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Abstract 

The abundance of configurable logic elements and 
routing resources in recent Field-Programmable Gate 
Arrays (FPGAs) provides a cost-effective method for 
tolerating permanent faults in the system.  Once a 
permanent fault occurs, the FPGA can be reconfigured by 
replacing the faulty part with previously unused resources 
in the same hardware.  In this paper, we present two 
column-based precompiled configuration techniques for 
tolerating permanent faults in FPGA-based systems.  By 
compiling alternative configuration versions in the design 
phase, these approaches ensure fast reconfiguration, and 
thus a tremendous increase in system availability.  In 
addition, intentional similarities are created among 
different configuration versions so that the storage 
overhead due to precompiled configurations is reduced by 
orders of magnitude through differential coding and run-
length coding.  Experimental and analytical results show 
that our approaches achieve significant dependability 
improvement with small configuration storage overhead. 

1. Introduction 

With the rapid progress of process technology and 
device architecture, the capacity and performance of Field-
Programmable Gate Arrays (FPGAs) have been boosted by 
orders of magnitude in recent years.  Because of the 
abundance of configurable logic and routing resources, 
current FPGAs became widely used in various 
applications.  Typical applications that use FPGAs 
extensively include not only logic emulation systems, but 
also commercial networking and storage equipment that 
may be used in mission-critical environment.  Therefore, it 
is crucial to enhance the fault tolerant capability and 
improve the dependability of FPGA-based systems. 

To tolerate permanent faults in a system, hardware 
redundancy is the most commonly used approach 
[Siewiorek 92][Pradhan 96].  Traditionally, hardware 
redundancy is realized in a coarse-grained level.  All 
functional modules in the system are replicated such that 
permanent faults in part of the system can be tolerated. 

However, the coarse-grained hardware redundancy is 
expensive in terms of area overhead.  This is especially 

noticeable in FPGA-based systems because one can find 
alternative mappings of a functional module in FPGAs to 
avoid certain parts of the device.  Therefore, instead of the 
coarse-grained hardware redundancy, a more cost-effective 
method is to reconfigure the FPGA such that the faulty 
parts are replaced with previously unused resources in the 
same device.  Equivalently, this method realizes the 
hardware redundancy in a fine-grained level.  In this way, 
the system can still operate in the presence of faults, and 
dependability is improved with very little hardware 
redundancy [Saxena 98]. 

Extensive research has been done in the past in order to 
achieve permanent fault recovery in FPGAs through 
reconfiguration.  This includes fast re-mapping and 
rerouting techniques for dynamic run-time generation of 
alternative configurations [Emmert 97, 98][Hanchek 
98][Dutt 99][Mahapatra 99], and the tile-based pre-
compiled configuration approach that creates alternative 
configurations in the design phase [Lach 98, 99]. 

Generally, the precompiled configuration approach 
minimizes the system downtime because alternative 
configuration versions are pre-generated.  Thus, the re-
mapping and rerouting of user application circuitry is not 
necessary once the fault location is diagnosed.  However, 
this approach also results in a significant storage overhead 
for all possible configurations in order to achieve a high 
coverage of faults.  With the increasing size of FPGA 
configuration data, the extra cost due to the configuration 
storage overhead may outweigh the cost reduction through 
the fine-grained hardware redundancy.  In this situation, 
such reconfiguration methods become unattractive for fault 
tolerance, especially in deep-space and unmanned 
applications. 

Another drawback of previous approaches is the 
assumption that high-precision fault location techniques 
are available prior to reconfiguration.  However, although 
there are many fault location techniques in the literature 
[Stroud 97, 98][Mitra 98][Das 99], these techniques 
require high computation complexity to diagnose a fault in 
the level of a Configurable Logic Block (CLB) or a 
Programmable Interconnect Point (PIP).  Consequently, 
these techniques are difficult to implement at run-time and 
increase the overall downtime of the system. 



  

In this paper, we present the concept of a column-based 
precompiled configuration technique for tolerating 
permanent faults in FPGAs in a cost-effective way.  Our 
approach mitigates the configuration storage overhead and 
fault location problems of previous techniques.  Different 
configurations are generated by shifting some or all of the 
CLB columns in the initial configuration along one 
direction in order to create similarities among 
configurations.  Such intentional similarities result in 
smaller storage overhead through differential coding and 
data compression techniques.  In addition, high-precision 
fault location operations prior to reconfiguration can be 
replaced by gross fault location or different precompiled 
configuration attempts. 

