
Technology Mapping for k/m-macrocell Based FPGAs
Jason Cong, Hui Huang, and Xin Yuan

Department of Computer Science, University of California, Los Angeles, CA 90095

{cong, huanghui, yuanxin}@cs.ucla.edu

Abstract
In this paper, we study the technology mapping problem for a
novel FPGA architecture that is based on k-input single-output
PLA-like cells, or, k/m-macrocells. Each cell in this architecture
can implement a single output function of up to k inputs and up to
m product terms. We develop a very efficient technology mapping
algorithm, k_m_flow, for this new type of architecture. The
experiment results show our algorithm can achieve depth-
optimality in practically all cases. Furthermore it is shown that the
k/m-macrocell based FPGAs are practically equivalent to the
traditional k-LUT based FPGAs with only a relatively small
number of product terms (m≤k+3). We also investigate the total
area and delay of k/m-macrocell based FPGAs on various
benchmarks to compare it with commonly used 4-LUT based
FPGAs. The experimental result shows k/m-macrocell based
FPGAs can outperform 4-LUT based FPGAs in terms of both
delay and area after placement and routing by VPR.

1. Introduction
The Field Programmable Devices (FPDs) have been widely used
for implementation of small to medium size digital circuits. There
are two major types of FPDs Field Programmable Gate
Arrays (FPGAs) which usually consist of small programmable
logic cells, such as k-input single-output lookup tables, and
Complex Programmable Logic Devices (CPLDs) which are based
on multiple-input and multiple-output PLA-like logic cells. Both
of FPGAs and CPLDs have been widely used.

Most commonly used FPGAs are based on k-input single-output
lookup tables (k-LUTs). Every k-LUT can implement any function
with no more than k inputs. In practice, k is usually small, for
example, 4-LUTs are widely used in commercial FPGAs, as the
area of a k-LUT grows exponentially with large k. On the other
hand, PLA based devices usually have large basic cells. Each cell
can have a large number of inputs (typically between 30-40).
Also, a PLA cell normally has multiple outputs (16, for example).
As a result, a single PLA cell is able to implement multiple
functions with wide inputs. Unlike lookup table, each cell can
only implement functions with no more than m product terms.

Rose et al. [16] showed 4-input, single-output LUT cell yields the
smallest FPGA area of any k-LUT cell for a wide range of

programming technologies and routing pitches. Most
commercially available FPGAs indeed use LUTs of input size of 4
or 5. Kouloheris and El Gamal [15] investigated the best
granularity for PLA-based CPLDs and found that the total CPLD
area is smallest if each basic cell has 8~10 inputs, 3~4 outputs,
and 12~13 product terms. The number of product terms is
restricted to grow linearly as input size increases [14]. In practice,
however, most commercially available CPLDs use much larger
PLA-like logic cells. Since FPGAs use small programmable cells,
they often offer high density and high capacity, at a price of
possibly larger and somewhat unpredictable delays, as a critical
path may need to go through multiple levels of programmable
cells connected by programmable interconnect. On the other
hand, CPLDs are usually faster as the programmable cells are
much larger which results in fewer levels of the logic. (The worst-
case delay in CPLD also tends to be more predictable as the level
of the logic in worst-case delay path is usually determined by the
architecture and can be estimated by the designer). However,
CPLDs usually offer considerably lower logic density. We
believe that this is due to two reasons: (a) it is inherently difficult
to map logic into multi-output PLA-like programmable cells, as
most technology mapping techniques are developed for single-
output logic cells; and (b) the difficulty associated with
synthesis/mapping for PLA-based CPLD devices in turn resulted
in very limited studies on this topic the only related works we
can find were DDMap [14] in early 90’s, a fast heuristic partition
method for PLA-based architecture proposed in [10], and
TEMPLA [14] in 1998. (In comparison, there are much more
extensive studies on LUT-based FPGAs, which will be briefly
summarized in Section 3.1.)

The need to reduce the logic levels (and associated interconnects!)
to improve circuit performance, the intention to avoid the
mapping problem for multi-output functions, and the hope to
leverage large amount of research results on synthesis and
mapping for LUT-based FPGAs, seem to suggest that we should
consider FPGAs with LUTs of much larger number of inputs.
However, the area a k-LUTs grows expontentially with respect to
k. Using k-LUTs with large k may considerably lowers chip
density. Therefore, we have to explore other alternatives. We
noticed that the functions mapped into large LUTs usually use
considerably fewer product terms than the lookup table capacity
[15]. This leads us to consider an FPGA architecture based on k-
input single-output PLA-like logic cells. Each cell can implement
a single output function of up to m product terms and up to k
inputs. Such a cell is called a “k/m-macrocell” throughout this
paper. A k/m-macrocells differ from a k-LUT in that each
macrocell can implement only a subset of all possible k-input
functions. A k/m-macrocell is different from a general PLA-like
block used in most CPLD devices, too, as each k/m-macrocell has
single output. If we choose m to be small, k/m-macrocells are
much smaller than k-LUTs. Therefore, it is possible to use k/m-
macrocells with larger input size in order to use smaller logic

depth and less interconnect without lowering the chip capacity
considerably.

In this paper, we develop a very efficient technology mapping
algorithm, named k_m_flow, for this new type of architecture.
The experiment results show our algorithm can achieve depth
optimality in practically all cases. Furthermore we show that the
k/m-macrocell based FPGAs are practically equivalent to the
traditional k-LUT based FPGAs with only a relatively small
number of product terms (m≤k+3). We also investigate the total
area and delay of k/m-macrocell based FPGAs on various
benchmarks to compare it with commonly used 4-LUT based
FPGAs. The result shows k/m-macrocell based FPGAs can
outperform 4-LUT based FPGAs in terms of both delay and area
after placement and routing by VPR.

