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In this article, we study the technology mapping problem for a novel field-programmable gate array
(FPGA) architecture that is based on k-input single-output programmable logic array- (PLA-) like
cells, or, k/m-macrocells. Each cell in this architecture can implement a single output function of up
to k inputs and up to m product terms. We develop a very efficient technology mapping algorithm,
k m flow, for this new type of architecture. The experimental results show that our algorithm can
achieve depth-optimality on almost all the testcases in a set of 16 Microelectronics Center of North
Carolina (MCNC) benchmarks. Furthermore it is shown that on this set of benchmarks, with only a
relatively small number of product terms (m ≤ k +3), the k/m-macrocell-based FPGAs can achieve
the same or similar mapping depth compared with the traditional k-input single-output lookup
table- (k-LUT-) based FPGAs. We also investigate the total area and delay of k/m-macrocell-based
FPGAs and compare them with those of the commonly used 4-LUT-based FPGAs. The experimental
results show that k/m-macrocell-based FPGAs can outperform 4-LUT-based FPGAs in terms of
both delay and area after placement and routing by VPR on this set of benchmarks.
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cuits]: Types and Design Styles—Gate arrays
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1. INTRODUCTION

The programmable logic devices (PLDs) have been widely used to imple-
ment small to medium sized digital circuits. There are two major types of
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PLDs—field programmable gate arrays (FPGAs), which usually consist of small
programmable logic cells, such as k-input single-output lookup tables (k-LUTs),
and complex programmable logic devices (CPLDs), which are based on multiple-
input and multiple-output programmable logic array- (PLA-) like logic cells.
Both FPGAs and CPLDs have been widely used.

Most commonly used FPGAs are based on k-LUTs. Every k-LUT can im-
plement any function with no more than k inputs. In practice, k is usually
small, as the area of a k-LUT grows exponentially with large k. For example,
LUTs of four to six inputs are widely used in commercial FPGAs [Altera Corp.
2001; Xilinx Inc. 2001]. On the other hand, CPLDs usually have large basic
cells. Each PLA cell can have a large number of inputs (typically between 30
and 40), product terms (typically between 50 to 100), and multiple outputs (16,
for example) [Altera Corp. 2000; Cypress Semiconductor Corp. 2000; Lattice
Semiconductor Corp. 2000]. As a result, a single PLA cell is able to implement
multiple functions with wide inputs.

Rose et al. [1990] showed that among k-LUT cells, the four-input single-
output LUT cell yields the smallest FPGA area for a wide range of program-
ming technologies and routing pitches. Most commercially available FPGAs
indeed use LUTs with an input size of four or five. Kouloheris and El Gamal
[1992] investigated the best granularity for PLA-based CPLDs and found that
the total CPLD area is smallest if each basic cell has 8 to 10 inputs, 3 to 4
outputs, and 12 to 13 product terms. The number of product terms is restricted
to grow linearly as input size increases [Kouloheris 1993]. In practice, however,
most commercially available CPLDs use much larger PLA-like logic cells. Since
FPGAs use small programmable cells, they can often offer higher density and
capacity, at a price of possibly larger and somewhat unpredictable delay, as the
critical path often needs to go through multiple levels of programmable cells
connected by the programmable interconnect. On the other hand, CPLDs are
usually faster as the programmable cells are much larger, which results in fewer
levels of the logic. (The worst-case delay in CPLD also tends to be more pre-
dictable as the level of the logic is usually determined by the architecture and
can be estimated by the designer.) However, CPLDs usually offer considerably
lower logic density. We believe that this is due to two reasons: (a) it is inherently
difficult to map logic into multioutput PLA-like programmable cells, as most
technology mapping techniques have been developed for single-output logic
cells; and (b) the difficulty associated with synthesis/mapping for PLA-based
CPLD devices in turn resulted in very limited studies on this topic—the only
related works we can find were the DDMap [Kouloheris 1993], a fast heuristic
partition method for PLA-based architecture proposed in Hasan et al. [1992],
TEMPLA [Anderson and Brown 1998], and PLAmap [Cong et al. 2001]. In the
later 1990s, with the introduction of hybrid FPGA families [Kaviani and Brown
1999], a few of mapping algorithms for a hybrid architecture of LUTs and PLAs
have been reported [Kaviani 1999; Krishnamoorthy and Tessier 2003]. (In com-
parison, there have been much more extensive studies on LUT-based FPGAs.
A comprehensive survey up to 1997 was reported in Cong and Ding [1996].)

