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A b s t r a c t  

in recent years the application space of reconfigurable de- 
vices has grown to include many platforms with a strong 
need for fault tolerance. While these systems frequently 
contain hardware redundancy to allow for continued opera- 
tion in the presence of operational  faults, the need to recover 
faulty hardware and return it to full functionality quickly 
and efficiently is great. In addition to providing functional 
density, F P G A s  provide a level of fault tolerance generally 
not found in mask-programmable devices by including the 
capability to reconfigure around operat ional  faults in the 
field. In this paper,  incremental  CAD techniques are de- 
scribed that  allow functional recovery of F P G A  design con- 
figurations in the presence of single or multiple operat ional  
faults. Our preferred approach to fault recovery takes ad- 
vantage of device routing hierarchy in architectural  families 
such as Xilinx Virtex [2] and Al ters  Apex [3] to quickly swap 
unused logic and routing resources in place of faulty ones 
within logic clusters. These algorithms allow for straight- 
forward implementation within a local fault- tolerant  system 
without the need to access a remote processing location. If 
initial recovery a t t empts  through localized swapping fail, 
an incremental router based on the widely-used Pa thFinder  
maze routing algorithm [10] can be applied remotely in an 
a t tempt  to form connections between newly-allocated logic 
and interconnect based on the history of the initial design 
route. 

1 I n t r o d u c t i o n  

As reconfigurable devices grow in capacity to include mil- 
lions of logic gates their role as computing devices becomes 
increasingly diverse. By virtue of their propensity for func- 
tional specialization and reduced power consumption, FP- 
GAs have recently become important design components 
in computing platforms which demand significant opera- 
tional fault tolerance [5]. While the demonstrated bene- 
fits of FPGAs have broadened their appeal to this com- 
puting sector, increased dic sizes and lower operating volt- 
ages have increased concern about potential in-field fault 
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risks due to gamma radiation and metal  stress [19]. This 
concern is particularly acute given the less-than ideal op- 
erating environment in which these systems are frequently 
deployed. While the programmable nature of reconflgurable 
devices would seem to make them ideal platforms to pro- 
mote run-time fault recovery, few practical recovery tech- 
niques have been implemented to date. This has been due 
in part  to the fact that  until recently the large majori ty 
of device transistors have been isolated in the global rout- 
ing matr ix  of the F P G A ,  necessitating time-consuming net 
re-route procedures for almost all potential  device faults. 
Additionally, early F P G A  architectures generally contained 
relatively small amounts of logic and routing resources com- 
pared to today 's  devices making the fault recovery problem 
in years past  nearly as complex as initial design layout. 

Recent trends in F P G A  device architecture have mod- 
ified this viewpoint considerably. Most contemporary pro- 
grammable logic devices now support  multiple levels of 
architectural  hierarchy containing both tightly-connected 
clusters of multiple L U T / F F  pairs and a less-populated 
global interconnect grid containing channels of wire seg- 
ments and switch matrices.  Since a sizable percentage of 
potential  fault points are currently located inside coarse- 
grained dusters ,  faults in these areas can often be ad- 
dressed without the need for incremental rip-up and re-try. 
For these existing cluster-based architectures, intra-cluster 
interconnect structures facilitate straightforward substitu- 
tion of unused cluster interconnect,  LUTs, and flip-flops for 
faulty resources using low-complexity placement algorithms. 

While intra-cluster resource exchange is effective for 
many faults, routing grid and switch matr ix failures gen- 
erally require at  least part ial  net re-route in order to recon- 
nect routed signals. To support  a fully integrated solution in 
one system, an incremental  router has been developed based 
on the PathFinder  [10] routing algorithm. Unlike previous 
incremental routers [20] [12], our approach leverages route 
history from the initial route to bet ter  complete net con- 
nections. The router is shown to be highly-effective in sue- 
cessfully recovering from hundreds of interconnect faults in 
a fraction of the t ime that  would be required to re-route the 
circuit from scratch. The demonstra ted effectiveness of the 
router makes it appropria te  not only for fault recovery but 
also in the implementat ion of dynamically-reconfigurable 
computing circuits which have communication patterns that 
may change frequently. 

