Overlapping, k = 20 columns
Overlapping, k = 50 columns
Non-overlapping

Figure 5: Normalized MTTF for the proposed schemes.

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8
m = Number of Tolerable Faulty Columns

N
o

rm
al

iz
ed

 M
T

T
F

 In
cr

em
en

ts

Overlapping, k = 10 columns
Overlapping, k = 20 columns
Overlapping, k = 50 columns
Non-overlapping

Figure 6: Normalized MTTF increments.

6. Configuration Storage Overhead and
Performance Impact

To demonstrate the storage overhead improvement for
alternative configurations, we applied the proposed
schemes with 1-column tolerance capability (m = 1) to a
subset of MCNC benchmark circuits. Because the
benchmark circuits are relatively small compared to the
capacity of current-generation FPGAs, we used the
smallest FPGA in Xilinx Virtex-E series, XCV50E [Xilinx
01], in our experiments. This type of FPGA has a 16x24
CLB array in each device.

The number of CLB columns (parameter k) used in the
base configuration for each benchmark circuit is shown in
Table 2. In each base configuration circuit, we constrained
the mapped area and placed the I/O’s within a certain

columns in the left part of the chip. In this way, we can
reduce the number of alternative configurations required in
the overlapping scheme and minimize the routings in the
horizontal direction.

Table 2: Size of benchmark circuits.

Circuit Number of CLB columns used
in the base configuration (k)

c499 11
duke2 10

planet1 6
sand1 5

Because the number of tolerable faulty columns in the

experiments is one, k alternative configurations for the
overlapping scheme and one alternative configuration for
the non-overlapping scheme are required, respectively.
Therefore, without data compression, the system has k-
times storage overhead in the overlapping scheme and
100% storage overhead in the non-overlapping scheme in
addition to the storage of the base configuration.

To generate alternative configurations, we manipulated
the Xilinx Design Language (XDL) files [Xilinx 01] of
base configurations according to the proposed methods.
XDL files describe the physical mapping of functional
units and the routing of nets in FPGAs in text format. The
resulting XDL files for both base configurations and
alternative configurations can be translated into
configuration bit-streams, which are processed according
to the configuration architecture in [Xilinx 00] in order to
extract the configuration data of corresponding columns.
The extracted configuration data for each column is then
encoded as difference vectors and compressed using
Golomb codes with different group sizes.

Figure 7 and 8 shows the resulting storage overhead for
the benchmark circuits due to the encoded alternative
configurations in both precompiled configuration schemes,
respectively. The storage overhead is calculated relative to
the part of configuration data required for the used
columns in the base configuration, instead of the overall
configuration bit-stream for the device. This is to avoid
the over-optimistic results because of the small size of the
benchmark circuits relative to the capacity of the FPGA.

From Fig. 7 and Fig. 8, a group size of 128 in the
Golomb code minimizes the storage overhead of
alternative configuration versions in both precompiled
configuration schemes. For the overlapping scheme, the
resulting minimum storage overhead of alternative
configurations is in the range of 15-35% for the benchmark
circuits. For the non-overlapping scheme, the minimum
storage overhead of alternative configurations is around 2-
6% only. As discussed in Sec. 4.2, the small configuration
storage overhead in the non-overlapping scheme comes at
the price of more CLB columns for implementing the same
circuit with a given number of tolerable faulty columns.

Compared to the multiple-time configuration storage
overhead without compression in previous approaches, the
proposed schemes achieve 1-2 orders of magnitude
improvement in storage requirement for alternative
configurations.

0%

10%

20%

30%

40%

50%

60%

70%

16 32 64 128 256 512 1024

Group Size for Golomb Code

O
ve

ra
ll

S
to

ra
g

e
O

ve
rh

ea
d c499 duke2

planet1 sand1

Figure 7: Storage overhead for the overlapping
precompiled configuration scheme.