The organization of this paper is as follows.  In Sec. 2, 
we describe the FPGA architectural model used in this 
paper.  In Sec. 3, we briefly discuss previous work for 
constructing dependable FPGA-based systems.  In Sec. 4, 
we introduce two column-based precompiled configuration 
techniques, the overlapping and the non-overlapping 
schemes, for permanent fault recovery in FPGAs.  A data 
compression technique for storage reduction and a method 
for replacing high-precision fault location techniques are 
also presented.  In Sec. 5, we compare the dependability 
improvement of the two column-based precompiled 
configuration techniques.  In Sec. 6, configuration storage 
overhead improvements for some of the MCNC 
benchmarks are presented.  Section 7 concludes the paper. 

2.  FPGA Architecture 

Figure 1 shows the model of the programmable logic 
core of an FPGA used in this paper.  In this model, the 
programmable logic core of an FPGA consists of an array 
of three basic elements: Configurable Logic Blocks 
(CLBs), Connection Boxes (CBs), and Switch Boxes (SBs). 

CLB CLB CLB CLB

CLB CLB CLB CLB

CLB CLB CLB CLB

CB

SB

1 CLB Column  
Figure 1: Architecture of the programmable logic core 
in FPGAs. 

In SRAM-based FPGAs, a CLB contains several 
SRAM lookup tables (LUTs) to store user-defined logic 
functions.  A CLB also contains flip-flops, multiplexers, 
and dedicated circuitry to optimize the performance of user 
applications.  CLBs are connected through horizontal and 
vertical wiring channels between two neighboring rows or 
columns.  To enhance the connectivity, there are various 

kinds of wires with different lengths for connecting CLBs 
that are different blocks apart.  For example, in Xilinx 
Virtex-series FPGAs, single lines connect adjacent CLBs, 
while hex lines connect CLBs that are three or six blocks 
apart [Xilinx 01]. 

There are two types of routing devices, CBs and SBs, 
to direct the signal flows among CLBs and wiring 
channels.  CBs serve as a local bridge between CLBs and 
the adjacent wiring channels.  SBs are switch matrices that 
connect horizontal and vertical wiring channels.  In 
SRAM-based FPGAs, the state of connections in these 
routing devices is controlled by SRAM cells, which are 
configured according to the desired functionality. 

In this architecture, a CLB column includes all CLBs 
and the corresponding switch matrices (CBs and SBs) in 
the same column of the array.  The actual circuitry, 
programmable logic and routing resources, and the 
configuration architecture of each CLB column are 
identical.  A typical example of the FPGA architecture 
used in this paper is the Xilinx Virtex-series FPGAs.  
Figure 2 shows the configuration data frame architecture in 
this type of FPGA [Xilinx 01]. 
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Figure 2: Configuration frame architecture in Xilinx 
Virtex-series FPGAs. 

3. Related Work 

Previous research on dependable FPGA-based systems 
can be classified into the following categories: the 
dependable system architecture, Concurrent Error 
Detection (CED) schemes for the applications mapped in 
FPGAs, fault location and diagnosis techniques, transient 
error recovery, and permanent fault recovery. 

Figure 3 shows a dual-FPGA architecture for the 
dependable adaptive computing systems proposed in 
Stanford CRC ROAR project [Mitra 00b].  In this 
architecture, each FPGA is configured to run certain 
applications with some CED schemes.  The controller on 
each FPGA monitors the error signal from the CED 
schemes on the other FPGA and performs the fault 
location and recovery for the other FPGA when necessary. 

Various CED techniques can be found in [Saxena 
00][Huang 00a][Mitra 00a].  These approaches verify the 
correctness of the system by additional redundant 
computations either in the space or time domain.  The error 
detection latency for these techniques is small in order to 
report the occurrence of errors rapidly and reduce the 
performance degradation. 
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Figure 3: Dependable dual-FPGA architecture. 

Generally, the first response of a system to the 
detection of errors is the transient error recovery operation 
because transient errors occur more frequently than 
permanent faults in the hardware.  Traditional system-level 
approaches, such as rollback or roll-forward schemes 
[Siewiorek 92][Pradhan 96][Huang 00b], can be used to 
recover from transients that do not affect the FPGA 
configuration memory.  Also, for FPGAs with the partial 
reconfiguration feature, configuration readback and 
writeback operations can be performed simultaneously 
with system-level recovery approaches to recover from 
transients that alter the data stored in the FPGA 
configuration memory [Carmichael 99][Huang 01]. 

When transient error recovery schemes fail to recover 
the chip from an error in several attempts, fault location 
and permanent fault recovery schemes are initiated to 
repair the system from permanent faults.  For fault location 
in FPGAs, the Built-In Self-Test (BIST) technique can be 
used.  In the BIST approach, a diagnostic circuit including 
test pattern generators and response analyzers is 
configured in part of the FPGA to test another part pseudo-
exhaustively and vice-versa.  The diagnosis can be 
application-dependent [Mitra 98][Das 99] or application-
independent [Stroud 97, 98], according to whether the 
circuit under tests is configured in the same way as the 
original application circuitry.  In both cases, however, a 
considerable number of configurations are required to test 
all the hardware resources thoroughly and locate the fault.  
For high precision and resolution, these techniques 
generally require high computation complexity and long 
diagnostic latency. 