Our system is designed to provide multiple levels of sys- 
tem recovery for FPGA devices that have been diagnosed 
as faulty by fault detection methodologies [14] [21]. Intra- 
cluster resource swapping is structured to limit the need for 
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compute power and memory facilitating its implementation 
on remaining functional resources of a fault tolerant system. 
Incremental  routing is designed to be performed off-line by 
a remote system with superior computat ional  resources and 
storage capacity. 

The organization of this paper is as follows. In Section 2 
a description of the issues involved in providing F P G A  fault 
tolerance is presented. Section 3 describes previous work in 
F P G A  fault tolerance and overviews dus ter -based FPGAs .  
In Section 4, our CAD system is described. Experimen- 
tal results obtained by applying the system to a collection 
of F P G A  benchmarks is presented in Section 5. Finally, 
Section 6 summarizes our work and outlines directions for 
future work. 

2 P r o b l e m  Def ini t ion 

2.1 Operational Faults 

Like all discrete semiconductor devices, a field pro- 
grammable gate array can be adversely affected by faults 
at various stages of component lifetime. While most defects 
appear  immediately following fabrication, occasionally, af- 
ter extended periods of device use, operational faults can 
affect in-servlce programmable components.  Common op- 
erational faults include open/shor t  metal  (4-17% of faults) 
and transistor stuck-at  faults (25-75% of faults) [22] with 
manifestation rates that  vary based on system environmen- 
tal  conditions such as exposure to gamma radiation and 
extreme temperature .  In general, recent t rends in F P G A  
architecture increase the vulnerabili ty of devices to faults. 
As VLSI feature sizes shrink and threshold voltages are re- 
duced, the likelihood of oxide breakdown and electromigra- 
tion grows. Depending on their duration,  faults can be el- 
ther transient or permanent .  In general, it is possible to 
recover from transient faults by reprogramming the F P G A  
with the original configuration bit  s tream. In case repro- 
gramming the device is unsuccessful, the fault is considered 
to be permanent.  

Unlike manufacturing defects, which can often be over- 
come via the use of spare routing wires and programmable 
fuses set at the factory [17], operat ional  failures must be ad- 
dressed by generating a new programming configuration for 
a circuit with the same functionality as the original. In this 
paper stuck-at 1, stuck-at  0, wire open, and wire short oper- 
atlonal faults are considered. Faulty resources are avoided 
by determining new design configurations tha t  avoid the use 
of faulty resources such as look-up tables, flip-flops, multi- 
plexers, pass transistors,  and wire segments. 

2.2 Fault Recovery S y s t e m  Mode l  

In order to support  fault recovery, our CAD tools make 
specific assumptions about  the environment in which an 
F P G A  is deployed. These assumptions are generally con- 
sistent with existing computing systems [5] [25] that  benefit 
from fault recovery. 

• H a r d w a r e  R e d u n d a n c y -  For systems with hard 
real-time constraints, hardware redundancy allows for 
periodic functional hardware test and fault recovery of 
system components with no system down-time. This 
often means complete hardware redundancy of critical 

subsystems, including F P G A s  and associated micro- 
processors and memories that  might be used to config- 
ure them. For systems that  can tolerate system down- 
time, hardware redundancy is not needed to recover 
a faulty FPGA if the microprocessor and associated 
memories can continue functioning normally during 
the recovery effort. 

E x t e r n a l  I n t e r f a c e  - Wi th  the advent of the inter- 
net, many reai-time and fault tolerant systems have 
the capabili ty to communicate with computatlonally-  
powerful remote systems through s tandard  protocols. 
For special-purpose platforms, such as space and 
avionics systems, this communication may take place 
through a dedicated link. In our system it is assumed 
that  if device recovery cannot be performed by the 
local system, remote computing resources can be ac- 
cessed to aid in the recovery effort. 