The rest of this paper is organized as follows. Section 2
formulates the problem. Section 3 introduces a technology
mapping algorithm for k/m-macrocell-based FPGAs. Section 4
further investigates the area and delay of k/m-macrocell-based
architecture. We draw our conclusions based on experimental
results and discuss the future work in Section 5.

Throughout this paper, the letter k is used to denote the input size
of a macrocell, or the input size of a LUT in FPGA. The letter m
is used to represent the maximum number of product terms that
one macrocell can implement.

2. Definitions and Problem Formulation
A Boolean network can be represented as a directed acyclic graph
(DAG) where each node represents a logic gate and a directed
edge (i,j) exists if the output of gate i is an input of gate j. A
primary input (PI) node has no incoming edge and a primary
output (PO) node has no outgoing edge. We use input(v) to
denote the set of nodes which are fanins of gate v. We assume the
network is 2-bounded, that is, for each node v in the network,
| input (v) | ≤2. Any network can be fully decomposed into 2-
bounded network without deteriorating the mapping quality [6].

A cone at v, denoted as Cv, is a subgraph consisting of v and its
predecessors such that any path connecting a node in Cv and v lies
entirely in Cv. The notation of input(Cv) is also used to represent
the set of distinct nodes outside Cv which supply inputs to the
gates in Cv. A maximum cone at v, also the fanin network of v,
denoted as Nv, is a cone consisting of v and all of its predecessors.

A cone Cv is said to be k-feasible if and only if | input(Cv) | ≤ k.
Similarly, Cv is said to be m-packable if and only if its function
has a sum-of-product representation with no more than m product
terms. Cv is said to be k/m-feasible if it is both k-feasible and m-
packable. Please note that the word “ feasible” usually refers to the
number of inputs to a macrocell, and “packable” refers to the
number of product terms. The only exception is “k/m-feasible”
which is a shortened version of “k-feasible and m-packable.” It is
obvious that a k/m-feasible cone can be implemented by a k/m-
macrocell.

Several concepts about cuts in a network will be used in our
discussion. Given a network N with a source s and a sink t, a cut
(X, X’) is a partition of the nodes in the network such that s∈X,
t∈X’ and no nodes in X’ provide input to any node in X. Clearly
X’ may be considered as a cone at t inside network N. Therefore
we can apply the previous definitions on k/m-feasibility to cuts. A
cut (X, X’) is said to be k-feasible if and only if X’ is a k-feasible

cone. The cut is said to be m-packable if and only if X’ is an m-
packable cone. A k/m-feasible cut is both a k-feasible cut and an
m-packable one. For every node v and its fanin network Nv, a cut
(X, X’) in Nv is a partition of the nodes such that all PI nodes
belong to X and v belong to X’ . It is clear that every cone rooted at
v corresponds to a cut in Nv.

The technology mapping problem for k/m-macrocell based
FPGAs is to cover a given 2-bounded Boolean network with k/m-
feasible cones. Note that we allow these cones to overlap, that is,
it is not a duplication-free mapping problem here. Due to the
relationship between cuts and cones, the technology mapping
problem for k/m-macrocell based FPGAs can be converted to
finding k/m-feasible cuts for every node. The k/m-feasible cones
that cover the whole network can be derived from k/m-feasible
cuts.

We use two delay and area models to evaluate the quality of
mapping solution. Throughout the discussion on the technology
mapping algorithm (Section 3), unit delay and unit area models
are used. That is, variation of interconnection delay and routing
area is not directly considered during technology mapping of the
original network. Each k/m-macrocell contributes a constant delay
independent of the function it implements. Each cell is counted as
a unit when we evaluate the area, hence the total area of the
mapping solution equals to the total number of macrocells. Such
simplification is reasonable because the layout information is not
available yet. For architecture comparison in Section 4, however,
we will use more accurate delay and area models with
consideration of the interconnect, as we use a well-known FPGA
placement and routing tool (VPR [2]) to get the total area and
critical path delay after layout for comparison. To avoid
confusion, we use “depth” and “number of macrocells” in Section
3 to refer to the delay and area under unit delay and unit area
model.

3. Technology Mapping for k/m-macrocells
3.1 Overview
A k/m-macrocell can be considered as a k-LUT with an additional
restriction that it can only implement logic functions with no more
than m product terms. Therefore, it is natural to start with the k-
LUT mapping problem since it has been intensively studied in the
past few years.

Currently, there are three major approaches to LUT-based FPGA
mapping, tree-based mapping (e.g. Chortle-crf, Chortle-d
[8]&[9]), flow-based mapping (e.g. FlowMap [3]) and cut-
enumeration-based mapping (4]). See [5] for a more
comprehensive survey. Tree-based mapping algorithms partition
the network into trees and handle each tree separately. Each
individual tree can be mapped optimally but a prior tree
partitioning often compromises the mapping quality. They are
usually fast heuristic algorithms. Flow-based algorithm is based
on the theorem of max-flow-min-cut and the computation of
network flow. It can generate depth optimal mapping solution in
polynomial time. However, flow-based algorithms lack of
flexibility as they find only one or two depth optimal min-cuts for
every node. On the other hand, cut-enumeration-based approaches
will find out many, if not all, possible cuts for every node. They
offer high flexibility and can achieve optimality with more
constraints, but they are considerably slower than tree-based or
flow-based methods.