After the faulty part of an FPGA is located, permanent 
fault recovery schemes that reconfigure the FPGA to 
replace the faulty part with originally unused resources are 
applied to repair the system.  Several approaches were 
proposed in the literature in order to generate alternative 
configuration rapidly at run-time.  Emmert and Bhatia 
proposed a minimax grid matching technique to re-map the 
functional units that are originally placed in faulty CLBs 
[Emmert 97].  They also proposed an incremental routing 
technique to reroute the corresponding signals [Emmert 
98].  For cluster-based FPGAs that group multiple LUT 
and flip-flop pairs into a single cluster to take the 
advantage of design locality, Lakamraju and Tessier 
proposed a localized swapping technique to effectively 
tolerate intra-cluster faults [Lakamraju 00].  Also, Dutt et. 

al. proposed node covering techniques that reserve spare 
resources in order to facilitate the search for the optimal 
replacement for faulty parts [Dutt 99][Hanchek 98] 
[Mahapatra 99]. 

To further reduce the system downtime for permanent 
fault recovery, Lach et. al. [Lach 98, 99] proposed a tile-
based precompiled configuration approach that move the 
generation of alternative configurations to the design 
phase.  The mapped circuitry is partitioned into tiles, and 
alternative configurations for each tile are pre-generated 
and stored in the system.  The drawback of the 
precompiled configuration approach is the significant 
storage overhead in the system for all possible alternative 
configurations.  Although the tile-partitioning approach in 
[Lach 98] reduces the storage requirement for alternative 
configurations to some extent, such storage overhead is 
still several times of the original configuration size. 

In this paper, we assume that the dependable dual-
FPGA architecture in Fig. 3 is used.  CED and transient 
error recovery schemes for applications in each FPGA are 
also applied prior to permanent fault recovery.  Our goal is 
to develop a permanent fault recovery scheme for FPGAs 
that minimizes the system downtime and has small 
configuration storage overhead.  To minimize the system 
downtime, we use the precompiled configuration approach 
for fast reconfiguration.  To reduce the configuration 
storage overhead, we propose two column-based design 
methodologies and a coding scheme for effective 
compression of configuration data.  In addition, unlike 
previous permanent fault recovery techniques, our 
approach does not require high-precision, high-complexity 
fault location techniques prior to reconfiguration. 

4. Column-Based Precompiled Configuration 
Techniques 

In order to reduce the storage overhead in the system 
due to precompiled configurations, data compression 
techniques that reduce redundancy in the information can 
be applied.  Most of the data compression techniques 
reduce data size by encoding highly correlated information 
with shorter codewords.  Consequently, for a good 
compression ratio, the configuration data should be highly 
correlated. 

For the data within one configuration version, it is not 
guaranteed to obtain highly correlated configuration bit-
stream in arbitrary applications.  However, for the data 
among different configuration versions, high correlation 
can be created intentionally by proper selections of re-
mapping, rerouting, and configuration data partitioning 
methods when different configuration versions are 
constructed during the design phase. 

As mentioned in Sec. 2, the target FPGA architecture 
in this paper has identical circuitry, routing resources, and 
configuration architecture in every CLB column.  
Therefore, our precompiled configuration approach is 



  

designed to create intentional similarities based on CLB 
columns in different configuration versions.  According to 
the part of FPGA used in the original configuration and 
alternative configuration versions, we can classify our 
column-based precompiled configuration technique into 
two schemes: the overlapping scheme and the non-
overlapping scheme. 

4.1 The Overlapping Scheme 

The key concept of the overlapping precompiled 
configuration scheme can be illustrated by an example 
shown in Fig. 4.  In Fig. 4(a), suppose that the original 
fault-free configuration, or the base configuration, is 
mapped in four consecutive CLB columns (column 1 to 
column 4).  The column-based functional modules that are 
mapped in each of the four columns are function A, B, C, 
and D, respectively.  The entire circuitry is thus defined by 
the four column-based functional modules and the 
interconnects among these modules. 

Let us consider the case for tolerating faults within any 
single CLB column.  To this objective, we reserve one 
column outside of the mapped area (column 5) in the base 
configuration as backup resources for alternative 
configurations.  All CLBs and switch matrices in the 
reserved column are unused.  Also, the configuration of 
each column-based functional module in the mapped area 
is stored separately as a basis to construct alternative 
configurations. 