For many computing platforms and especially for time- 
critical systems, it  is highly desirable to perform fault recov- 
ery in seconds rather  than minutes or hours. This constraint 
generally precludes the option of re-placing and re-routing 
an F P G A  from scratch. In general, it is assumed that  the lo- 
cal fault tolerant system has a modicum of compute power 
in the form of a microprocessor or microcontroller and a 
small amount of memory necessary to perform basic intra- 
cluster resource swapping but  not more intensive incremen- 
tal  routing. For interconnect faults, the fault tolerant sys- 
tem has the capability to pass the location of the fault to 
a remote system which can quickly perform re-route in sec- 
onds using routing graph cost information derived during 
initial device routing. While five years ago the notion of 
remote, au tomated  access to vendor place-and-route tools 
would have been far-fetched, new approaches to web-based 
F P G A  CAD make this approach a much more likely sce- 
nario [15]. Additionally, the practice of fault tolerant sys- 
tems contacting remote locations for service without user 
intervention has been in place for over ten years [25]. 

2.3 Cluster-based Archi tectures  

While early FPGA architectures typically contained simple 
logic blocks containing one or two LUT/flip-flop pairs, more 
recent devices [2] [1] [3] have clustered multiple L U T / F F  
pairs together into a single cluster to take advantage of de- 
sign locality and to reduce F P G A  place-and-route time. A 
key action in designing these architectural  families has been 
determining the granularity of the logic cluster. As previ- 
ously described by Betz and Rose [5], if logic clusters contain 
insufficient logic resources, the amount  of inter-cluster rout- 
ing resources needed for routing will be great and if clusters 
contain excessive amounts  of logic, much of these resources 
will be wasted. Figure 1 shows a generalized model of a 
cluster-based F P G A  device. Each cluster contains N ba- 
sic logic elements (BLEs),  each possessing a single look-up 
table/flip-flop pair. The cluster has a total  of I inputs and 
O outputs  which connect cluster logic to the surrounding 
interconnectlon matr ix.  In [5] i t  was determined that  the 
appropriate  relationship between N and I is I = 2N + 2. 
Unless otherwise noted, this archi tectural  relationship is fol- 
lowed in subsequent experiments.  

In this paper we extend the Betz model  to provide a more 
accurate view of a range of commercial F P G A  architectures 
by providing an output  multiplexer (OMUX) for cluster out- 
puts and allowing for reduced fanout between cluster inputs 
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Figure 1: Basic Logic Element and Logic Cluster 

and input multiplexers (IMUX). In general, cluster-based 
architectures (e.g. Virtex, Apex) contain output  multiplex- 
ers to allow for flexible interconnection between BLE out- 
puts and channel wiring. While output multiplexers are 
frequently fully populated (e.g. every BLE can drive each 
cluster output) ,  input multiplexers may be either fully (A1- 
tern Flexl0K,  Apex) or partially (Xilinx Virtex, XC5200) 
populated. In this paper  we indicate that  the fraction of 
cluster inputs that  can be connected to each BLE input by 
a parameter  Fi that  ranges between 0 and 1. 

The relatively tight interconnect s tructure found inside 
clusters offers opportunit ies for rapid, localized fault recov- 
ery. Intra-cluster fault tolerance can be achieved both by 
at tempting to leverage unused inputs on look-up tables for 
fault substitution and by swapping faulty BLEs with un- 
used functional ones. It will be shown that  the assignment 
of cluster inputs to BLE inputs plays an important  role in 
determining the feasibility of exchanging one BLE for an- 
other during fault recovery. 