The need to reduce the logic levels (and associated interconnects!) to im-
prove circuit performance, the intention to avoid the mapping problem for
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multioutput functions, and the hope to leverage a large amount of research
results on synthesis and mapping for LUT-based FPGAs, seem to suggest that
we should consider FPGAs with LUTs of much larger numbers of inputs. How-
ever, the area of a k-LUT grows expontentially with respect to k. Using k-LUTs
with large k may considerably lower chip density. Therefore, we have to ex-
plore other alternatives. It has been reported that the functions mapped into
large LUTs usually use considerably fewer product terms than the capacity of
the lookup table [Kouloheris and Gamal 1992; Kouloheris 1993]. For instance,
the utilization of a lookup table cell with K -inputs and N -outputs, which is
defined as the ratio of the number of product terms used per cell to the cell
capacity, N · 2K −1, is less than 0.1 for K = 7, N = 1. This leads us to consider
an FPGA architecture based on k-input single-output PLA-like logic cells. Each
cell can implement a single output function of up to m product terms and up
to k inputs. Such a cell is called a k/m-macrocell throughout this article. A
k/m-macrocell differs from a k-LUT in that each macrocell can implement only
a subset of all possible k-input functions. A k/m-macrocell is different from a
general PLA-like block used in most CPLDs, as each k/m-macrocell has a sin-
gle output. If we choose m to be small, k/m-macrocells are much smaller than
k-LUTs. Therefore, it is possible to use k/m-macrocells with larger input size
in order to get a smaller logic depth and less interconnect without considerably
lowering the logic density.

In this article, we develop a very efficient technology mapping algorithm,
named k m flow, for this new type of architecture. The experimental results
show that our algorithm can achieve depth-optimality on almost all the test-
cases in a set of 16 Microelectronics Center of North Carolina (MCNC) bench-
marks. Furthermore it is shown that on this set of benchmarks, with only a
relatively small number of product terms (m ≤ k +3), the k/m-macrocell-based
FPGAs can achieve the same or a similar mapping depth compared with the
traditional k-LUT based FPGAs. We also investigate the total area and delay
of k/m-macrocell-based FPGAs and compare them with those of the commonly
used 4-LUT-based FPGAs. The experimental results show that k/m-macrocell-
based FPGAs can outperform 4-LUT-based FPGAs in terms of both delay and
area after placement and routing by versatile place route (VPR) on this set of
benchmarks.

The rest of this article is organized as follows. Section 2 formulates the prob-
lem. Section 3 introduces a technology mapping algorithm for k/m-macrocell-
based FPGAs. Section 4 further investigates the area and delay of k/m-
macrocell-based architecture. We draw our conclusions based on experimental
results in Section 5. An extended abstract of this work was presented at the
FPGA Symposium in 2000 [Cong et al. 2000].

2. DEFINITIONS AND PROBLEM FORMULATION

We first review some terminologies defined in Cong and Ding [1994]. A Boolean
network can be represented as a directed acyclic graph (DAG) where each node
represents a logic gate and a directed edge (i, j ) exists if the output of gate i
is an input of gate j . A primary input (PI) node has no incoming edge and a
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primary output (PO) node has no outgoing edge. We use input(v) to denote the
set of nodes which are fanins of gate v. We assume the network is k-bounded,
that is, for each node v in the network, |input(v)| ≤ k.1 A cone at node v,
denoted as Cv, is a subgraph consisting of v and its predecessors such that
any path connecting a node in Cv and v lies entirely in Cv. The notation of
input(Cv) is also used to represent the set of distinct nodes outside Cv which
supply inputs to the gates in Cv. A maximum cone at v, also the fanin net-
work of v, denoted as Nv, is a cone consisting of v and all of its predecessors.
The level of a node v is the length of the longest path from any PI node to v.
The level of a PI is zero. The depth of a network is the largest node level in the
network.

