
Tolerating Operational Faults in Cluster-based FPGAs*

Vijay Lakamraju and l~ussell Tessier
Department of Electrical and Computer Engineering

University of Massachusetts
Amherst, MA 01003

{vlakamra, tessier} @ecs.amass.edu

A b s t r a c t

in recent years the application space of reconfigurable de-
vices has grown to include many platforms with a strong
need for fault tolerance. While these systems frequently
contain hardware redundancy to allow for continued opera-
tion in the presence of operational faults, the need to recover
faulty hardware and return it to full functionality quickly
and efficiently is great. In addition to providing functional
density, F P G A s provide a level of fault tolerance generally
not found in mask-programmable devices by including the
capability to reconfigure around operat ional faults in the
field. In this paper, incremental CAD techniques are de-
scribed that allow functional recovery of F P G A design con-
figurations in the presence of single or multiple operat ional
faults. Our preferred approach to fault recovery takes ad-
vantage of device routing hierarchy in architectural families
such as Xilinx Virtex [2] and Al ters Apex [3] to quickly swap
unused logic and routing resources in place of faulty ones
within logic clusters. These algorithms allow for straight-
forward implementation within a local fault- tolerant system
without the need to access a remote processing location. If
initial recovery a t t empts through localized swapping fail,
an incremental router based on the widely-used Pa thFinder
maze routing algorithm [10] can be applied remotely in an
a t tempt to form connections between newly-allocated logic
and interconnect based on the history of the initial design
route.

1 I n t r o d u c t i o n

As reconfigurable devices grow in capacity to include mil-
lions of logic gates their role as computing devices becomes
increasingly diverse. By virtue of their propensity for func-
tional specialization and reduced power consumption, FP-
GAs have recently become important design components
in computing platforms which demand significant opera-
tional fault tolerance [5]. While the demonstrated bene-
fits of FPGAs have broadened their appeal to this com-
puting sector, increased dic sizes and lower operating volt-
ages have increased concern about potential in-field fault

*V. Lakamraju is supported by Darpa Order E349: Contract
F30602-96-1-O341

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without I~:e provided that copies
arc not made or distributed tbr profit or commercial advantage and that
copies bear this notice and the full citation on the first page, To copy
otherwise, to republish, to post on serverss or to redistribute to lists,
requires prior specific permission and/or a fbe.
FPGA '2000 Monterey CA USA
Copyright ACM 2000 1-58113-193-3/00/02...$5.00

risks due to gamma radiation and metal stress [19]. This
concern is particularly acute given the less-than ideal op-
erating environment in which these systems are frequently
deployed. While the programmable nature of reconflgurable
devices would seem to make them ideal platforms to pro-
mote run-time fault recovery, few practical recovery tech-
niques have been implemented to date. This has been due
in part to the fact that until recently the large majori ty
of device transistors have been isolated in the global rout-
ing matr ix of the F P G A , necessitating time-consuming net
re-route procedures for almost all potential device faults.
Additionally, early F P G A architectures generally contained
relatively small amounts of logic and routing resources com-
pared to today 's devices making the fault recovery problem
in years past nearly as complex as initial design layout.

Recent trends in F P G A device architecture have mod-
ified this viewpoint considerably. Most contemporary pro-
grammable logic devices now support multiple levels of
architectural hierarchy containing both tightly-connected
clusters of multiple L U T / F F pairs and a less-populated
global interconnect grid containing channels of wire seg-
ments and switch matrices. Since a sizable percentage of
potential fault points are currently located inside coarse-
grained dusters , faults in these areas can often be ad-
dressed without the need for incremental rip-up and re-try.
For these existing cluster-based architectures, intra-cluster
interconnect structures facilitate straightforward substitu-
tion of unused cluster interconnect, LUTs, and flip-flops for
faulty resources using low-complexity placement algorithms.

While intra-cluster resource exchange is effective for
many faults, routing grid and switch matr ix failures gen-
erally require at least part ial net re-route in order to recon-
nect routed signals. To support a fully integrated solution in
one system, an incremental router has been developed based
on the PathFinder [10] routing algorithm. Unlike previous
incremental routers [20] [12], our approach leverages route
history from the initial route to bet ter complete net con-
nections. The router is shown to be highly-effective in sue-
cessfully recovering from hundreds of interconnect faults in
a fraction of the t ime that would be required to re-route the
circuit from scratch. The demonstra ted effectiveness of the
router makes it appropria te not only for fault recovery but
also in the implementat ion of dynamically-reconfigurable
computing circuits which have communication patterns that
may change frequently.