3 Re la ted  Work 

Our research extends previously-reported CAD techniques 
for overcoming operational F P G A  faults. The large major- 
ity of previous CAD approaches in this area have focused 
on recovery from logic dus te r  (block) faults rather than in- 
terconnect faults. In general, these approaches require the 
functionality of an entire dus te r  be reimplemented in an 
unused dus ter  if a fault is detected.  In [13], a fault recovery 
approach for logic block defects was described that  reserved 
spare rows and columns of logic blocks to overcome individ- 
ual block failures. While this approach allowed for recovery 
with no required on-line device re-route, track width penal- 

ties as high as 35% were reported.  In [21], F P G A  arrays 
were divided into a collection of tiles, each of which could 
be implemented in one of many pre-compiled layouts. If a 
logic block fault within a tile occurred, a new tile config- 
uration which left the affected block unused could be sub- 
st i tuted.  Recently, an incremental placement approach was 
described that  uses on-fine min-max positioning to quickly 
move faulty logic blocks to unused device blocks [11]. Not 
only did this technique and most other block movement ap- 
proaches require incremental re-route following placement, 
its applicability to coarse-grained duster-based architec- 
tures is limited. Effectively an entire cluster would have 
to be removed from use even if a fault affected only an iso- 
lated LUT or F F  of a duster .  

The presence of interconnect faults during device oper- 
ation generally leaves incremental net re-route as the only 
viable recovery alternative. While rip-up and retry based 
routing for designs routed from scratch has been explored 
for nearly forty years [9] [16], only recently has signifi- 
cant interest been given to recovering previously-working 
route configurations. In [12], a re-route approach for FP-  
GAs was described that  re-routes nets following logic block 
movement. This approach did not consider the removal of 
previously-routed nets that  were unaffected by the fault but 
formed a blockage of a wiring resource required by the faulty 
net, a potential  impediment  to successful route completion. 

4 Fault R e c o v e r y  Approaches  

Our prototype system has been designed to consider a se- 
ries of recovery actions following detection of a defect by a 
fault diagnosis system. In this section recovery approaches 
are described in the context of F P G A  architectural limita- 
tions. The recovery system has been automated to invoke 
the correct individual recovery approach or combination of 
approaches depending on the location of the fault (logic 
cluster or global interconnect) and the availability of pro- 
cessing resources capable of part icipat ing in the recovery ef- 
fort (local system or remote site). Stuck-at,  open, and short 
faults are considered as potential  device defects. Specific 
faults can be diagnosed within the logic and interconnect of 
a local duster ,  at  the interface between dusters  (channel- 
cluster I /O  switches, wires), and in switch matrices and wire 
segments of routing channels. 

A goal of both intra-cluster and in terconnect /dus ter  in- 
terface recovery is to use heuristics that  have reduced algo- 
rithmic complexity in an effort to support  implementation 
locally on a microprocessor of the fault tolerant system. 
Since these heuristics, target ted to internal cluster faults, 
are the preferred recovery mechanisms, they are described 
first. 

4.1 O v e r c o m i n g  Intra-Clus ter  Faults  

The first set of recovery approaches addresses wire and tran- 
sistor failures in cluster input multiplexers, look-up tables, 
and flip-flops. Recovery techniques for faults in these loca- 
tions a t tempt  to take advantage ofloglca.1 redundancy by re- 
placing faulty LUT inputs and BLEs with cluster resources 
that  were unused by original design mapping. 
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Single faults in BLE input  multiplexers, LUT input wires, 
and LUT SRAM bits can lead to incorrect results being gen- 
erated by an individual look-up table.  While most F P G A  
look-up tables support  a maximum of four logic inputs, in 
many cases, following technology mapping,  not all four are 
used. This result is i l lustrated in Figure 2 by the graph of 
LUT input  usage for the ten benchmarks listed in Table 1. 
These benchmarks were technology mapped  to 4-input look- 
up tables using FlowMap [8] configured for area minimiza- 
tion. In the figure it is apparent  that  over 40% of LUTs, on 
average, contain spare inputs  that  are unused. As a result, 
it may be possible to overcome faults in these LUTs by per- 
muting LUT input pin assignments to effectively eliminate 
damaged resources from the active compute set. 