A cone Cv is said to be k-feasible if and only if |input(Cv)| ≤ k. Similarly, Cv
is said to be m-packable if and only if its function has a sum-of-product repre-
sentation with no more than m product terms. Cv is said to be k/m-feasible if
it is both k-feasible and m-packable. Please note that the word feasible usually
refers to the number of inputs of a macrocell, and packable refers to the number
of product terms. The only exception is k/m-feasible, which is a shortened ver-
sion of k-feasible and m-packable. It is obvious that a k/m-feasible cone can be
implemented by a k/m-macrocell. A network is called m-packable if the func-
tion of any node in the network has a sum-of-product representation with no
more than m product terms.

Several concepts about cuts in a network will be used in our discussion. Given
a network N with a source s and a sink t, a cut (X , X ′) is a partition of the nodes
in the network such that s ∈ X , t ∈ X ′, and no nodes in X ′ provide input to
any node in X . Clearly X ′ may be considered a cone at t inside network N .
Therefore we can apply the previous definitions on k/m-feasibility to cuts. A
cut (X , X ′) is said to be k-feasible if and only if X ′ is a k-feasible cone. The cut
is said to be m-packable if and only if X ′ is an m-packable cone. A k/m-feasible
cut is one that is both k-feasible and m-packable. For every node v and its fanin
network Nv, a cut (X , X ′) in Nv is a partition of the nodes such that all the PI
nodes belong to X and v belong to X ′. It is clear that every cone rooted at v
corresponds to a cut in Nv.

The technology mapping problem for k/m-macrocell-based FPGAs is to cover
a given k-bounded m-packable Boolean network with a set of k/m-feasible cones.
Note that we allow these cones to overlap, that is, nodes may be duplicated in
the mapping solutions. This problem is NP-Hard as the two level minimization
problem is NP-Hard.

Throughout the discussion on the technology mapping algorithm (Section 3),
unit delay and unit area models are used. That is, variation of interconnection
delay and routing area is not directly considered during technology mapping
of the original network. Each k/m-macrocell contributes a constant delay in-
dependent of the function it implements. Each cell is counted as a unit when
we evaluate the area; hence the total area of the mapping solution equals to

1Any network can be fully decomposed into a two-bounded network without deteriorating the
mapping quality [Cong and Hwang 1996].
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the total number of macrocells. Such simplification is reasonable because the
layout information is not available yet. For architecture evaluation in Section 4,
however, we will use more accurate delay and area models with consideration
of the interconnect. We use a well-known FPGA placement and routing tool
(VPR [Betz et al. 1999]) to get the total area and critical path delay after layout
for comparison. To avoid confusion, we use depth and number of macrocells in
Section 3 to refer to the delay and area under the unit delay and the unit area
model.

3. TECHNOLOGY MAPPING FOR k/m-MACROCELLS

3.1 Overview

A k/m-macrocell can be regarded as a k-LUT with an additional restriction
that it can only implement logic functions with no more than m product terms.
Therefore, it is natural to start with the k-LUT mapping problem since it has
been intensively studied in the past decade.

Currently, there are three major approaches to LUT-based FPGA mapping:
tree-based mapping (e.g., Chortle-crf [Francis et al. 1991a], Chortle-d [Francis
et al. 1991b]), flow-based mapping (e.g., FlowMap [Cong and Ding 1994]), and
cut-enumeration-based mapping (e.g., PREATOR [Cong et al. 1999]). A more
comprehensive survey is available in Cong and Ding [1996]. Tree-based map-
ping algorithms partition the network into trees and handle each tree sepa-
rately. Each individual tree can be mapped optimally but a prior tree parti-
tioning often compromises the mapping quality. Usually they are fast heuristic
algorithms. Flow-based mapping algorithms are based on the theorem of max-
flow-min-cut and the computation of network flow. It can generate a depth opti-
mal mapping solution in polynomial time. However, flow-based algorithms lack
flexibility as they find only one or two depth-optimal min-cuts for every node.
On the other hand, cut-enumeration-based approaches can find out many, if not
all, possible cuts for every node. They offer high flexibility and can achieve opti-
mality with more constraints, but they are considerably slower than tree-based
or flow-based methods.