The approach we present here, called k_m_flow, is a hybrid of
flow computation and cut enumeration. We try to find a k/m-
feasible cut for every node first by flow computation. If failed, we
turn to cut enumeration.

3.2 Algorithm
The k_m_flow algorithm consists of two phases ---- labeling the
network and mapping the network into macrocells. The labeling
phase is trying to finds a k/m-feasible cut for every node for depth
minimization. The mapping phase generates k/m-macrocells in the
mapping solution according to the labels and cuts obtained in the
labeling phase.

3.2.1 Labeling Phase
For every node v, let Nv be the fanin network consisting of node v
and all its predecessors. We also define label* (v), the optimal
mapping depth of v, to be the minimum depth of the k/m-
macrocell mapping solution for Nv. The labeling phase for k/m-
macrocell mapping is similar to that in the FlowMap algorithm. It
finds a k/m-feasible cut for every node v and compute a label for v
to minimize the k/m-macrocell implementing node v in the
mapping solution. Ideally, we would like the computed label to be
equal to the optimal mapping depth, that is, label(v)=label* (v) for
every node v in the network, as in the case with the FlowMap
algorithm for k-LUT mapping. However, it is more difficult to do
so for the k/m-macrocell based mapping due to the non-monotone
properties of the clustering constraints and the optimal labels as
presented in the next subsection.

3.2.1.1 Non-monotone Clustering Constraints and
Optimal Mapping Depths
The fundamental difficulty of k/m-macrocell based FPGA
mapping is that the constraint on the number of inputs and the
number of product terms of a k/m-macrocell are not monotone
clustering constraints. That is, a cone Cv is k-infeasible (or, m-
unpackable) does not guarantee that all its super-cones (i.e. those

cones root at v and include Cv) are k-infeasible (or, m-
unpackable). As a result, a k-infeasible (or, m-unpackable) cone
Cv could become k-feasible (or, m-packable) by including more
nodes into it. (See Figure 1)

In addition, the optimal k/m-macrocell mapping depth is not
monotone either. The optimal mapping depth is monotone if
label*(v)≥label*(u) as long as u is an input to v. Figure 1 shows
that the optimal mapping depth is not monotone. In Figure 1,
label* (f) = 1 < 2 = label*(f1). Note that for LUT mapping
problem, it was shown in [3] that the optimal mapping depth is
monotone.

3.2.1.2 Depth Optimal Mapping Algorithm
Given a cut (X, X’) in Nv, the height of the cut, denoted as h(X,X’),
is the maximum label in input(X’), i.e.

 h(X, X’)=max{ label(v) | v ∈ input(X’)}

(It is assumed that every node in input(X’) has a label)

A min-height k/m-feasible cut (X, X’) in a network is a k/m-
feasible cut such that h(X, X’)≤h(Y, Y’), where (Y, Y’) is any other
k/m-feasible cut.

Lemma label* (v)=h (X, X’)+1, if (X, X’) is the min-height k/m-
feasible cut in Cv and label(u)=label* (u) for any node u other than
v in cone Cv.

Lemma A mapping algorithm can label every node v such that
label(v)=label* (v) if it can find the min-height k/m-feasible cut for
every node.

Theorem A mapping algorithm can find the depth optimal
mapping solution for k/m-macrocell based FPGAs if it can find
the min-height k/m-feasible cut for every node.

Based on this result, a depth optimal mapping algorithm works as
follows. It finds the min-height k/m-feasible cut for each node in
topological order from PIs to POs. It then can label each node v
such that label(v)=h(X, X’)+1=label* (v), where (X, X’) is the min-

Figure 1 Constraint on the number of product terms and optimal depth of macrocell is not monotone --- Assuming
k=4 and m=4, cone Cf1 is not 4-packable while a larger cone Cf is both 4-feasible and 4-packable. The optimal depth to implement Cf1
is 2 with 3 4/4-macrocell (as shown in the shaded area). However, Cf can be implemented with only 1 4/4-macrocell and therefore the
optimal mapping depth for Cf is 1.

f1=c’d’+a’b’d’+ab’c’+bcd+abc f2=a’bcd’+abc’d+ab’cd’

f=f1+f2=d’+bc+ac’

Assume k=4, m=4

f

a

f1

f2

b
c
d

1. Legend

Cone Cf1

Cone Cf2

Cone Cf

4/4-macrocell

Primary
Inputs

height k/m-feasible cut for v. After labeling the whole network, it
can use the min-height k/m-feasible cuts to generate the k/m-
macrocells in the mapping solution. The mapping result has the
optimal depth.

In order to find the min-height k/m-feasible cut for every node, we
can exhaustively enumerate all k-feasible cuts and test if they are
m-packable. The enumeration algorithm then can pick the k/m-
feasible cut with minimum height for every node. However, such
an algorithm is impractical to use due to the high complexity of
exhaustive cut enumeration for large k. In theory, the number of k-
cuts in a cone of node s is in the order of O(nk). Since we are
interested in large k with values k=6~10, we move to develop
more efficient heuristic algorithms.

3.2.1.3 The k_m_flow Algorithm

 A Heuristic Approach
First, we assume that node labels will increase monotonely. At the
beginning, every PI node will receive a label of 0. Then for every
node v, suppose mlevel is the largest label among v’ s fanins, it is
assumed that label(v)≥mlevel. In order to test if we can set
label(v) to mlevel, we collapse all the node u in Nv with
label(u)=mlevel into node v to form an induced network N’ v and
test if we can find a k/m-feasible cut in N’ v.