Our system is designed to provide multiple levels of sys-
tem recovery for FPGA devices that have been diagnosed
as faulty by fault detection methodologies [14] [21]. Intra-
cluster resource swapping is structured to limit the need for

187

compute power and memory facilitating its implementation
on remaining functional resources of a fault tolerant system.
Incremental routing is designed to be performed off-line by
a remote system with superior computat ional resources and
storage capacity.

The organization of this paper is as follows. In Section 2
a description of the issues involved in providing F P G A fault
tolerance is presented. Section 3 describes previous work in
F P G A fault tolerance and overviews dus ter -based FPGAs .
In Section 4, our CAD system is described. Experimen-
tal results obtained by applying the system to a collection
of F P G A benchmarks is presented in Section 5. Finally,
Section 6 summarizes our work and outlines directions for
future work.

2 P r o b l e m Def ini t ion

2.1 Operational Faults

Like all discrete semiconductor devices, a field pro-
grammable gate array can be adversely affected by faults
at various stages of component lifetime. While most defects
appear immediately following fabrication, occasionally, af-
ter extended periods of device use, operational faults can
affect in-servlce programmable components. Common op-
erational faults include open/shor t metal (4-17% of faults)
and transistor stuck-at faults (25-75% of faults) [22] with
manifestation rates that vary based on system environmen-
tal conditions such as exposure to gamma radiation and
extreme temperature . In general, recent t rends in F P G A
architecture increase the vulnerabili ty of devices to faults.
As VLSI feature sizes shrink and threshold voltages are re-
duced, the likelihood of oxide breakdown and electromigra-
tion grows. Depending on their duration, faults can be el-
ther transient or permanent . In general, it is possible to
recover from transient faults by reprogramming the F P G A
with the original configuration bit s tream. In case repro-
gramming the device is unsuccessful, the fault is considered
to be permanent.

Unlike manufacturing defects, which can often be over-
come via the use of spare routing wires and programmable
fuses set at the factory [17], operat ional failures must be ad-
dressed by generating a new programming configuration for
a circuit with the same functionality as the original. In this
paper stuck-at 1, stuck-at 0, wire open, and wire short oper-
atlonal faults are considered. Faulty resources are avoided
by determining new design configurations tha t avoid the use
of faulty resources such as look-up tables, flip-flops, multi-
plexers, pass transistors, and wire segments.

2.2 Fault Recovery S y s t e m Mode l

In order to support fault recovery, our CAD tools make
specific assumptions about the environment in which an
F P G A is deployed. These assumptions are generally con-
sistent with existing computing systems [5] [25] that benefit
from fault recovery.

• H a r d w a r e R e d u n d a n c y - For systems with hard
real-time constraints, hardware redundancy allows for
periodic functional hardware test and fault recovery of
system components with no system down-time. This
often means complete hardware redundancy of critical

subsystems, including F P G A s and associated micro-
processors and memories that might be used to config-
ure them. For systems that can tolerate system down-
time, hardware redundancy is not needed to recover
a faulty FPGA if the microprocessor and associated
memories can continue functioning normally during
the recovery effort.

E x t e r n a l I n t e r f a c e - Wi th the advent of the inter-
net, many reai-time and fault tolerant systems have
the capabili ty to communicate with computatlonally-
powerful remote systems through s tandard protocols.
For special-purpose platforms, such as space and
avionics systems, this communication may take place
through a dedicated link. In our system it is assumed
that if device recovery cannot be performed by the
local system, remote computing resources can be ac-
cessed to aid in the recovery effort.

For many computing platforms and especially for time-
critical systems, it is highly desirable to perform fault recov-
ery in seconds rather than minutes or hours. This constraint
generally precludes the option of re-placing and re-routing
an F P G A from scratch. In general, it is assumed that the lo-
cal fault tolerant system has a modicum of compute power
in the form of a microprocessor or microcontroller and a
small amount of memory necessary to perform basic intra-
cluster resource swapping but not more intensive incremen-
tal routing. For interconnect faults, the fault tolerant sys-
tem has the capability to pass the location of the fault to
a remote system which can quickly perform re-route in sec-
onds using routing graph cost information derived during
initial device routing. While five years ago the notion of
remote, au tomated access to vendor place-and-route tools
would have been far-fetched, new approaches to web-based
F P G A CAD make this approach a much more likely sce-
nario [15]. Additionally, the practice of fault tolerant sys-
tems contacting remote locations for service without user
intervention has been in place for over ten years [25].