For F P G A  devices that  contain full input  multiplexer 
connectivity (e.g. Al te rs  F lex l0K)  the existence of a spare 
LUT input is sufficient to ensure that  the replacement LUT 
input pin will allow connection to the same cluster inputs 
as the original. In the case of fractional input  multiplexer 
population (e.g. ~Fi ~ 1), LUT input swapping requires 
checking to determine if the replacement LUT input has the 
capability to a t tach to the same cluster input  as the orig- 
inal. Given a to ta l  of at  most  n < 3 remaining functional 
inputs, a to ta l  of 3! = 6 possible LUT input  (and hence 
LUT programming bit configurations) permutat ions can be 
considered to maintain LUT functionality while avoiding 
the fault. As an example of an input  multiplexer config- 
uration that  supports  fault tolerance, consider BLE 1 and 
associated input signals in Figure 3. In this figure the clus- 
ter input signals that  drive the input  multiplexer for a BLE 
input can be identified by the squares at the intersection of 
the cluster inputs and BLE inputs.  In the case of a BLE 
input failure for BLE 1, the remaining three inputs can be 
configured to cover any permutat ion of cluster inputs that  
drive the LUT. Since the number of cluster input  to BLE 
input permutat ions is small, a quick enumeration of possible 
covering pat terns  can be performed. 

Basic Logic Element Exchange 

While effective for some LUT failures, LUT input swapping 
only provides a limited fix for many logic cluster faults. In 
cases of LUT output  failure, BLE flip-flop failure, or full 
usage of LUT inputs, logic cluster functionality can be pre- 
served only by swapping an entire BLE with an unused one 

{ channel 
tracks 

C-BOX 

Figure 3: Fault  Tolerant Cluster Input  Pa t te rn  

exhibiting similar intra-clustcr connectivity. As with LUT 
input swapping, the feasibility of BLE swapping is depen- 
dent on the connectivity between cluster inputs and BLE 
inputs. In general, two BLEs may be swapped if the inputs 
of the faulty BLE and the spare BLE connect to the same 
set of cluster input signals. While this clearly is the case for 
fully-connected input  multiplexers, this criterion requires 
a t tent ion to cluster-to-BLE connection pat terns  in the case 
of par t la l ly-populated input  multiplexers. An example con- 
figuration which allows BLE swapping is shown in Figure 
3. By examining the figure it can be seen tha t  BLE 1 has 
the same LUT input  connection pa t t e rn  as the spare and 
therefore could be swapped in as a replacement.  The inputs 
of BLE 2 must be examined more closely, however, to make 
this determination.  In fact, the functionality of BLE 2 can 
be reconstructed in the spare BLE if LUT inputs are per- 
muted (e.g. BLE 2/ input  I replaced by spare BLE/ input  4, 
BLE 2/ input  2 replaced by spare BLE/ inpu t  1, etc.) and 
LUT programming is modified to take the permutat ion into 
account, If it  is not known a priori i f a  spare BLE can cover a 
faulty one, a full enumeration of cluster input  to BLE input 
coverage can be performed prior to swapping. It is assumed 
here that  the spare BLEs are fault-free as determined by 
the previous run of the fault detection system. 