Based on the max-volume-min-cut theorem, we can find two min-
cuts in N’ v easily: the max-volume-min-cut (X, X’) which is a min-
cut with the largest | X’ | and the min-volume-min-cut (Y ,Y’)
which is a min-cut with the smallest | Y’ |. Please note both (X,X’)
and (Y,Y’) are min-cuts, which implies that |input(X’)| = |input(Y’)|
≤ |input(Z’)| where (Z, Z’) is any other cut in N’ v. Also, note that
max-volume-min-cut and min-volume-min-cut are unique and
Y’⊆X’ . The max-volume-min-cut and min-volume-min-cut can be
found in O(ke) time, where e is the number of edges and k is the
value of the maximum flow.

Case 1: Neither max-volume nor min-volume min-cut is k-
feasible

Because any k/m-feasible cut must be k-feasible too, this
condition implies that no k/m-feasible cut exists in N’ . In this case,
node v can be simply labeled as mlevel+1.

Case 2: Either max-volume or min-volume min-cut is k/m-
feasible

Suppose (X, X’) is the k/m-feasible min-cut (either the max-
volume or min-volume one). We can create a k/m-macrocell for
node v, denoted as map_node(v), to implement the function of X’ .
The depth of map_node(v) in the mapping solution cannot be
larger than mlevel. Therefore, we assign label(v)=mlevel.

Case 3: Both max-volume and min-volume min-cut are k-
feasible but not m-packable

Note that this condition does not guarantee that there is no k/m-
feasible cut existing in Nv. Therefore, we try to do a local cut
enumeration in hope of finding a k/m-feasible cut.

To search for a k/m-feasible cut, perhaps the most natural way is
to do a local cut enumeration within the cone defined by the max-
volume-k-feasible-cut. However, unlike max-volume-min-cut,
max-volume-k-feasible-cut may not be unique. Moreover, there is
no good algorithm to find the max-volume-k-feasible-cut.
Furthermore, it is intuitive to think that if the max-volume-min-
cut (Y, Y’) is not m-packable, a cut outside or across it may not

likely to be k/m-feasible, since it will have more fanins and tends
to require more product terms in its sum-of-product
representation. Therefore, in order to search for a k/m-feasible cut
under case 3, we only enumerate cuts inside Y’ to see if they are
k/m-feasible.

To do a local cut enumeration in a cone Cv, first we mark all
inputs to Cv as “pseudo-PIs” and then go through all nodes inside
Cv in topological order from “pseudo-PIs” and enumerate all k-
feasible cuts for every node v by the following equation, where x
and y are the fanins of v:

Cut(v) = ({ (Cx - x, x)} ∪ Cut(x)) ⊗k ({ (Cy - y, y)} ∪ Cut(y))[4]

Cut(x) is the set of k-feasible cuts for node x. Notation “ (Cx - x, x)”
refers to the cut that cuts off the single node x. “⊗k” is a merging
operator defined on two cut sets; “S1⊗kS2” is to merge every cut
cut1 in S1 with every cut cut2 in S2 and only keep the k-feasible
cuts in the result.

After the enumeration process, we check Cut(v) to see if there is
an m-packable cut. If there exists a k/m-feasible cut, node v can be
labeled as mlevel, otherwise, it will be labeled as mlevel+1.

The pseudo code for labeling phase is shown in Figure 2.

3.2.2 Mapping Phase
The second phase of our algorithm is to generate the k/m-
macrocells in the mapping solution. For every node v, if in the
labeling phase we found a k/m-feasible cut (X, X’), then we can
create a k/m-macrocell map_node(v) for v to implement the
function of X’ and input(map_node(v))=input(X’). If no k/m-
feasible cut was found during the labeling phase (may occur in
case 1 and 3), we can create a k/m-macrocell to implement the
function of single node v. After generating macrocells for every
node, we need to remove redundant cells that do not fan out to
any other macrocell. Using a list to keep track of “visible” nodes
and only generate macrocells for “visible” nodes can optimize this
procedure. The detailed algorithm is shown is Figure 2.

3.2.3 Properties of the k_m_flow Algorithm
We can prove the following properties for the algorithm discussed
above:

1) If a node v is labeled as label(v), then it can be implemented
with a depth no more than label(v). That is, label(v) is the upper
bound estimation of the depth of v in the mapping solution.

2) If case 3 never happens when mapping a specific circuit, then
the mapping solution is delay optimal. Indeed, it is just the same
as k-LUT mapping.

3) For any certain circuit, if the optimal depth for k-LUT based
mapping is d1, the optimal depth for k/m-macrocell based mapping
is d2 and the depth of k_m_flow mapping result is d3, then
d1≤d2≤d3.

3.3 Area Enhancement
After obtaining a k/m-macrocell mapping solution, we want to
further reduce the number of k/m-macrocells used in the mapping
solution without increasing its depth.

For every k/m-macrocell v, we try to pack as many its
predecessors with it as possible into a single k/m-macrocell.
Clearly we need to guarantee the condition that the new k/m-
macrocell is still k/m-feasible. In order to do so, we try to combine

v with any of its fanins and then check if they can be packed into
one k/m-macrocell.

After v and one of its fanins have been successfully packed
together, a new node v’ will be formed to replace v in the mapping
solution. It could be that some of the fanins of v’ (input(v’) =
input(v)∪input(fanin))can still be packed together with v’ .
Therefore, the above greedy packing process will be repeated until
no more nodes can be packed. The detailed packing algorithm,
k_m_pack, is shown in Figure 3.