2.3 Cluster-based Archi tectures

While early FPGA architectures typically contained simple
logic blocks containing one or two LUT/flip-flop pairs, more
recent devices [2] [1] [3] have clustered multiple L U T / F F
pairs together into a single cluster to take advantage of de-
sign locality and to reduce F P G A place-and-route time. A
key action in designing these architectural families has been
determining the granularity of the logic cluster. As previ-
ously described by Betz and Rose [5], if logic clusters contain
insufficient logic resources, the amount of inter-cluster rout-
ing resources needed for routing will be great and if clusters
contain excessive amounts of logic, much of these resources
will be wasted. Figure 1 shows a generalized model of a
cluster-based F P G A device. Each cluster contains N ba-
sic logic elements (BLEs), each possessing a single look-up
table/flip-flop pair. The cluster has a total of I inputs and
O outputs which connect cluster logic to the surrounding
interconnectlon matr ix. In [5] i t was determined that the
appropriate relationship between N and I is I = 2N + 2.
Unless otherwise noted, this archi tectural relationship is fol-
lowed in subsequent experiments.

In this paper we extend the Betz model to provide a more
accurate view of a range of commercial F P G A architectures
by providing an output multiplexer (OMUX) for cluster out-
puts and allowing for reduced fanout between cluster inputs

188

G1
G2

G3
G4

B a s i c L o g i c E l e m e n t

FPGA

I
I

/
/

/
/
/

i l'"

I t
I n p u t s - ~ - - -

L

• : I • ,~_~__~ = N 3uts

Figure 1: Basic Logic Element and Logic Cluster

and input multiplexers (IMUX). In general, cluster-based
architectures (e.g. Virtex, Apex) contain output multiplex-
ers to allow for flexible interconnection between BLE out-
puts and channel wiring. While output multiplexers are
frequently fully populated (e.g. every BLE can drive each
cluster output) , input multiplexers may be either fully (A1-
tern Flexl0K, Apex) or partially (Xilinx Virtex, XC5200)
populated. In this paper we indicate that the fraction of
cluster inputs that can be connected to each BLE input by
a parameter Fi that ranges between 0 and 1.

The relatively tight interconnect s tructure found inside
clusters offers opportunit ies for rapid, localized fault recov-
ery. Intra-cluster fault tolerance can be achieved both by
at tempting to leverage unused inputs on look-up tables for
fault substitution and by swapping faulty BLEs with un-
used functional ones. It will be shown that the assignment
of cluster inputs to BLE inputs plays an important role in
determining the feasibility of exchanging one BLE for an-
other during fault recovery.

3 Re la ted Work

Our research extends previously-reported CAD techniques
for overcoming operational F P G A faults. The large major-
ity of previous CAD approaches in this area have focused
on recovery from logic dus te r (block) faults rather than in-
terconnect faults. In general, these approaches require the
functionality of an entire dus te r be reimplemented in an
unused dus ter if a fault is detected. In [13], a fault recovery
approach for logic block defects was described that reserved
spare rows and columns of logic blocks to overcome individ-
ual block failures. While this approach allowed for recovery
with no required on-line device re-route, track width penal-

ties as high as 35% were reported. In [21], F P G A arrays
were divided into a collection of tiles, each of which could
be implemented in one of many pre-compiled layouts. If a
logic block fault within a tile occurred, a new tile config-
uration which left the affected block unused could be sub-
st i tuted. Recently, an incremental placement approach was
described that uses on-fine min-max positioning to quickly
move faulty logic blocks to unused device blocks [11]. Not
only did this technique and most other block movement ap-
proaches require incremental re-route following placement,
its applicability to coarse-grained duster-based architec-
tures is limited. Effectively an entire cluster would have
to be removed from use even if a fault affected only an iso-
lated LUT or F F of a duster .

The presence of interconnect faults during device oper-
ation generally leaves incremental net re-route as the only
viable recovery alternative. While rip-up and retry based
routing for designs routed from scratch has been explored
for nearly forty years [9] [16], only recently has signifi-
cant interest been given to recovering previously-working
route configurations. In [12], a re-route approach for FP-
GAs was described that re-routes nets following logic block
movement. This approach did not consider the removal of
previously-routed nets that were unaffected by the fault but
formed a blockage of a wiring resource required by the faulty
net, a potential impediment to successful route completion.