In this case, four alternative configurations are required 
in order to guarantee 1-column fault tolerance in the 
FPGA.  In each alternative configuration, one of the 
mapped columns (column 1 to 4) in the base configuration 
is intentionally unused.  All functional modules originally 
mapped in CLB columns with smaller column indices than 
the intentionally unused column remain in the same places 
in the alternative configuration.  The other functional 
modules are shifted rightwards by one column in the 
alternative configuration to avoid the intentionally unused 
column. 

For example, Figure 4(b) shows one of the alternative 
configurations, where column 3 is intentionally unused.  
Functional modules mapped in column 1 and column 2 in 
the base configuration (function A and B) remain in the 
same places.  Functional modules mapped in column 3 and 
column 4 in the base configuration (function C and D) are 
shifted rightwards to column 4 and column 5, respectively, 
to avoid using column 3. 

In the overlapping precompiled configuration scheme, 
the above re-mapping procedure in each alternative 
configuration creates several corresponding column sets.  
A corresponding column set is defined as a set of CLB 
columns in which certain functions are mapped in different 
configuration versions.  For example, column 3 in Fig. 4(a) 
and column 4 in Fig. 4(b) belong to the same 
corresponding column set in which function C is mapped, 
and there are four corresponding column sets in this case.  

Corresponding columns in different configurations are 
defined as CLB columns in the same corresponding 
column set that holds a certain column-based functional 
module. 

In Fig. 4(b), the re-mapping of the functional modules 
forms two mapped regions that are separated by the 
intentionally unused column.  The left mapped region 
contains column 1 and 2 (function A and B), and the right 
mapped region contains column 4 and 5 (function C and 
D).  In this way, only inter-region signals that connect 
functional units in different mapped regions need to be 
rerouted due to the shifted functional modules.  Intra-
region signals that connect functional units within the 
same mapped region, however, can be routed in the same 
way as their counterparts in the corresponding base 
configuration column.  This is because every CLB column 
has the same programmable logic and routing resources.  
Equivalently, the routing information of intra-region 
signals can be obtained directly by shifting the states of 
switches in corresponding base configuration columns 
using the same method described in the re-mapping 
procedure for column-based functional modules. 
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(a)                                          (b) 
Figure 4: The overlapping precompiled configuration. 
(a) Base configuration. (b) Alternative configuration 
when column 3 is intentionally unused. 

The overlapping precompiled configuration scheme 
with 1-column fault tolerance can be generalized to a 
scheme for tolerating multiple faulty CLB columns as 
follows.  First, if the desired number of tolerable faulty 
columns is m, which indicates that the scheme can tolerate 
faults within any m CLB columns, we need to reserve m 
unused columns as backup resources in addition to the 
mapped area in the base configuration.  In this case, if the 
number of column-based functional modules in the base 
configuration is k (i.e., k CLB columns are used to map the 
original circuit in the base configuration), the overlapping 
scheme with m-column fault tolerance requires (k+m) CLB 
columns in the FPGA.  The (k+m) CLB columns are 
indexed from left to right. 

Second, for the overlapping scheme with m-column 
tolerance, m out of (k+m) CLB columns are intentionally 
unused in each configuration version.  The total number of 
configurations required is thus C(k+m, m) = (k+m)! / 
(m!k!), with one configuration being the base 
configuration.  Therefore, one needs to construct [C(k+m, 
m) – 1] alternative configurations in order to achieve m-
column tolerance in a k-column circuit. 



  

Next, in each alternative configuration, all column-
based functional modules (in unit of a CLB column) that 
are originally mapped in CLB columns with smaller 
column indices than the least-indexed intentionally unused 
column remain in the same places.  The other column-
based functional modules are shifted rightwards by one 
column.  If a column-based functional module is shifted to 
another intentionally unused column in this alternative 
configuration, it is shifted one more column rightwards 
along with all the subsequent functional modules.  In this 
way, the (k+m) columns can be partitioned into several 
mapped regions that are separated by m intentionally 
unused columns.  Switch states that route intra-region 
signals are shifted in the same way as the k column-based 
functional modules. 

Finally, inter-region signals are rerouted to complete 
the alternative configuration.  In order to avoid using the 
switch resources in intentionally unused columns, wires 
that connect CLBs of multiple blocks apart can be used in 
rerouting inter-region signals.  For example, in Xilinx 
Virtex-series FPGAs [Xilinx 01], hex lines can be used to 
route signals across different mapped regions without 
using the switch resources in intentionally unused 
columns. 

One drawback of this scheme is that the maximum 
number of horizontal routes used in each column is limited 
by the number of horizontal multiple-block wires available 
to reroute inter-region signals.  When horizontal multiple-
block wires are not available, another solution for 
rerouting signals across intentionally unused columns is to 
use single-block wires and the corresponding switches that 
are not used in the base configuration.  In both cases, at 
least half of the routing resources for horizontal wires are 
reserved for rerouting. 