On average, the total number of macrocells in the mapping
solution may be reduced by a factor of 6% after the above packing
process.

3.4 Experiment Result
Our algorithm, k_m_flow, has been implemented in C language
within the Berkeley SIS and UCLA RASP [7] framework. We
chose a set of 16 MCNC benchmarks to test k_m_flow on a Sun
Ultra II workstation with 512M memory. Table 1 shows the size
of the 16 benchmark circuits before mapping (all are 2-bounded
networks).

circuit frg2 c2670 apex6 i8
#node 695 1300 714 917
#PI 143 233 135 133
#PO 139 64 99 81
level 12 26 16 12

circuit rot x3 ex4p mm30a
#node 696 768 699 1500
#PI 135 135 128 124
#PO 107 99 28 121
level 22 12 11 108

circuit s5378 apex5 pair alu4
#node 1322 828 1556 2347
#PI 196 117 173 14
#PO 210 88 137 8
level 24 11 18 14

circuit des c499 c3540 duke2
#node 3026 398 2097 382
#PI 256 41 50 22
#PO 245 32 22 29
level 15 19 42 10

Table 1 Description of 16 benchmark circuits

In order to find out the optimal mapping depth for each
benchmark and compare it with the k_m_flow mapping solution,
we implemented an algorithm called k_m_enumerate. The
k_m_enumerate algorithm can find the depth optimal mapping
solution by exhaustive cut enumeration on the entire network, as
proposed in Section 3.2.1.2. We would like to point out that
k_m_enumerate is impractical to use for large k. We use it only to
collect data to analyze the depth optimality of the result of
k_m_flow.

In Table 2, we list the mapping depth generated by k_m_flow and
k_m_enumerate under different k and m. The data is in the form of
“x/y” , where “x” is the depth of mapping solution generated by
k_m_flow; “y” is the optimal mapping depth obtained by
k_m_enumerate under the specified k and m. A question mark “?”
means the optimal depth is unknown yet because of the extremely
long runtime and large memory requirement of k_m_enumerate

algorithm k_m_pack;
modified:=true;
while (modified) do {
 modified:=false;
 for each fanin of v do{
 if |input(fanin)∪input(v)| ≤ k then {
 v’ :=collapse fanin into v;
 if v’ has less than m product terms
 then { replace v with v’ ;
 modified:=true;
 break; } } } }

Figure 3 Pseudo code of k_m_pack

algorithm k_m_flow;
/* phase 1: labeling network */
for each PI node v do
 label(v) := 0;
for each node v {
 mlevel := max { label(n) | n is a fanin of v } ;
 collapse all nodes with label = mlevel into v in Nv;
 find the max-vol-min-cut (Y,Y') for v;
 if (no cut exists) /* Nv contains a single node */
 or if (Y,Y’) is not k-feasible
 label(v) := mlevel+1;
 else{
 if (Y’ is m-packable)
 label(v) := mlevel;
 else{
 /* check if min-vol-min-cut is m-packable */
 find the min-vol-min-cut (X,X') in for v;
 if (X’ is m-packable)
 label(v) := mlevel;
 else{
 mark all the inputs to cone Y' as “pseudo-PIs” ;
 do a local cut enumeration starting from “pseudo-PIs” ;
 if (found a k/m-feasible cut (Z,Z’) through enumeration){
 label(v) := mlevel; }
 else label(v) := mlevel+1;} } } }
/* phase 2: generating k/m-macrocells */
L := list of PO nodes;
while L contains non-PI nodes do{
 remove a non-PI node v from L;
 let (X,X’) be the cut generated by the labeling phase for node
v;
 if (X’) contains only one node v {
 generate a k/m-macrocell map_node to implement the
 function of the single node v; }
 else{
 generate a k/m-macrocell map_node to implement the
 function of X’ such that input(map_node) = input(X’); }
 L := (L-{ v})∪input(v’); }

Figure 2 Pseudo code of k_m_flow

for large k. From Table 2, we can see that although k_m_flow
cannot guarantee delay optimality in theory, in practice it is
almost always able to find out the depth optimal mapping
solution.

We also compare the k/m-macrocell mapping solution generated
by k_m_flow with k-LUT mapping solution generated by
FlowMap. Table 3 shows the total mapping depth of k/m-
macrocell vs. k-LUT on 16 benchmarks. Table 4 shows the total
number of macrocells vs. the total number of k-LUTs on 16
benchmarks. FlowMap is the depth optimal k-LUT mapping
algorithm based on flow computation. Since k/m-macrocells can
be considered as k-LUT with additional m-product-term
constraints, the optimal depth of k-LUT mapping solution is the
lower bound of the optimal depth of k/m-macrocell mapping
solution.

From the above tables, the mapping results of k_m_flow (both
depth and number of macrocells) are close to the k-LUT mapping
results when m=k+2 for smaller k or m=k+3 for larger k. It
implies that the k/m-macrocell is almost equivalent to a k-LUT if
m is slightly larger than k. This observation is consistent with the

results reported by [1] (pp 75) where the author claimed the
number of product terms needed to implement the function of a k-
LUT grows almost linearly with k. Increasing the flexibility of the
macrocell by allowing more product terms to be implemented will
not significantly improve the performance.

k_m_flow is a hybrid of flow computation and cut enumeration.
So the complexity of k_m_flow is somewhere between the
complexity of flow computation O(n2) (FlowMap [3]) and the
complexity of cut enumeration, depending on the frequency of
performing cut enumeration and the size of the cone to perform
cut enumeration.