In many cases it may not be feasible or desirable to save 
a spare BLE during design mapping. For a given number of 
cluster BLEs, N,  and associated cluster inputs, I ,  it  is usu- 
ally possible to achieve full BLE utilization through cluster 
packing [6]. In Section 5, we consider the incremental cost 
of adding a spare BLE to a cluster and leaving this resource 
unused during initial mapping as a way of facilitating BLE 
swapping. 
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Cluster Input/Output Exchange 

While LUT input and BLE swapping can be used to over- 
come individual faults inside clusters, these procedures are 
ineffective for cluster input wire, dus te r  output  wire, or 
cluster output  multiplexer failures. Using techniques simi- 
lar to those described for LUT input and BLE exchange, it 
is possible to use spare cluster inputs or outputs  as replace- 
ments for faulty wire resources. In general, the exchange 
must be made so that  channel t rack to dus te r  inpu t /ou tpu t  
connectivity is preserved, thus eliminating the need for in- 
cremental net re-route. As an example, in Figure 3, input b 
could be exchanged for input f since they both connect to 
the same channel tracks. 

4.2 Incremental Routing Approaches 

In the event of interconnect segment failure or if logic clus- 
ter exchange approaches are ineffective, incremental rout- 
ing techniques are needed to re-connect nets affected by 
faults. To maximize net routability, we have based our 
router on the Pa thFinder  [10] negotiated congestion algo- 
ri thm, a widely-used maze-routing algorithm. Pa thFinder  
is a multi-i teration maze router that  re-routes each net in 
sequence for each iteration. The routing search for each net 
evaluates a series of routing nodes (cluster pins and wire seg- 
ments) each of which has been assigned a node cost value, 
c,~, based on the following equation [7] [I0]: 

c .  = (1 .-.I- ,.EEr.) * (1 .-.I- P~) (i) 

where P .  is the present  cost of the node, based on the 
number of nets currently assigned to the node, and H= is 
a histor~l cost value indicating that  a node, while perhaps 
uncongested presently, was overused during one or more pre- 
vious iterations. By performing multiple i terations with a 
non-decreasing history value, shortes t -path net routes can 
be guided away from congested device areas to areas with 
available routing resources. 

While several incremental re-route approaches have been 
developed to recover from interconnect faults [12] [20], none 
consider the routing cost parameters  of the initial route in 
making re-route decisions. Our router extends the original 
PathFinder  approach by using history values from the ini- 
tial route to guide incremental re-route. Additionally, nets 
unaffected by operational faults may be ripped up to re- 
move blockages tha t  may inhibit routing for fault-affected 
nets. 

The outer-loop of the routing algorithm used to re-route 
nets over multiple i terations is shown in Figure 4. Un- 
like tradit ional  Pa thFinder  formulations, in our formulation 
only a subset of nets are re-routed in each iteration. Fol- 
lowing each iteration, nets associated with overused nodes 
are designated for rip-up, history values are updated,  and 
ripped-up nets are re-routed in the following iteration. We 
have found a maximum i terat ion count of about  30 to be 
appropriate in determining success or failure of re-routing. 
To achieve accelerated routing speed, an A* search param- 
eter was added to the Pa thFinder  cost function as in [23] 
[24] to promote depth-first  search behavior without loss of 
routing quality. The route sequence for sources and sinks 
of individual nets, indicated as M a z e - r o u t e  in Figure 4, is 
described in detail  in [24]. 

R:  Design nets to be re-routed. 
M a x I t e r :  Maximum re-route iterations. 
I t er :  Current i terat ion number.  

R e m o v e  faulty nodes from routing graph 
I n i t i a l i z e  H ,  values to those from initial route. 
A d d  nets affected by faults to R.  
W h i l e  n e t s  i n  R > 0 a n d  I t e r  < M a x I t e r  

O r d e r  nets by bounding box size. 
Fo r  each unrouted net 

Maze-route net using node values H~, P~. 
Update P,~ values. 

Endfor 
Update//,~ values 
Remove nets with no overused nodes from R. 
Add nets with congested nodes to R. 