Nevertheless, the utilization of routing resources for 
vertical wires is not limited by this rerouting scheme 
because all vertical connections are intra-region and need 
not be rerouted.  Therefore, to accommodate the horizontal 
routing constraint, the base configuration should be 
constructed such that most of the signals flow in the 
vertical direction. 

The advantage of this scheme is that different 
configurations are very similar because each alternative 
configuration is created by shifting part of the base 
configuration in units of columns.  More similarity in 
configuration data leads to a good compression ratio, and 
thus small storage overhead, when data compression 
techniques are applied.  This property will be further 
examined in Sec. 4.3 when we discuss the configuration 
data compression technique 

4.2 The Non-overlapping Scheme 

If the target circuitry is small enough to fit within half 
of the FPGA, a simple way to construct alternative 
configurations is to shift the entire mapped circuitry to 
originally unused regions.  This is the non-overlapping 

precompiled configuration scheme, where there is no 
overlap between the base configuration and alternative 
configurations. 

In order to tolerate up to m faulty columns in the 
FPGA, the total number of alternative non-overlapping 
configurations required in addition to the base 
configuration is m.  In this case, the base configuration has 
to be mapped within 1/(m+1) of the entire FPGA columns.  
Therefore, one drawback is the limitation in the size of the 
mapped region in the base configuration. 

Still, the non-overlapping scheme can be feasible in 
situations where various applications are implemented in 
an FPGA in a time-multiplexed manner to minimize cost.  
In such cases, the FPGA is chosen to accommodate the 
largest circuit size among all target applications.  Because 
of variations in circuit sizes, there may be small 
application circuits in which the size constraint in the non-
overlapping scheme is satisfied. 

Compared to the overlapping scheme, the non-
overlapping scheme has smaller storage overhead for 
alternative configurations.  This is caused by two factors.  
First, there are only m alternative configuration required 
for m-column fault tolerance, which is fewer than the 
[C(k+m, m) – 1] configurations in the overlapping scheme. 

Second, the non-overlapping scheme results in more 
similarity among different configuration versions because 
the relative positions among the mapped column-based 
functional modules are preserved.  In this way, the only 
difference between the corresponding columns in different 
configurations is from the connections to primary inputs 
and outputs of the device.  More similarity between 
configurations result in a better compression ratio, which 
will be examined in Sec. 4.3. 

4.3 Configuration Data Compression 

In the proposed precompiled configuration schemes, 
CLB columns of different configurations in the same 
corresponding column set have the greatest similarity.  The 
only difference between such corresponding columns in 
different configurations is the inter-region reroutes and the 
wires to the primary I/O’s of the device.  All LUT entries 
and the switch states that control the vertical connections 
and the intra-region horizontal connections, on the other 
hand, are identical in the corresponding columns in 
different configurations 

In this case, the bit-wise difference vectors in the 
corresponding columns between the base configuration 
and alternative configurations contain strings of long, 
consecutive 0’s and scattered 1’s (may have short run-
lengths).  Therefore, run-length coding, which encodes a 
string of 0’s with its length, is expected to be very 
effective in reducing the storage of these difference 
vectors. 

In our proposed scheme, we use Golomb codes 
[Golomb 66] to encode the difference vectors between the 
corresponding columns in the base configuration and 



  

alternative configurations.  Also, note that it is not 
necessary to store the mapping relationship of 
corresponding columns.  This is because such information 
can easily be derived given that the intentionally unused 
columns are already specified in each alternative 
configuration. 

Given the configuration data, Cb, of the corresponding 
base configuration column, the encoding algorithm for the 
configuration data of a CLB column, Ca, in an alternative 
configuration is described as follows: 

(1) Find the bit-wise difference vector Cd = Ca ⊕ Cb.  
The difference vector consists of strings of Sz’s, 
which are defined as z leading 0’s (run-length z ≥ 0) 
followed by a 1. 

(2) A group size g = 2n (n is a positive integer) is 
selected in encoding each string Sz in Cd. 

(3) Each string Sz, with z leading 0’s, is encoded as a 
codeword Cw.  Each codeword is the concatenation 
of a group code and a tail code.  The group code is 
defined as z / g leading 1’s followed by a 0, and 
the tail code is the n-bit binary representation of (z 
mod g).  An example with group size g = 4 is 
shown in Table 1. 

 
Table 1: Example of Golomb code with group size = 4. 

z Source String Sz Group Code Tail Code 

0 1 00 
1 01 01 
2 001 10 
3 0001 

0 

11 
4 00001 00 
5 000001 01 
6 0000001 10 
7 00000001 

10 

11 
8 000000001 00 
9 0000000001 01 
10 00000000001 10 
11 000000000001 

110 

11 
 
Golomb code with group size g transforms a (z+1)-bit 

source data string into a codeword of (z / g + 1 + log2 g) 
bits.  When the run-length of 0’s in the source data string is 
significantly larger than the group size g, the compression 
ratio approximates to 1/g. 