The approach we present here, called k m flow, is a hybrid of flow-based and
cut enumeration-based methods. We try to find a k/m-feasible cut for every
node first by flow computation. If that fails, we turn to cut enumeration.

The k m flow algorithm consists of two phases—(i) labeling the network and
(ii) mapping the network into macrocells. The labeling phase is trying to find
a k/m-feasible cut for each node for depth minimization. The mapping phase
generates k/m-macrocells in the mapping solution according to the labels and
cuts computed in the labeling phase.

3.2 Nonmonotone Properties

For every node v, let Nv be the fanin network consisting of node v and all its
predecessors. We assume that there is a given label label(v) associated with
each node v. We also define label∗(v), the optimal mapping depth of v, to be the
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minimum depth of the k/m-macrocell mapping solution for Nv. The labeling
phase for k/m-macrocell mapping is similar to that in the FlowMap algorithm
[Cong and Ding 1994]. It finds a k/m-feasible cut for every node v and computes
a label for v to minimize the depth of the k/m-macrocell implementing node v
in the mapping solution. Ideally, we would like the computed label to be equal
to the optimal mapping depth, that is, label(v) = label∗(v) for every node v in
the network, as is in the case with the FlowMap algorithm for k-LUT mapping.
However, it is more difficult to do so for the k/m-macrocell-based mapping due to
the nonmonotone property of the clustering constraints and the non-monotone
property of the optimal depths.

3.2.1 Nonmonotone Property of Clustering Constraints. The fundamental
difficulty of k/m-macrocell-based FPGA mapping is that the constraints on the
number of inputs and the number of product terms of a k/m-macrocell are
not monotone clustering constraints. That is, if a cone Cv is k-infeasible (or
m-unpackable), it does not guarantee that all its supercones (i.e., those cones
including Cv) are k-infeasible (or m-unpackable). As a result, a k-infeasible (or
m-unpackable) cone Cv could become k-feasible (or m-packable) by including
more nodes into it. Note that the LUT mapping problem also has this non-
monotone property.

3.2.2 Nonmonotone Property of Optimal Mapping Depths. In addition,
the optimal k/m-macrocell mapping depth is not monotone either. The op-
timal mapping depth is monotone if label∗(v) ≥ label∗(u) as long as u is an
input to v.

An example of the nonmonotone properties is shown in Figure 1. It is a
portion of a two-bounded network and we do not show the complete network
(for example, output f 1, f 2 can be drivers to other gates that are not shown in
Figure 1). Assuming k = 4 and m = 4, cone C f 1 is not 4-packable while a larger
cone C f is both 4-feasible and 4-packable. The optimal depth to implement C f 1
is 2 with 3 4/4-macrocells (as shown in the shaded regions). However, C f can
be implemented with only 1 4/4-macrocell and therefore the optimal mapping
depth for C f is 1, that is, for node f and its input node f1, label∗( f ) = 1 < 2 =
label∗( f1). Note that for the LUT mapping problem, it was shown in Cong and
Ding [1994] that the optimal mapping depth is monotone.

3.3 Depth-Optimal Mapping Algorithm for k/m-macrocell

Nevertheless, we can have a depth-optimal mapping algorithm for k/m-
macrocell. Given a cut (X , X ′) in Nv, the height of the cut, denoted as h(X , X ′),
is the maximum label in input(X ′), that is,

h(X , X ′) = max{label(v)|v ∈ input(X ′)}
It is assumed that every node in input(X ′) already has a label. A min-height
k/m-feasible cut (X , X ′) in a network is a k/m-feasible cut such that h(X , X ′) ≤
h(Y , Y ′), where (Y , Y ′) is any other k/m-feasible cut. Based on the definition of
optimal mapping depth of v label∗(v), we have label∗(v) = h(X , X ′)+1, if (X , X ′)
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Fig. 1. An example showing the nonmonotone properties of the k/m-macrocell mapping problem.