4 Fault R e c o v e r y Approaches

Our prototype system has been designed to consider a se-
ries of recovery actions following detection of a defect by a
fault diagnosis system. In this section recovery approaches
are described in the context of F P G A architectural limita-
tions. The recovery system has been automated to invoke
the correct individual recovery approach or combination of
approaches depending on the location of the fault (logic
cluster or global interconnect) and the availability of pro-
cessing resources capable of part icipat ing in the recovery ef-
fort (local system or remote site). Stuck-at, open, and short
faults are considered as potential device defects. Specific
faults can be diagnosed within the logic and interconnect of
a local duster , at the interface between dusters (channel-
cluster I /O switches, wires), and in switch matrices and wire
segments of routing channels.

A goal of both intra-cluster and in terconnect /dus ter in-
terface recovery is to use heuristics that have reduced algo-
rithmic complexity in an effort to support implementation
locally on a microprocessor of the fault tolerant system.
Since these heuristics, target ted to internal cluster faults,
are the preferred recovery mechanisms, they are described
first.

4.1 O v e r c o m i n g Intra-Clus ter Faults

The first set of recovery approaches addresses wire and tran-
sistor failures in cluster input multiplexers, look-up tables,
and flip-flops. Recovery techniques for faults in these loca-
tions a t tempt to take advantage ofloglca.1 redundancy by re-
placing faulty LUT inputs and BLEs with cluster resources
that were unused by original design mapping.

189

I -

"5
O

LL

0.6

0.5

0.4

0.3

0.2

0.1

0 II m

1 2 3 4
Number of used LUT inputs

Figure 2: ,t-Input Look-Up Table Input Utilization

INPUT

Look-up Table Input Exchange

Single faults in BLE input multiplexers, LUT input wires,
and LUT SRAM bits can lead to incorrect results being gen-
erated by an individual look-up table. While most F P G A
look-up tables support a maximum of four logic inputs, in
many cases, following technology mapping, not all four are
used. This result is i l lustrated in Figure 2 by the graph of
LUT input usage for the ten benchmarks listed in Table 1.
These benchmarks were technology mapped to 4-input look-
up tables using FlowMap [8] configured for area minimiza-
tion. In the figure it is apparent that over 40% of LUTs, on
average, contain spare inputs that are unused. As a result,
it may be possible to overcome faults in these LUTs by per-
muting LUT input pin assignments to effectively eliminate
damaged resources from the active compute set.

For F P G A devices that contain full input multiplexer
connectivity (e.g. Al te rs F lex l0K) the existence of a spare
LUT input is sufficient to ensure that the replacement LUT
input pin will allow connection to the same cluster inputs
as the original. In the case of fractional input multiplexer
population (e.g. ~Fi ~ 1), LUT input swapping requires
checking to determine if the replacement LUT input has the
capability to a t tach to the same cluster input as the orig-
inal. Given a to ta l of at most n < 3 remaining functional
inputs, a to ta l of 3! = 6 possible LUT input (and hence
LUT programming bit configurations) permutat ions can be
considered to maintain LUT functionality while avoiding
the fault. As an example of an input multiplexer config-
uration that supports fault tolerance, consider BLE 1 and
associated input signals in Figure 3. In this figure the clus-
ter input signals that drive the input multiplexer for a BLE
input can be identified by the squares at the intersection of
the cluster inputs and BLE inputs. In the case of a BLE
input failure for BLE 1, the remaining three inputs can be
configured to cover any permutat ion of cluster inputs that
drive the LUT. Since the number of cluster input to BLE
input permutat ions is small, a quick enumeration of possible
covering pat terns can be performed.

Basic Logic Element Exchange

While effective for some LUT failures, LUT input swapping
only provides a limited fix for many logic cluster faults. In
cases of LUT output failure, BLE flip-flop failure, or full
usage of LUT inputs, logic cluster functionality can be pre-
served only by swapping an entire BLE with an unused one

{ channel
tracks

C-BOX

Figure 3: Fault Tolerant Cluster Input Pa t te rn

exhibiting similar intra-clustcr connectivity. As with LUT
input swapping, the feasibility of BLE swapping is depen-
dent on the connectivity between cluster inputs and BLE
inputs. In general, two BLEs may be swapped if the inputs
of the faulty BLE and the spare BLE connect to the same
set of cluster input signals. While this clearly is the case for
fully-connected input multiplexers, this criterion requires
a t tent ion to cluster-to-BLE connection pat terns in the case
of par t la l ly-populated input multiplexers. An example con-
figuration which allows BLE swapping is shown in Figure
3. By examining the figure it can be seen tha t BLE 1 has
the same LUT input connection pa t t e rn as the spare and
therefore could be swapped in as a replacement. The inputs
of BLE 2 must be examined more closely, however, to make
this determination. In fact, the functionality of BLE 2 can
be reconstructed in the spare BLE if LUT inputs are per-
muted (e.g. BLE 2/ input I replaced by spare BLE/ input 4,
BLE 2/ input 2 replaced by spare BLE/ inpu t 1, etc.) and
LUT programming is modified to take the permutat ion into
account, If it is not known a priori i f a spare BLE can cover a
faulty one, a full enumeration of cluster input to BLE input
coverage can be performed prior to swapping. It is assumed
here that the spare BLEs are fault-free as determined by
the previous run of the fault detection system.