Clearly, the compression ratio improves with 
increasing run-length of 0’s in the source data string.  
Because of intentional similarities created among different 
configurations, the proposed column-based schemes are 
expected to obtain long run-lengths in difference vectors, 
and thus, a good compression ratio.  Also, using run-length 
coding, the non-overlapping scheme achieves more data 
compression than the overlapping scheme due to greater 
similarity in the corresponding CLB columns. 

In addition to a good compression ratio, another factor 
that makes the proposed differential and run-length coding 
suitable for encoding configuration data is the simple 

decoding process.  Given the base configuration column, 
Cb, whose index can be derived from the intentionally 
unused columns specified for the alternative configuration, 
the decoding process of a codeword, Cw, is described as 
follows: 

(1) Count the length, L1, of the leading 1’s in Cw before 
encoutering the first zero. 

(2) Multiply L1 by the group size g.  Since g = 2n, the 
multiplication is equivalent to shifting L1 towards 
the most-significant-bit (MSB) by n bits. 

(3) Add the following n-bit tail code in the Cw to the 
result in (2) to obtain the run-length z of 0’s in the 
original difference vector.  Equivalently, this is to 
append the n-bit tail code to the end of L1 obtained 
in (2).  The difference vector, Cd, is then 
constructed by appending a 1 to z leading 0’s. 

(4) Reconstruct the alternative configuration column, 
Ca, by Ca = Cb ⊕ Cd.  Equivalently, we can flip the 
(z+1)-th bit in Cb to obtain Ca.  

The implementation of the proposed decoding process 
in hardware requires only a counter to compute the run-
length and XOR circuitry to reconstruct alternative 
configuration columns from difference vectors.  This 
simple decoding property is critical in minimizing both the 
area overhead and the system downtime due to the fault 
recovery process by FPGA reconfiguration. 

Note that corresponding columns can be configured 
exactly in the same way for different configuration 
versions.  For example, in the case of Fig. 4, the CLB 
column that holds the function A can have the same 
settings for the base configuration and any alternative 
configuration where no inter-region reroute is required for 
this function.   

Therefore, for each alternative configuration, we store 
the pointers to the encoded difference vectors instead of 
the actual data of such vectors.  In this way, the actual data 
of each encoded difference vector are stored only once, 
and different configuration versions can share the same 
difference vector without redundant storage.  In addition, 
for each alternative configuration, we store the column 
indices of intentionally unused columns that are required 
to locate the corresponding base configuration columns. 

4.4 Fault Location 

In the precompiled configuration approach, if the fault 
location is specified, reconfiguration can be initiated 
promptly by downloading an appropriate alternative 
configuration stored with the system.  Previous approaches 
require fine-grained resolution, usually in the level of one 
CLB, in the fault location techniques.  For the proposed 
schemes, on the contrary, this high-resolution requirement 
for fault location techniques is avoided. 

For the proposed precompiled configuration schemes, 
the requirement for fault location resolution is to specify a 
faulty column instead of a faulty CLB.  The coarse 
resolution requirement generally reduces the complexity of 



  

fault location techniques and thus makes such techniques 
more feasible. 

If fault location techniques are not available, all 
possible configurations stored with the system can be tried 
alternately until an appropriate configuration that operates 
successfully is set up in the system.  CED schemes for the 
application circuitry, as discussed in Sec. 3, are used to 
determine if the reconfiguration attempt is successful.  
Equivalently, this “blind” reconfiguration scheme replaces 
high-complexity fault location techniques with CED 
techniques on various configuration attempts at run-time. 

Generally, CED schemes have shorter error detection 
latency than the diagnostic latency in fault location 
techniques.  Although CED schemes are unable to 
diagnose the fault location, they are effective in detecting 
the occurrence of errors online.  Therefore, this approach 
has great potential to reduce the system downtime caused 
by fault location operations prior to reconfiguration and is 
useful for mission-critical and deadline-critical 
applications. 

5. Dependability Improvement 

In this section, we analyze the dependability 
improvement of the proposed schemes using the parameter 
of Mean Time to Failure (MTTF).  MTTF is defined as the 
expected time of the first failure in the system, given 
successful startup at time zero [Siewiorek 92]. 

Without any permanent fault recovery scheme, a 
system could fail to function properly once a permanent 
fault occurs in part of the circuitry.  Therefore, to simplify 
the analysis, we define the failure in an FPGA-based 
system without permanent fault recovery schemes as the 
occurrence of a permanent fault in any part of the mapped 
columns in the FPGA. 