EndWhile 

Figure 4: Incremental  Routing Algorithm 

Design Source 

beas t l0k  GEN 
bubble sort RAW 

clma MCNC 
elliptic MCNC 

i 

exl010 MCNC 
frisc MCNC 
pdc MCNC 

s38417 MCNC 
s38584.1 MCNC 
spla MCNC 

# BLEs # Clusters 
N=I N=4 N=g 

9800 9800 2456 1227 
12293 12293 3074 1537 
8383 8383 2121 1056 
3604 3604 903 453 
4598 4598 1191 595 
3556 3556 892 448 
4575 ~ 4575 ! I194 593 
6406 6406 1604 803 
6447 6447 1612 806 
3690 3690 953 476 

Table 1: Benchmark Statistics 

5 Results 

To judge the performance of our fault recovery system, ten 
benchmark circuits, listed in Table 1, were used. These 
benchmarks are from the MCNC suite [26], the RAW bench- 
mark suite [4], and a benchmark circuit generator [18]. All 
experiments were run on a 366MHz Celeron-based PC with 
256MB of memory. 

To determine the relative area taken up by inter and 
intra-cluster transistors,  designs were packed, placed, and 
routed by VPACK and VPR [7] using the minimum num- 
ber of logic clusters and routing tracks needed to success- 
fully implement the design. Device channel routing seg- 
ments consisted of long-lines, hex-lines, and single-length 
lines in the same proport ional  distribution as found in the 
Xilinx Virtex [2] architecture. An accurate measurement 
of cluster and interconnect transistors was determined us- 
ing F P G A  area measurement approaches detailed in [6] by 
using the t r a n s _ c o u n t  tool developed at the University of 
Toronto. The results in Figure 5 indicate an increasing frac- 
tion of device area taken up by intra-cluster transistors as 
cluster sizes increase. This finding motivates our develop- 
ment of intra-cluster recovery technlques. 

In general, incremental re-route could easily overcome 
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Figure 6: The Effect of Initial-route History on Re-route 

single segment faults, even using FPGAs that contained the 
minimum number of tracks per channel needed to success- 
fully route the circuit. In Figure 6, the importance of us- 
ing history values during incremental re-route is shown for 
designs containing multiple design faults and input multi- 
plexer flexibility of Fi = 1. The curves represent an average 
percentage of failures across 50 trials for each benchmark 
at specified fault counts. In many cases, the non-history 
version would fail to complete successfuUy for even a small 
numbers of faults. 

Figure 7 shows the average time needed to re-route a 
circuit given a specific number of interconnect faults. The 
nearly horizontal llne corresponds to the amount needed to 
re-route the device from scratch following a fault. In cases 
where incremental re-route with history failed, the incre- 
mental re-route time was added to the from-scratch route 
time in determining the average. For greater than 475 faults 
this leads to higher average route times than if only from- 
scratch re-route is performed. Not only is the finding im- 
portant for fault tolerance but  it also is directly applica- 
ble to the support of dynamic reconfiguration of circuits. 
Following placement modification, the incremental re-route 
approach can be applied even if the number of nets affected 
is in the hundreds. 

As a final step, all incremental recovery approaches were 
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Figure 7: Average Re-route Time Comparison 

600 

Action No Spare BLE 
%success 

One Spare BLE 
~o success 

No action 36.4 34.6 
LUT input swap 9.5 11.2 

BLE swap 0.1 22.4 
Cluster I /O swap "3)/ .......... 7.0 

Incremental re-route 48.1 24.4 
Re-route from scratch 2.6 0.3 

Table 2: Fault Recovery Effectiveness 

combined into an automated CAD system. The following 
multi-step procedure was applied 10,000 times to a random- 
ized selection of the placed-and-routed benchmarks that had 
been previously mapped to FPGAs.  Target FPGAs for the 
initial and incremental mappings contained the minimum 
number of tracks per channel necessary to complete routing 
successfully. 

Recovery steps were as follows: 

1. Each transistor and wire in the target device is as- 
signed a specific number for a total of M potential 
single-fault points. 

2. A random number number generator selects one of the 
M locations as faulty. 

3. The fault recovery system determines if the fault has 
affected the mapped circuit. If the fault does not affect 
circuit functionality, no further action is taken. 