In many cases it may not be feasible or desirable to save
a spare BLE during design mapping. For a given number of
cluster BLEs, N, and associated cluster inputs, I , it is usu-
ally possible to achieve full BLE utilization through cluster
packing [6]. In Section 5, we consider the incremental cost
of adding a spare BLE to a cluster and leaving this resource
unused during initial mapping as a way of facilitating BLE
swapping.

190

Cluster Input/Output Exchange

While LUT input and BLE swapping can be used to over-
come individual faults inside clusters, these procedures are
ineffective for cluster input wire, dus te r output wire, or
cluster output multiplexer failures. Using techniques simi-
lar to those described for LUT input and BLE exchange, it
is possible to use spare cluster inputs or outputs as replace-
ments for faulty wire resources. In general, the exchange
must be made so that channel t rack to dus te r inpu t /ou tpu t
connectivity is preserved, thus eliminating the need for in-
cremental net re-route. As an example, in Figure 3, input b
could be exchanged for input f since they both connect to
the same channel tracks.

4.2 Incremental Routing Approaches

In the event of interconnect segment failure or if logic clus-
ter exchange approaches are ineffective, incremental rout-
ing techniques are needed to re-connect nets affected by
faults. To maximize net routability, we have based our
router on the Pa thFinder [10] negotiated congestion algo-
ri thm, a widely-used maze-routing algorithm. Pa thFinder
is a multi-i teration maze router that re-routes each net in
sequence for each iteration. The routing search for each net
evaluates a series of routing nodes (cluster pins and wire seg-
ments) each of which has been assigned a node cost value,
c,~, based on the following equation [7] [I0]:

c . = (1 .-.I- ,.EEr.) * (1 .-.I- P~) (i)

where P . is the present cost of the node, based on the
number of nets currently assigned to the node, and H= is
a histor~l cost value indicating that a node, while perhaps
uncongested presently, was overused during one or more pre-
vious iterations. By performing multiple i terations with a
non-decreasing history value, shortes t -path net routes can
be guided away from congested device areas to areas with
available routing resources.

While several incremental re-route approaches have been
developed to recover from interconnect faults [12] [20], none
consider the routing cost parameters of the initial route in
making re-route decisions. Our router extends the original
PathFinder approach by using history values from the ini-
tial route to guide incremental re-route. Additionally, nets
unaffected by operational faults may be ripped up to re-
move blockages tha t may inhibit routing for fault-affected
nets.

The outer-loop of the routing algorithm used to re-route
nets over multiple i terations is shown in Figure 4. Un-
like tradit ional Pa thFinder formulations, in our formulation
only a subset of nets are re-routed in each iteration. Fol-
lowing each iteration, nets associated with overused nodes
are designated for rip-up, history values are updated, and
ripped-up nets are re-routed in the following iteration. We
have found a maximum i terat ion count of about 30 to be
appropriate in determining success or failure of re-routing.
To achieve accelerated routing speed, an A* search param-
eter was added to the Pa thFinder cost function as in [23]
[24] to promote depth-first search behavior without loss of
routing quality. The route sequence for sources and sinks
of individual nets, indicated as M a z e - r o u t e in Figure 4, is
described in detail in [24].

R: Design nets to be re-routed.
M a x I t e r : Maximum re-route iterations.
I t er : Current i terat ion number.

R e m o v e faulty nodes from routing graph
I n i t i a l i z e H , values to those from initial route.
A d d nets affected by faults to R.
W h i l e n e t s i n R > 0 a n d I t e r < M a x I t e r

O r d e r nets by bounding box size.
Fo r each unrouted net

Maze-route net using node values H~, P~.
Update P,~ values.

Endfor
Update//,~ values
Remove nets with no overused nodes from R.
Add nets with congested nodes to R.