In contrast, we define the failure with the proposed 
precompiled configuration schemes as the situation when 
no precompiled configuration version is available to avoid 
the faulty part of the FPGA.  There are two assumptions in 
this definition.  First, we assume that the target FPGA 
remains configurable throughout the period of interest.  
This assumption allows us to focus on the dependability 
improvement in the programmable logic core of the FPGA 
using the proposed scheme. 

Second, we assume that the system downtime due to 
reconfiguration is negligible compared to the duration 
between the occurrence of permanent faults in the FPGA.  
Practically, this is a reasonable assumption because of the 
low occurrence rate for permanent faults and the fast 
reconfiguration of current-generation FPGAs. 

In addition, the following assumptions are made for the 
analysis: 

(1) A constant failure rate λ is associated with each 
CLB column in the FPGA.  This is the probability 
of the occurrence of a permanent fault in a CLB 
column. 

(2) k CLB columns are used in the base configuration. 

(3) The occurrence of faults in each CLB column is 
independent. 

The reliability of a functional module is defined as the 
probability that the module operates successfully from 
time zero to time t, given that it commences successfully at 
time zero [Siewiorek 92].  For a constant failure rate in 
each CLB column, the reliability of a CLB column, Rcol(t), 
follows the exponential failure law, which states that 

t
col e)t(R

λ−= . 

Because there are k CLB columns in the base 
configuration with independent occurrence of faults, the 
reliability of the base configuration without any fault 
recovery scheme, Rbase(t), is  

( ) ktk
colbase e)t(R)t(R

λ−== . 

From [Siewiorek 92], the MTTF of a system can be 
calculated by the integral of the reliability function: 

∫=
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0
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Therefore, the MTTF of the base configuration without 
any fault recovery scheme, MTTFbase, is  

k
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For the overlapping scheme with m-column fault 
tolerance, m CLB columns are reserved to tolerate up to m 
faulty columns in the base configuration.  Therefore, the 
reliability of the overlapping scheme, Rov(t), becomes 
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The MTTF of the overlapping scheme, MTTFov, is thus 
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For the non-overlapping scheme with m-column 

tolerance capability, m disjoint k-column regions are 
reserved in addition to the original k-column base 



  

configuration.  Therefore, the reliability of the non-
overlapping scheme, Rno(t); becomes 
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The MTTF of the non-overlapping scheme, MTTFno, is 
thus 
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Figure 5 shows the normalized MTTF for the two 

proposed schemes with respect to different numbers of 
tolerable faulty columns, m.  The MTTF’s for both 
schemes are normalized to MTTFbase (i.e., multiplied by 
λk) to indicate the dependability improvement relative to 
the original circuitry without any fault recovery technique.  
Note that only the overlapping scheme is dependent on the 
circuit size, k.  In Fig. 5, we choose three different circuit 
sizes (k = 10, 20, and 50) for the overlapping scheme.  As 
a comparison, current-generation FPGAs, such as the 
Xilinx Virtex-E family, have choices ranging from 24 to 
156 CLB columns in a chip. 

In Fig. 5, it is clear that both schemes can achieve 
significant MTTF improvement.  With the same number of 
tolerable faulty columns, the overlapping scheme has a 
better MTTF than the non-overlapping scheme.  
Intuitively, this can be explained in two reasons.  First, in 
order to guarantee m-column fault tolerance, the non-
overlapping scheme requires more CLB columns (totally 
(m+1)k columns) to implement than the overlapping 
scheme (totally (k+m) columns).  A greater number of 
CLB columns used in the non-overlapping scheme results 
in a larger area and becomes more susceptible to faults. 

Second, given the same number of columns, Ncol, in the 
FPGA for implementing a k-column circuit using both 
schemes, the overlapping scheme is guaranteed to tolerate 
(Ncol – k) faulty columns, whereas the non-overlapping 
scheme is guaranteed to tolerate only (Ncol / k - 1) faulty 
columns.  The difference is more noticeable when the 
circuit size, k, is large. 

Figure 6 shows the normalized MTTF increment for 
each additional column of tolerance in both schemes.  The 
normalized MTTF increment represents the incremental 
MTTF improvement resulted from adding the fault-
tolerance capability by one more column in both schemes.  
The result follows the law of diminishing return, which 
indicates that the maximal gain in MTTF improvement is 
obtained when the system is changed from a no-recovery 
scheme to a scheme with 1-column tolerance capability. 
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Figure 5: Normalized MTTF for the proposed schemes. 
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Figure 6: Normalized MTTF increments. 