4. Depending on fault location, the appropriate recovery 
action is determined. For logic cluster faults, a pro- 
gression of action is performed if early actions fail (e.g. 
LUT swap, followed by BLE swap, followed by cluster 
input swap, etc.) 

Experiments showed that it was possible to recover from 
almost all 10,000 cases of randomized single-fault insertion 
without rerouting from scratch. These 10,000 cases did not 
consider faults that  affect wires corresponding to global sig- 
nals such as power and clock nets. Table 2 shows the per- 
centage of time each recovery approach was used success- 
fully to overcome the single fault. Targetted devices con- 
tained 4 BLEs per cluster (N = 4) and were set to an El 
value of 1. For results shown in the second column of the 
table (i.e. for "No spare BLE"), it was found that design 
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clusters were generally fully filled by initial packing so that 
BLE exchange was largely ineffective. Even without this re- 
covery action, incremental re-route was nccdcd only about 
50% of the time, limiting the need for the fault tolerant 
system to access remote processing resources. The num- 
bers improve significantly if reserved cluster resources in the 
form of two cluster inputs (in addition to the I0 original) 
and a spare (fifth) BLE are added to each cluster. These 
resources remain unused during initial design mapping and 
can be deployed during fault recovery to take the place o¢ 
faulty resources. The most dramatic benefit of this addition 
can be seen in the incremental re-route and BLE swap rows 
of the third column. Since the spare BLE can bc used to 
overcome logic cluster faults, the number of cases in which 
incremental re-route is needed drops nearly in half. On av- 
erage, the cost of adding the spare resources to the dusters 
increased overall device area by about 20% (5223 transis- 
tors per cluster vs. 6251 transistors per cluster) for N = 4 
and by about 8% (12297 transistors per cluster vs. 13248 
transistors per cluster) for N = 8. These results indicate 
that the overhead is reduced as the cluster size is increased. 

It was mentioned in Section 2.3 that not all FPGA de- 
vices (e.g. Virtex, XC5200) contain fully-connected input 
multiplexers. For these devices, each BLE input is driven 
by a fraction of cluster inputs (dcfincd in Section 2.3 to be 
Fi). Often the assignment of cluster inputs to BLE inputs 
is randomized to increase the number of possible routing 
choices, thus enhancing routabillty. However, as shown in 
Figure 3, for specific, periodic input switch patterns, LUT 
input, BLE, and duster I/O swapping can be used to guar- 
antee successful exchange in the presence of single faults. To 
determine the cost of using switches assembled in a swap- 
pable versus randomized pattern, a number of experiments 
on the benchmark circuits wcrc performed. After perform- 
ing placement and routing for designs mapped to devices 
with N = 4 BLEs per cluster, I = 10 inputs per cluster, 
and FFi = 0.5 it was determined a 5-10% area penalty due 
to increased required track count exists for the patterned 
versus the non-patterned switch cases. 

6 F u t u r e  W o r k  

Several fault recovery issues remain for future investigation. 
New algorithms that can quickly combine cluster input, 
LUT input, and basic logic element exchange are needed to 
more thoroughly explore the cluster re-implementation. Ad- 
ditionally, for practical applications, the incremental router 
based on PathFinder must be enhanced for critical-path de- 
lay improvement to limit the effects of post-recovery perfor- 
mance degradation. 

The work outlined in this paper, in conjunction with 
new fault-detection algorithms for duster-based architec- 
tures described in [14], form the basis of an automated fault 
diagnosis and recovery system for commercial FPGAs that 
is currently under development at the University of Mas- 
sachusetts. Our end goal is to be able to detect and recover 
from faults in Xilinx Virtex devices automatically using lo- 
cal intre.-cluster resource swapping, remote web-based pro- 
cessing for incremental routing, and configuration bitstream 
generation using Xilinx JBits. This complete system is cur- 
rcntly under development. 
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