is the min-height k/m-feasible cut in Cv and label(u) = label∗(u) for any node
u other than v in cone Cv. Therefore, following a similar argument as in Cong
and Ding [1994], we can conclude that (i) a mapping algorithm can label every
node v such that label(v) = label∗(v) if it can find the min-height k/m-feasible
cut for every node. And (ii) a mapping algorithm can find the depth optimal
mapping solution for k/m-macrocell-based FPGAs if it can find the min-height
k/m-feasible cut for every node.

Based on the above observation, a depth optimal mapping algorithm works
as follows. It finds the min-height k/m-feasible cut for each node in the
topological order from PIs to POs. It then can label each node v such that
label(v) = h(X , X ′) + 1 = label∗(v), where (X , X ′) is the min-height k/m-
feasible cut for v. After labeling the whole network, it can use the min-height
k/m-feasible cuts to generate the k/m-macrocells in the mapping solution. The
mapping result has the optimal depth.

In order to find the min-height k/m-feasible cut for every node, we can
exhaustively enumerate all k-feasible cuts and test if they are m-packable.
The enumeration algorithm can then pick the k/m-feasible cut with minimum
height for every node. However, such an algorithm is impractical to use due to
the high complexity of exhaustive cut enumeration for a large k. In theory, the
number of k-cuts of a node in a cone with n nodes can be as large as O(nk).
Since we are interested in large k with values k = 6 to 10, we move to develop
a more efficient heuristic algorithm.
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3.4 The k m flow Algorithm—a Heuristic Approach

3.4.1 Labeling Phase. The k m flow algorithm also computes a label for
each node from PIs to POs in topological order. At the beginning, every PI node
will receive a label of 0. Then for every node v, suppose mlevel is the largest
label among v’s fanins, it is assumed that label(v) ≥ mlevel. In order to test if we
can set label(v) to mlevel, we collapse each node u in Nv with label(u) = mlevel
into node v to form an induced network N ′

v and test if we can find a k/m-feasible
cut in N ′

v. Obviously we assume that node labels will increase monotonically.
Based on the max-flow-min-cut theorem, we can easily find two min-cuts

in N ′
v: the max-volume-min-cut (X , X ′), which is a min-cut with the largest

|X ′|, and the min-volume-min-cut (Y , Y ′), which is a min-cut with the small-
est |Y ′|. Please note both (X , X ′) and (Y , Y ′) are min-cuts, which implies that
|input(X ′)| = |input(Y ′)| ≤ |input(Z ′)| where (Z , Z ′) is any other cut in N ′

v.
Also, note that max-volume-min-cut and min-volume-min-cut are unique and
Y ′ ⊆ X ′. The max-volume-min-cut and min-volume-min-cut can be found in
O(ke) time, where e is the number of edges and k is the value of the maximum
flow. There are three cases on whether the max-volume and min-volume min-
cuts are k/m-feasible. m-packable is checked after calling Espresso [Brayton
et al. 1984] on the functions in X ′ and Y ′ collapsed at v.

Case 1. Neither max-volume nor min-volume min-cut is k-feasible.

Because any k/m-feasible cut must be k-feasible too, this condition implies
that no k/m-feasible cut exists in N ′

v. In this case, node v can be simply labeled
as mlevel + 1.

Case 2. Either max-volume or min-volume min-cut is k/m-feasible.

Suppose (X , X ′) is the k/m-feasible min-cut (either the max-volume or min-
volume one). We can create a k/m-macrocell for node v, denoted as map node(v),
to implement the function of X ′. The depth of map node(v) in the mapping
solution cannot be larger than mlevel. Therefore, we assign label(v) = mlevel.

Case 3. Both max-volume and min-volume min-cut are k-feasible but not
m-packable.

Note that this condition does not guarantee that there is no k/m-feasible cut
existing in N ′

v. Therefore, we try to do a local cut enumeration in hope of finding
a k/m-feasible cut.