The complexity of cut enumeration can be estimated as O(npq2),
where n is the number of nodes in the network, p is max{size of
max-volume-k-feasible cone}, q is the max number of k-feasible
cuts inside any cone. The equation assumes we will do a cut
enumeration for every node in a cone of size p. The conservative
estimation on the complexity to enumerate all k-feasible cuts for a
single node is O(q2) because the input network is 2-bounded.

The percentage of node where the max-volume or min-volume
min-cut returned by flow computation being m-packable is called

k_m_flow
 m=k m=k+1 m=k+2 m=k+3

FlowMap

k=6 99 99 96 96 95
k=7 90 86 88 87 81
k=8 84 84 82 78 75
k=9 74 73 71 68 65
k=10 73 69 67 67 62

Table 3 Total mapping depth of k/m-macrocell vs. k-LUT
on 16 MCNC benchmarks

k=6 k=8 k=10
circuit

m=6 m=7 m=8 m=9 m=8 m=9 m=10 m=11 m=10 m=11 m=12 m=13

frg2 4/4 4/4 4/4 4/4 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3

c2670 7/7 7/7 6/6 6/6 6/6 6/6 6/6 6/6 4/4 4/4 4/4 4/4

apex6 4/4 4/4 4/4 4/4 4/4 4/4 3/3 3/3 3/3 3/3 3/3 3/3

i8 4/4 4/4 4/4 4/4 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3

rot 6/6 6/6 6/6 6/6 5/5 5/5 5/5 5/5 4/4 4/4 4/4 4/4

x3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 2/2 2/2 2/2 2/2

ex4p 4/4 4/4 4/4 4/4 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3

mm30a 21/21 21/21 21/21 21/21 20/20 20/20 17/17 15/15 19/? 15/? 15/? 15/?

s5378 7/7 7/7 7/7 7/7 6/6 5/5 5/5 5/5 5/? 5/? 4/4 4/4

apex5 4/4 4/4 4/4 4/4 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3

pair 5/5 5/5 5/5 5/5 4/4 4/4 4/4 4/4 3/3 3/3 3/3 3/3

alu4 6/6 6/6 6/6 6/6 5/5 5/5 5/5 5/5 4/4 4/4 4/4 4/4

des 4/4 4/4 4/4 4/4 3/3 3/3 3/3 3/3 3/? 3/? 3/? 3/?

c499 5/5 5/5 4/4 4/4 4/? 4/? 4/? 4/? 3/3 3/3 3/3 3/3

c3540 11/11 11/11 10/10 10/10 9/? 9/? 8/8 8/8 8/? 8/? 7/? 7/?

duke2 4/4 4/4 4/4 4/4 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3

Table 2 Experiment results show that the k_m_flow algorithm achieve depth optimal mapping in practice

k_m_flow
m=k m=k+1 m=k+2 m=k+3

FlowMap

k=6 7872 7728 7607 7554 7419
k=7 6742 6574 6528 6496 6349
k=8 6045 5971 5908 5909 5646
k=9 5628 5526 5535 5513 5275
k=10 5148 5128 5105 5075 4789

Table 4 Total number of k/m-macrocells vs. total number of
k-LUTs on 16 MCNC benchmarks

quick success rate. Quick success rate is a characteristic of
individual network and may differ from network to network.
Fortunately, the quick success rate is on average 98% for k=6 ,7
,...,10 and m=k, k+1,...,k+3 of the 16 benchmarks. Detailed data is
shown in Table 5. It implies that k_m_flow has a complexity close
to O(n2) in practice. It is understandable that due to this high
success rate, k_m_flow will use almost the same cuts as FlowMap
to create macrocells, resulting in the similar mapping depth.

From our observations on the range k=6~10, the cones need to
perform cut enumeration are usually small, with less than 50

nodes inside. An exhaustive cut enumeration on a small network
with no more 50 nodes usually runs very fast. Therefore,
k_m_flow algorithm shall be an efficient algorithm to generate the
k/m-macrocell mapping solution for medium k. For large k, the
cone may be large and even the local cut enumeration may take a
long time to finish. Table 6 shows the total CPU time (in seconds)
needed to generate all the mapping solutions for 16 benchmarks.
Since the quick success rate is usually very high, in practice,
skipping local enumeration will cause little impact on the
mapping quality but will save the runtime.

 m=k m=k+1 m=k+2 m=k+3
k=6 105.9 101.7 96.8 96.1
k=7 149.1 106.0 106.4 105.3
k=8 119.0 119.0 118.7 119.3
k=9 140.0 137.8 138.4 138.7
k=10 210.5 207.8 206.3 207.6

Table 6 CPU Runtime

4. Investigation of k/m-macrocell Based
Architectures
In section 3 we use unit area and unit delay model to evaluate the
quality of our k/m-macrocell mapping algorithm. In order to
collect more accurate delay and area information to draw
architecture study conclusion, we use VPR[2], an FPGA
placement and routing tool developed in University of Toronto, to
do placement and routing for our k/m-macrocell-based
architecture and compare this architecture with the traditional 4-
LUT-based architecture in terms of total area and critical path.