EndWhile

Figure 4: Incremental Routing Algorithm

Design Source

beas t l0k GEN
bubble sort RAW

clma MCNC
elliptic MCNC

i

exl010 MCNC
frisc MCNC
pdc MCNC

s38417 MCNC
s38584.1 MCNC
spla MCNC

BLEs # Clusters
N=I N=4 N=g

9800 9800 2456 1227
12293 12293 3074 1537
8383 8383 2121 1056
3604 3604 903 453
4598 4598 1191 595
3556 3556 892 448
4575 ~ 4575 ! I194 593
6406 6406 1604 803
6447 6447 1612 806
3690 3690 953 476

Table 1: Benchmark Statistics

5 Results

To judge the performance of our fault recovery system, ten
benchmark circuits, listed in Table 1, were used. These
benchmarks are from the MCNC suite [26], the RAW bench-
mark suite [4], and a benchmark circuit generator [18]. All
experiments were run on a 366MHz Celeron-based PC with
256MB of memory.

To determine the relative area taken up by inter and
intra-cluster transistors, designs were packed, placed, and
routed by VPACK and VPR [7] using the minimum num-
ber of logic clusters and routing tracks needed to success-
fully implement the design. Device channel routing seg-
ments consisted of long-lines, hex-lines, and single-length
lines in the same proport ional distribution as found in the
Xilinx Virtex [2] architecture. An accurate measurement
of cluster and interconnect transistors was determined us-
ing F P G A area measurement approaches detailed in [6] by
using the t r a n s _ c o u n t tool developed at the University of
Toronto. The results in Figure 5 indicate an increasing frac-
tion of device area taken up by intra-cluster transistors as
cluster sizes increase. This finding motivates our develop-
ment of intra-cluster recovery technlques.

In general, incremental re-route could easily overcome

191

0 . 5

0.4 '

t~

:~ 0 . 3

L. 0 . 2

0 . 0
0 1 2 3 4 5 6 7 8 9

N u m b e r o f B L E s p e r c l u s t e r

Figure 5: Fraction of Transistors in F P G A Clusters

c2

0

0 . 8 i i

0.7

0.6

0.5

0.4

0.3

0.2

0.1 ..+ 4

0 5 10

i i J • i i i
rl.-.

without history -- .% .~/

/
/

with history - ~

15 20 25 30 35 40 45 50
Number of faults

Figure 6: The Effect of Initial-route History on Re-route

single segment faults, even using FPGAs that contained the
minimum number of tracks per channel needed to success-
fully route the circuit. In Figure 6, the importance of us-
ing history values during incremental re-route is shown for
designs containing multiple design faults and input multi-
plexer flexibility of Fi = 1. The curves represent an average
percentage of failures across 50 trials for each benchmark
at specified fault counts. In many cases, the non-history
version would fail to complete successfuUy for even a small
numbers of faults.

Figure 7 shows the average time needed to re-route a
circuit given a specific number of interconnect faults. The
nearly horizontal llne corresponds to the amount needed to
re-route the device from scratch following a fault. In cases
where incremental re-route with history failed, the incre-
mental re-route time was added to the from-scratch route
time in determining the average. For greater than 475 faults
this leads to higher average route times than if only from-
scratch re-route is performed. Not only is the finding im-
portant for fault tolerance but it also is directly applica-
ble to the support of dynamic reconfiguration of circuits.
Following placement modification, the incremental re-route
approach can be applied even if the number of nets affected
is in the hundreds.

As a final step, all incremental recovery approaches were

180

160

140

= 120
8

100

8O

2 60
o 40

2O

0
0

i i i i

from scratch \ ~ ,
+ + - H - - + - { - - - - - - P ~ - - - - - t -

~ Incremental

I I t ~ I

100 200 300 400 500
Number of faults

Figure 7: Average Re-route Time Comparison

600

Action No Spare BLE
%success

One Spare BLE
~o success

No action 36.4 34.6
LUT input swap 9.5 11.2

BLE swap 0.1 22.4
Cluster I /O swap "3)/ 7.0

Incremental re-route 48.1 24.4
Re-route from scratch 2.6 0.3

Table 2: Fault Recovery Effectiveness

combined into an automated CAD system. The following
multi-step procedure was applied 10,000 times to a random-
ized selection of the placed-and-routed benchmarks that had
been previously mapped to FPGAs. Target FPGAs for the
initial and incremental mappings contained the minimum
number of tracks per channel necessary to complete routing
successfully.

Recovery steps were as follows:

1. Each transistor and wire in the target device is as-
signed a specific number for a total of M potential
single-fault points.