0%

2%

4%

6%

8%

10%

16 32 64 128 256 512 1024
Group Size for Golomb Code

O
ve

ra
ll

S
to

ra
ge

 O
ve

rh
ea

d
c499 duke2

planet1 sand1

Figure 8: Storage overhead for the non-overlapping
precompiled configuration scheme.

In order to evaluate the performance impact in
alternative configurations due to shifting and rerouting, we
measured the maximum combinational path delay in each
configuration for different circuits. The results are
reported by the timing analyzer tool in Xilinx Alliance 3.1i
package. Compared to the base configuration, the worst-
case critical path delay overhead in the alternative
configurations for both schemes range from 11% to 18%.
Also, for some alternative configurations where the critical
path is not changed due to shifting and rerouting, there is
no performance degradation after reconfiguration.

7. Conclusions

In this paper, we presented two column-based
precompiled configuration techniques, the overlapping
scheme and the non-overlapping scheme. By creating
alternative configurations that avoid certain parts of the
original mapped area in the FPGA during the design phase,
the precompiled configuration approach improves the

dependability of FPGA-based systems significantly and
achieves fast reconfiguration for reducing the system
downtime.

As a comparison of the proposed schemes, the
overlapping scheme has a better MTTF improvement,
while the non-overlapping scheme achieves smaller
storage overhead for alternative configurations but needs
more CLB columns for implementation. Because
similarity among alternative configurations is intentionally
created, the storage overhead for alternative configurations
in both schemes is reduced by orders of magnitude using
differential and run-length coding. Also, high-precision,
high-complexity fault location operations prior to
reconfiguration can be replaced with concurrent error
detection schemes on alternative configuration attempts.
Both schemes result in graceful performance degradation
after reconfiguration.

Acknowledgements
The authors would like to thank Dr. Nirmal Saxena, Dr.

Santiago Fernandez-Gomez, Dr. Subhasish Mitra, Chao-Wen
Tseng, Chien-Mo Li, Philip Shirvani, and Shu-Yi Yu for their
valuable feedback and suggestions. This work was supported by
the Defense Advanced Research Projects Agency (DARPA)
under Contract No. DABT63-97-C-0024.

References

[Carmichael 99] Carmichael, C., E. Fuller, P. Blain, and M.
Caffrey, “SEU Mitigation Techniques for Virtex FPGAs in
Space Applications,” MAPLD ‘99, Sept. 1999.

[Das 99] Das, D., and N.A. Touba, “A Low Cost Approach for
Detecting, Locating, and Avoiding Interconnect Faults in
FPGA-Based Reconfigurable Systems,” Proc. of IEEE Int’l
Conf. on VLSI Design, pp. 266-269, 1999.

[Dutt 99] Dutt, S., V. Shanmugavel, and S. Trimberger,
“Efficient Incremental Rerouting for Fault Reconfiguration in
Field Programmable Gate Arrays,” Proc. IEEE/ACM Int’l
Conf. on Computer-Aided Design, pp. 173-176, 1999.

[Emmert 97] Emmert, J. M., and D. Bhatia, “Partial
Reconfiguration of FPGA Mapped Designs with Applications
to Fault Tolerance and Yield Enhancement,” Proc. Int’l
Workshop of Field-Programmable Logic, pp. 141-150, 1997.

[Emmert 98] Emmert, J. M., and D. Bhatia, “Incremental Routing
in FPGAs,” Proc. of 11th IEEE Int’l ASIC Conference, pp. 217-
221, 1998.

[Golomb 66] Golomb, S. W., “Run-length Encoding,” IEEE
Trans. on Information Theory, Vol. IT-12, pp. 399-401, 1966.

[Hanchek 98] Hanchek, F., and S. Dutt, “Methods for Tolerating
Cell and Interconnect Faults in FPGAs,” IEEE Trans. on
Computers, Vol. 47, No. 1, pp. 15-32, 1998.

[Huang 00a] Huang, W.-J., N. Saxena, and E. J. McCluskey, “A
Reliable LZ Data Compressor on Reconfigurable
Coprocessors,” Proc. IEEE Symp. on Field-Programmable
Custom Computing Machines, pp. 249-258, 2000.