Figure 4 shows the schematic diagram of the logic block used in
our k/m-macrocell-based architecture (we call it k/m logic block),
and Figure 5 shows the logic block used in 4-LUT-based
architecture (we call it 4-LUT logic block) [2]. Since the area of a
logic block is greatly effected by the total number of I/O pins of
the block1 and the number of transistors in the block, we use the

1.
1 Private communication with Prof. J. Rose of University of

Toronto

geometric mean of the ratio of number of I/O pins and the ratio of
number of transistors to estimate the ratio of the area of two logic
blocks (i.e., k/m logic block vs. 4-LUT logic block). The total
number of pins of a k/m logic block is k+3 and the total number of
pins of a 4-LUT logic block is 7, as shown in Figure 4 and 5. Our
k/m-macrocell consists of k inverters, km 3:1 MUXs, km 2-bit-
SRAMs, m 1-bit-SRAMs, m 2:1 MUXs , m k-input AND blocks
and one m-input OR block as Figure 6 shows, while the 4-LUT
consists of 16 1-bit-SRAMs and 15 2:1 MUXs as Figure 7 shows
[11]. Every 1-bit-SRAM can be implemented by 6 transistors. A
3:1 MUX needs 8 transistors and a 2:1 MUX needs 4 transistors.
k-input AND blocks and m-input OR block are implemented by
two-level NAND gates and NOR gates. The total number of
transistors used in a 4-LUT cell is 164 and the numbers of
transistors of k/m-macrocell are shown in Table 7. Therefore we
can estimate that the area of a k/m logic block is 4~6 times large
as the area of a 4-LUT logic block for k=7~10, m=10~13. As we
have not done any simulation on the k/m logic block, we do not
have the accurate delay for the k/m logic block. A rough
estimation on the delay of k/m logic block is that it is 2 times
slower than a 4-LUT for k between 7 and 10 based on the
observation that the number of transistors in the longest path a
signal would pass in the k/m logic block is about 3 times of that in
a 4 -LUT logic block.

The total area is the sum of routing area and logic block area; the
critical path delay is the sum of interconnect delay and logic block
delay. The routing area and interconnect delay is estimated by
VPR.

k=7
m=9

k=8
m=10

k=9
m=12

k=10
m=13

#trans. of k/m-macrocell

1568 1964 2616 3148

#trans. of k/m-macrocell vs.
#trans. of 4-LUT cell

9.6 12.0 16.0 19.2

#pins of k/m logic block vs.
#pins of 4-LUT logic block

10/7 11/7 12/7 13/7

assumed area ratio of
k/m logic block vs.
4-LUT logic block =

_ratiologic_areapin_ratio×

3.7 4.3 5.2 6.0

Table 7 k/m logic block area estimation

out

Figure 4 k/m logic block

set/reset

clk

k inputs

… k/m-
macrocell

FF

out

set/reset

4 inputs

clk

4-LUT FF

Figure 5 4-LUT logic block

 m=k m=k+1 m=k+2 m=k+3
k=6 99% 99% 99.6% 99.8%
k=7 97% 98% 99% 99%
k=8 97% 98% 98% 99%
k=9 96% 96% 97% 97%
k=10 96% 96% 97% 97%

Table 5 Quick success rate of flow computation

4.2 Experimental Setting of VPR
The authors of VPR did lots of studies on area/delay trade-off for
4-LUT and cluster-based logic block. They proposed a detailed 4-
LUT-based FPGA architecture under TSMC’s 0.35 µm, 3.3V
process [2]. The 4-LUT logic block they proposed is exactly the
same as what Figure 5 shows. We compare our k/m-macrocell-
based architecture with their 4-LUT-based architecture by only
changing the area and delay of logic block in the architecture file.
VPR reports routing area in number of min-width transistors and
the delay of critical path in seconds. We add up the logic block
area to the routing area and get the total area of each mapping
solution.

4.3 Experimental Result
We compared k/m-macrocell based architecture with 4-LUT-based
architecture by running VPR on the two kinds of mapping
solutions of the 16 MCNC benchmarks under the experimental
settings mentioned above. The k/m-macrocell mapping solutions
are obtained by running k_m_flow algorithm and then performing
k_m_pack to further reduce the number of macrocells. The 4-LUT
mapping solutions are obtained by running FlowMap followed by
greedy-pack. Average area and delay are showed in Table 8. Ak/m
refers to the area of one k/m logic block and A4-LUT refers to the
area of one 4-LUT logic block. Dk/m refers to the delay of one k/m
logic block and D4-LUT refers to the delay of one 4-LUT logic
block. The area and delay of k/m-macrocell-based architecture are
normalized with 4-LUT’s =1.

From the above results, we can see that k/m-macrocell architecture
can implement the same function as 4-LUT based architecture
with less 25% area and 37% delay. For LUT based FPGA, when k

is small, most of the area is devoted to routing. With the increase
of k, routing area decreases, but the area increase of logic blocks
could be more than the decrease of routing area. Since the area of
k/m-macrocell blocks does not grow exponentially as k-LUT does,
the total area decreases. Since the logic depth and routing area
decrease, the total delay decreases.