2. A random number number generator selects one of the
M locations as faulty.

3. The fault recovery system determines if the fault has
affected the mapped circuit. If the fault does not affect
circuit functionality, no further action is taken.

4. Depending on fault location, the appropriate recovery
action is determined. For logic cluster faults, a pro-
gression of action is performed if early actions fail (e.g.
LUT swap, followed by BLE swap, followed by cluster
input swap, etc.)

Experiments showed that it was possible to recover from
almost all 10,000 cases of randomized single-fault insertion
without rerouting from scratch. These 10,000 cases did not
consider faults that affect wires corresponding to global sig-
nals such as power and clock nets. Table 2 shows the per-
centage of time each recovery approach was used success-
fully to overcome the single fault. Targetted devices con-
tained 4 BLEs per cluster (N = 4) and were set to an El
value of 1. For results shown in the second column of the
table (i.e. for "No spare BLE"), it was found that design

192

clusters were generally fully filled by initial packing so that
BLE exchange was largely ineffective. Even without this re-
covery action, incremental re-route was nccdcd only about
50% of the time, limiting the need for the fault tolerant
system to access remote processing resources. The num-
bers improve significantly if reserved cluster resources in the
form of two cluster inputs (in addition to the I0 original)
and a spare (fifth) BLE are added to each cluster. These
resources remain unused during initial design mapping and
can be deployed during fault recovery to take the place o¢
faulty resources. The most dramatic benefit of this addition
can be seen in the incremental re-route and BLE swap rows
of the third column. Since the spare BLE can bc used to
overcome logic cluster faults, the number of cases in which
incremental re-route is needed drops nearly in half. On av-
erage, the cost of adding the spare resources to the dusters
increased overall device area by about 20% (5223 transis-
tors per cluster vs. 6251 transistors per cluster) for N = 4
and by about 8% (12297 transistors per cluster vs. 13248
transistors per cluster) for N = 8. These results indicate
that the overhead is reduced as the cluster size is increased.

It was mentioned in Section 2.3 that not all FPGA de-
vices (e.g. Virtex, XC5200) contain fully-connected input
multiplexers. For these devices, each BLE input is driven
by a fraction of cluster inputs (dcfincd in Section 2.3 to be
Fi). Often the assignment of cluster inputs to BLE inputs
is randomized to increase the number of possible routing
choices, thus enhancing routabillty. However, as shown in
Figure 3, for specific, periodic input switch patterns, LUT
input, BLE, and duster I/O swapping can be used to guar-
antee successful exchange in the presence of single faults. To
determine the cost of using switches assembled in a swap-
pable versus randomized pattern, a number of experiments
on the benchmark circuits wcrc performed. After perform-
ing placement and routing for designs mapped to devices
with N = 4 BLEs per cluster, I = 10 inputs per cluster,
and FFi = 0.5 it was determined a 5-10% area penalty due
to increased required track count exists for the patterned
versus the non-patterned switch cases.

6 F u t u r e W o r k

Several fault recovery issues remain for future investigation.
New algorithms that can quickly combine cluster input,
LUT input, and basic logic element exchange are needed to
more thoroughly explore the cluster re-implementation. Ad-
ditionally, for practical applications, the incremental router
based on PathFinder must be enhanced for critical-path de-
lay improvement to limit the effects of post-recovery perfor-
mance degradation.

The work outlined in this paper, in conjunction with
new fault-detection algorithms for duster-based architec-
tures described in [14], form the basis of an automated fault
diagnosis and recovery system for commercial FPGAs that
is currently under development at the University of Mas-
sachusetts. Our end goal is to be able to detect and recover
from faults in Xilinx Virtex devices automatically using lo-
cal intre.-cluster resource swapping, remote web-based pro-
cessing for incremental routing, and configuration bitstream
generation using Xilinx JBits. This complete system is cur-
rcntly under development.

R e f e r e n c e s

[1] Flez10K Data Sheet. Alters Corporation, 1998.

[2] Virtez Data Sheet. Xilinx Corporation, 1998.

[3] Apex Data Sheet. Alters Corporation, 1999.

[4] J. Babb, M. Frank, V. Lee, E. Walngold, and R. Barua.
The RAW Benchmark Suite: Computation Structures
for General Purpose Computing. In Proceedings, IEEE
Workshop on FPGA-based Custom Computing Ma-
chines, Naps, Ca, Apr. 1997.

[5] K. Bernhardt. Advanced Technologies for a Command
and Data Handling Subsystem in a "Better, Faster,
Cheaper" Environment. In 14th Digital Avionics Sys-
tems Conference, Cambridge, Ms, Nov. 1995.