[Huang 00b] Huang, W.-J., and E. J. McCluskey, “Transient
Errors and Rollback Recovery in LZ Compression,” Proc.
2000 Pacific Rim Int’l Symp. on Dependable Computing, pp.
128-135, 2000.

[Huang 01] Huang, W.-J., and E. J. McCluskey, “A Memory
Coherence Technique for Online Transient Error Recovery of
FPGA Configurations,” Proc. Ninth ACM Int’l Symp. on
Field-Programmable Gate Arrays, pp. 183-192, 2001.

[Lach 98] Lach, J., W. H. Mangione-Smith, and M. Potkonjak,
“Efficiently Supporting Fault-Tolerance in FPGAs”, Proc.
ACM Int’l Symp. on Field-Programmable Gate Arrays, pp.
105-115, 1998.

[Lach 99] Lach, J., W. H. Mangione-Smith, and M. Potkonjak,
“Algorithms for Efficient Runtime Faulty Recovery on
Diverse FPGA Architectures”, DFT’99, pp. 386-394, 1999.

[Lakamraju 00] Lakamraju, V., and R. Tessier, “Tolerating
Operational Faults in Cluster-Based FPGAs,” Proc. ACM
Int’l Symp. on Field Programmable Gate Arrays, pp. 187-
194, 2000.

[Mahapatra 99] Mahapatra, N. R., and S. Dutt, “Efficient
Network-Flow Based Techniques for Dynamic Fault
Reconfiguration in FPGAs”, FTCS’99, pp. 122-129, 1999.

[Mitra 98] Mitra, S., P. P. Shirvani, and E.J. McCluskey, “Fault
Location in FPGA-Based Reconfigurable Systems,” IEEE
Intl. High Level Design Validation and Test Workshop, 1998.

[Mitra 00a] Mitra, S. and E.J. McCluskey, “Which Concurrent
Error Detection Scheme to Choose?,” Proc. Int’l Test
Conference, 2000.

[Mitra 00b] Mitra, S., W.-J. Huang, N. R. Saxena, S.-Y. Yu, and
E. J. McCluskey, “Dependable Adaptive Computing Systems:
The Stanford CRC ROAR Project,” Fast Abstracts, 2000
Pacific Rim Int’l Symp. on Dependable Computing, pp. 15-
16, 2000.

[Pradhan 96] Pradhan, D. K., Fault-Tolerant Computer System
Design, Prentice Hall, 1996.

[Saxena 98] Saxena, N. R., and E. J. McCluskey, “Dependable
Adaptive Computing Systems,” IEEE Systems, Man, and
Cybernetics Conf., pp. 2172-2177, Oct. 11-14, 1998.

[Saxena 00] Saxena, N. R., S. Fernandez-Gomez, W.-J. Huang,
S. Mitra, S.-Y Yu, and E. J. McCluskey, “Dependable
Computing and On-Line Testing in Adaptive and
Configurable Systems,” IEEE Design and Test, Vol.17, No.
1, pp. 29-41, 2000.

[Siewiorek 92] Siewiorek, D. P., and R. S. Swarz, Reliable
Computer Systems: Design and Evaluation, 2nd Edition, Digital
Press, 1992.

[Stroud 97] Stroud, C., E. Lee, and M. Abramovici, “BIST-Based
Diagnostics of FPGA Logic Blocks,” Proc. Int’l Test
Conference, pp. 539-547, 1997.

[Stroud 98] Stroud, C., S. Wijesuriya, C. Hamilton, and M.
Abramovici, “Built-In Self-Test of FPGA Interconnect,”
Proc. Int’l Test Conference, pp. 404-411, 1998.

[Xilinx 00] Xilinx Application Note, “XAPP151: Virtex
Configuration Architecture Advanced Users’ Guide,”
http://www.xilinx.com/xapp/xapp151.pdf, 2000.

[Xilinx 01] Xilinx Inc., http://www.xilinx.com, 2000.