k=7
m=9

k=8
m=10

k=9
m=12

k=10
m=13

Ak/m / A4-LUT 4 4 5 6

Dk/m / D4-LUT 3 3 3 3

area 0.78 0.78 0.75 0.78

delay 0.75 0.70 0.63 0.63

Table 8 Normalized area and delay of k/m-macrocell
based architecture

5. Conclusions and Future Work
 We have studied a novel FPGA architecture based on k/m-
macrocells through this paper and proposed a k/m-macrocell
technology mapping algorithm, named k_m_flow, which produces
optimal mapping depths in most cases. Using this algorithm, we
showed that k/m-macrocell based FPGAs are similar to k-LUT
based FPGAs in terms of the mapping depths and number of
macrocells being used. The high quick success rate (Table 5)
suggests that k/m-macrocell can provide similar flexibility as
lookup table while each k/m-macrocell is much smaller than k-
LUT. We have analyzed the delays and areas of k/m-macrocell
based FPGAs using VPR. We compared the results with those of

k inputs

out

m
inputs

……

k inputs

……

…
…

V
dd

M
U

X

SR
A

M

V
dd

M
U

X

SR
A

M

k inputs

……

…
…

V
dd

M
U

X

SR
A

M

V
dd

M
U

X

SR
A

M

multi-level
AND block …

…

V
dd SR

A
M

M
U

X

V
dd SR

A
M

M
U

X

multi-level
OR block

…… ……

Figure 6 k/m-macrocell

4 inputs

16 SR
A

M
 cells

…
…

…

out

Figure 7 4-LUT cell
(This figure is taken from [11] pp10)

MUX tree

multi-level
AND block

traditional 4-LUT based FPGAs. Our comparison showed
convincingly that k/m-macrocell based FPGAs can significantly
outperform 4-LUT based FPGAs both in delay and area when the
delay of a k/m logic block is no more than 3 times and area is no
more than 6 times worse than those of a 4-LUT logic block.

We are extending this work in several directions. First, we plan to
perform detailed layout of a k/m-macrocell (including necessary
transistor sizing) to collect more accurate area and delay
information and compare those with a k-LUT based logic cell.
Such more accurate area and delay models will be fed into VPR
for more accurate area and delay results. Second, we plan to
compare an FPGA architecture with clusters of k/m-macrocell and
compare it with an architecture with clusters of k-LUTs, as most
modern FPGAs use LUT clusters for density and performance
enhancement.

Acknowledgement
The authors would like to thank Prof. David Lewis and Dr.
Vaughn Betz from Right Track Corp. for their helpful comments
and discussion.

This work is partially supported by Altera Corp. and Vantis Corp.
under the California MICRO program.

Reference:
[1] J. H. Anderson, S. D. Brown, Technology Mapping for

Large Complex PLDs, Proc. 35th ACM/IEEE Design
Automation Conference 1998, pp 698-703.

[2] V. Betz, J. Rose, and A. Marquardt, Architecture and
CAD for Deep-Submicron FPGAs, Kluwer Academic
Publishers, 1999.

[3] J. Cong and Y. Ding, FlowMap: An Optimal
Technology Mapping Algorithm for Delay
Optimization in Lookup-Table Based FPGA Designs,
IEEE Trans. on Computer-Aided Design, Jan. 1994,
Vol. 13, No. 1, pp. 1-12.

[4] J. Cong, C. Wu and Y, Ding, Cut Ranking and Pruning:
Enabling A General And Efficient FPGA Mapping
Solution, Proc. ACM Int’ l. Symp. on FPGA, Monterey,
CA, Feb. 1999, pp. 29-35.

[5] J. Cong and Y. Ding, Combinational Logic Synthesis
for LUT Based Field Programmable Gate Arrays,
ACM Trans. on Design Automation of Electronic
Systems, Vol. 1, No. 2, April, 1996, pp. 145-204.

[6] J. Cong and Y. Hwang, Structural Gate Decomposition
for Depth-Optimal Technology Mapping in LUT-based
FPGA, Proc. ACM/IEEE the 33rd Design Automation
Conference, 1996, pp 726-729.

[7] J. Cong, J. Peck and Y. Ding, RASP: A General Logic
Synthesis System for SRAM-based FPGAs, Proc.
ACM 4th Int’ l Symp. on FPGA, 1996, pp137-143.

[8] R. J. Francis, J. Rose and Z. G. Vranesic, Technology
Mapping of Lookup Table-Based FPGAs for
Performance, Proc. IEEE International Conference on
Computer-Aided Design, 1991, pp 568-571.

[9] R. J. Francis, J. Rose and Z. G. Vranesic, Chortle-crf:
Fast technology mapping for lookup table-based
FPGAs, Proc. ACM/IEEE Design Automation
Conference 1991, pp 227-233.

[10] Z. Hasan, D. Harrison and M. Ciesielski, A Fast
Partition Method for PLA-based FPGAs, IEEE Design
and Test of Computers, Dec. 1992, pp34-39.

[11] A. S. Kaviani, Novel Architecture and Synthesis
Methods for High Capacity Field Programmable
Devices, Ph.D. Thesis, University of Toronto, 1999.

[12] J. L. Kouloheris and A. El Gamal, PLA-based FPGA
Area versus Cell Granularity, IEEE Custom Integrated
Circuits Conference, 1992.

[13] J. L. Kouloheris and A. El Gamal, FPGA Performance
vs. Cell Granularity,” Proc. Custom Integrated Circuits
Conference, 1991, pp. 6.2.1-4.

[14] J. L. Kouloheris, Empirical study of the effect of cell
granularity on FPGA density and performance, PhD
Thesis, Stanford University 1993.

[15] E. L. Lawler, K.N. Levitt and J. Turner, Module
Clustering to Minimize Delay in Digital Networks,
IEEE Transactions on Computers, Vol. C-18(1) pp. 47-
57, January 1969.

[16] J. Rose, R. J. Francis, D. Lewis, and P. Chow,
Architecture of Field Programmable Gate Arrays: The
effect of Logic Block Functionality on Area
Efficiency,” IEEE Journal of Solid State Circuits, Vol.
25, No. 5, October 1990, pp. 1217-1225.