[6] V. Betz and J. Rose. Cluster-Based Logic Blocks for
FPGAs: Area-Efficiency vs. Input Sharing and Size. In
Proceedings, IEEE Custom Integrated Circuits Confer-
ence, pages 551-554, 1997.

[7] V. Betz and J. Rose. VPR: A New Packing, Placement,
and Routing Tool for FPGA Research. In Proceed-
ings, Field Programmable Logic, Seventh International
Workshop, Oxford, UK, Sept. 1997.

[8] J. Cong and Y. Diag. FlowMap: An Optimal Tech-
nology Mapping Algorithm for Delay Optimization in
Lookup-Table Based F P G A Design. IEEE Transac-
tions on Computer-Aided Design, pages 1-12, Jan.
1994.

[9] W. Dees and R. Smith. Performance of Interconnec-
tion PAp-up and Reroute Strategies. In Proceedings,
A CM/IE EE 18st Design Automation Conference, 1981.

[10] C. Ebeling, L. McMurchie, S. Hauck, and S. Burns.
Placement and Routing Tools for the Tryptych FPGA.
IEEE Transactions on VLSI Systems, pages 473-482,
Dec. 1995.

[11] J. M. Emmert and D. Bhatia. Reconfiguring FPGA
Mapped Designs with Applications to Fault Tolerance
and Reconfigurable Computing. In Field Programmable
Logic Workshop (FPL'97), Oxford, England, Sept.
1997.

[12] J. M. Emmert and D. Bhatia. Incremental Routing in
FPGAs. In International ASIC Conference (ASIC'98),
1998.

[13] F. Hanchek and S. Dutt. Methodologoies for Toler-
ating Cell and Interconnect Faults in FPGAs. IEEE
Transactions on Computers, 47(1):15-32, Jan. 1998.

[14] I. G. Harris and R. Tessier. Testing Approaches for
Cluster-based FPGAs. In submitted to $Tth Design Au-
tomation Conference, June 2000.

[15] S. Hauck. Data Security for Web-based CAD. In Pro-
ceedings, A CM/IEEE 35~h Design Automation Confer-
ence, 1998.

[16] D. Hill. A CAD System for the Design of Field Pro-
grammable Gate Arrays. In in 28th Design Automation
Conference, June 1991.

193

[17] N. Howard, A. TyrreU, and N. Allinson. The Yield En-
hancement of Field-Programmable Gate Arrays. IEEE
Transactions on VLSI Systems, pages 115-123, Mar.
1994.

[18] M. Hutton, J. Rose, and D. Corneil. Generation of
Synthetic Sequential Benchmark Circuits. In Interna-
tional Syrnponium on Field Programmable Gate Arrays,
Monterey, Ca., Feb. 1997.

[19] R. Katz, K. LaBel, J. J. Wang, B. Cronquist, R. Koga,
S. Penzin, and G. Swift. Radiation Effects on Current
Field ProgrammableTechnologies. IEEE Transactions
on Nuclear Science, 44(6):1945-1956, Dec. 1997.

[20] A. Mathur and C. L. Liu. Timing-Driven Placement
Reconfiguration for Fault Tolerance and Yield En-
hancement in FPGAs. In Proceeding8 Ed~TC96, 1996.

[21] N. Shnidman, W. H. Mangione-Smith, and M. Potkon-
jak. On-Line Fault Detection for Bus-Based Field Pro-
grammable Gate Arrays. IEEE Transactions on Very
Large Scale [ntegration, 6(4):656-665, Dec. 1998.

[22] D. P. Siewiorek and R. Swarz. Reliable Computer Sys-
tems: Design and Evaluation. Digital Press, Burling-
ton, Ms, 1992.

[23] J. Swartz, V. Betz, and 3. Rose. A Fast Routabillty-
Driven Router for FPGAs. In 6th International Work-
shop on Field-Programmable Gate Arrays, Monterey,
Ca, Feb. 1998.

[24] R. Tessier. Negotiated A* Routing for FPGAs.
In Proceedings: Fifth Canadian Workshop on Field-
Programmable Devices, Montreal, Quebec, June 1998.

[25] S. Webber and J. Beirne. The Stratus Architecture. In
Proceedings: $lst International Symposium on Fault-
Tolerant Computing, 1991.

[26] S. Yang. Logic Synthesis and Optimization Bench-
marks. Microelectronics Centre of North Carolina
Tech. Report, 1991.

194