6. Configuration Storage Overhead and 
Performance Impact 

To demonstrate the storage overhead improvement for 
alternative configurations, we applied the proposed 
schemes with 1-column tolerance capability (m = 1) to a 
subset of MCNC benchmark circuits.  Because the 
benchmark circuits are relatively small compared to the 
capacity of current-generation FPGAs, we used the 
smallest FPGA in Xilinx Virtex-E series, XCV50E [Xilinx 
01], in our experiments.  This type of FPGA has a 16x24 
CLB array in each device. 

The number of CLB columns (parameter k) used in the 
base configuration for each benchmark circuit is shown in 
Table 2.  In each base configuration circuit, we constrained 
the mapped area and placed the I/O’s within a certain 



  

columns in the left part of the chip.  In this way, we can 
reduce the number of alternative configurations required in 
the overlapping scheme and minimize the routings in the 
horizontal direction. 

 
Table 2: Size of benchmark circuits. 

Circuit Number of CLB columns used 
in the base configuration (k) 

c499 11 
duke2 10 

planet1 6 
sand1 5 

 
Because the number of tolerable faulty columns in the 

experiments is one, k alternative configurations for the 
overlapping scheme and one alternative configuration for 
the non-overlapping scheme are required, respectively.  
Therefore, without data compression, the system has k-
times storage overhead in the overlapping scheme and 
100% storage overhead in the non-overlapping scheme in 
addition to the storage of the base configuration. 

To generate alternative configurations, we manipulated 
the Xilinx Design Language (XDL) files [Xilinx 01] of 
base configurations according to the proposed methods.  
XDL files describe the physical mapping of functional 
units and the routing of nets in FPGAs in text format.  The 
resulting XDL files for both base configurations and 
alternative configurations can be translated into 
configuration bit-streams, which are processed according 
to the configuration architecture in [Xilinx 00] in order to 
extract the configuration data of corresponding columns.  
The extracted configuration data for each column is then 
encoded as difference vectors and compressed using 
Golomb codes with different group sizes. 

Figure 7 and 8 shows the resulting storage overhead for 
the benchmark circuits due to the encoded alternative 
configurations in both precompiled configuration schemes, 
respectively.  The storage overhead is calculated relative to 
the part of configuration data required for the used 
columns in the base configuration, instead of the overall 
configuration bit-stream for the device.  This is to avoid 
the over-optimistic results because of the small size of the 
benchmark circuits relative to the capacity of the FPGA. 

From Fig. 7 and Fig. 8, a group size of 128 in the 
Golomb code minimizes the storage overhead of 
alternative configuration versions in both precompiled 
configuration schemes.  For the overlapping scheme, the 
resulting minimum storage overhead of alternative 
configurations is in the range of 15-35% for the benchmark 
circuits.  For the non-overlapping scheme, the minimum 
storage overhead of alternative configurations is around 2-
6% only.  As discussed in Sec. 4.2, the small configuration 
storage overhead in the non-overlapping scheme comes at 
the price of more CLB columns for implementing the same 
circuit with a given number of tolerable faulty columns. 

Compared to the multiple-time configuration storage 
overhead without compression in previous approaches, the 
proposed schemes achieve 1-2 orders of magnitude 
improvement in storage requirement for alternative 
configurations. 
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Figure 7: Storage overhead for the overlapping 
precompiled configuration scheme. 
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Figure 8: Storage overhead for the non-overlapping 
precompiled configuration scheme. 

In order to evaluate the performance impact in 
alternative configurations due to shifting and rerouting, we 
measured the maximum combinational path delay in each 
configuration for different circuits.  The results are 
reported by the timing analyzer tool in Xilinx Alliance 3.1i 
package.  Compared to the base configuration, the worst-
case critical path delay overhead in the alternative 
configurations for both schemes range from 11% to 18%.  
Also, for some alternative configurations where the critical 
path is not changed due to shifting and rerouting, there is 
no performance degradation after reconfiguration. 

7. Conclusions 

In this paper, we presented two column-based 
precompiled configuration techniques, the overlapping 
scheme and the non-overlapping scheme.  By creating 
alternative configurations that avoid certain parts of the 
original mapped area in the FPGA during the design phase, 
the precompiled configuration approach improves the 



  

dependability of FPGA-based systems significantly and 
achieves fast reconfiguration for reducing the system 
downtime. 

As a comparison of the proposed schemes, the 
overlapping scheme has a better MTTF improvement, 
while the non-overlapping scheme achieves smaller 
storage overhead for alternative configurations but needs 
more CLB columns for implementation.  Because 
similarity among alternative configurations is intentionally 
created, the storage overhead for alternative configurations 
in both schemes is reduced by orders of magnitude using 
differential and run-length coding.  Also, high-precision, 
high-complexity fault location operations prior to 
reconfiguration can be replaced with concurrent error 
detection schemes on alternative configuration attempts.  
Both schemes result in graceful performance degradation 
after reconfiguration. 
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