To search for a k/m-feasible cut, perhaps the most natural way is to do a lo-
cal cut enumeration within the cone defined by the max-volume-k-feasible-cut.
However, unlike a max-volume-min-cut, the max-volume-k-feasible-cut may
not be unique. Moreover, there is no good algorithm to find the max-volume-
k-feasible-cut. Furthermore, it is intuitive to think that if the max-volume-
min-cut (X , X ′) is not m-packable, a cut outside or across it may not likely be
k/m-feasible, since it will have more fanins, tending to require more product
terms in its sum-of-product representation. Therefore, in order to search for a
k/m-feasible cut under Case 3, we only enumerate cuts inside X ′ to see if they
are k/m-feasible.
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To do a local cut enumeration in a cone Cv, first we mark all inputs to Cv as
pseudo-PIs and then go through all nodes inside Cv in topological order from
pseudo-PIs and enumerate all k-feasible cuts for every node v by the following
equation, where x and y are the fanins of v2:

Cut(v) = ({(Cx − x, x)} ∪ Cut(x))
⊗

k({(Cy − y , y)} ∪ Cut( y)) [Cong et al. 1999].

Cut(x) is the set of k-feasible cuts for node x. The notation (Cx − x, x) refers to
the cut that cuts off the single node x.

⊗
k is a merging operator defined on two

cut sets; S1
⊗

k S2 means merge every cut cut1 in S1 with every cut cut2 in S2
and only keep the k-feasible cuts in the result.

After the enumeration process, we check Cut(v) to see if there is an m-
packable cut. If there exists a k/m-feasible cut, node v can be labeled as mlevel;
otherwise, it will be labeled as mlevel + 1.

The pseudocode for the labeling phase is shown in Figure 2. For all the nodes,
we record the k/m-feasible cuts which correspond to their labels.

3.4.2 Mapping Phase. The second phase of our algorithm is to generate the
k/m-macrocells in the mapping solution. For every node v, basd on the k/m-
feasible cut (X , X ′) found in labeling phase, we can create a k/m-macrocell
map node(v) for v to implement the function of X ′ and input(map node(v)) =
input(X ′). The mapping phase is very similar to the mapping phase in
FlowMap [Cong and Ding 1994]. The detailed description is shown in
Figure 2.

3.4.3 Properties of the k m flow Algorithm. We can prove the following
properties for the algorithm discussed above:

(1) If a node v is labeled as label(v), it can then be implemented with a depth
no more than label(v). That is, label(v) is the upper bound estimation of the
depth of v in the mapping solution.

(2) If Case 3 never happens when mapping a specific circuit, then the mapping
solution is delay optimal. Indeed, it is just the same as k-LUT mapping.

(3) For any certain circuit, if the optimal depth for k-LUT-based mapping is d1,
the optimal depth for k/m-macrocell-based mapping is d2 and the depth of
k m flow mapping result is d3, then d1 ≤ d2 ≤ d3.

3.5 Area Enhancement

After obtaining a k/m-macrocell mapping solution, we want to further reduce
the number of k/m-macrocells in the mapping solution without increasing its
depth.

2Although in problem formulation the given network is k-bounded, our algorithm is imple-
mented for a two-bounded given network as it is proved in Cong and Hwang [1996] that any
network can be fully decomposed into a two-bounded network without deteriorating the map-
ping quality. Therefore the cut enumeration equation provided here is for a two-bounded net-
work. Of course it can be generalized to a k-bounded network at the cost of higher computation
complexity.
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Fig. 2. Pseudocode of k m flow algorithm.

For every k/m-macrocell v, we try to pack as many of its predecessors with
it as possible into a single k/m-macrocell. Clearly we need to guarantee the
condition that the new k/m-macrocell is still k/m-feasible. In order to do so, we
try to combine v with any of its fanins and then check if they can be packed into
one k/m-macrocell. After v and one of its fanins have been successfully packed
together, a new node v′ will be formed to replace v in the mapping solution. It
could be that some of the fanins of v′ (input(v′) = input(v) ∪ input(fanin)) can
still be packed together with v′. Therefore, the above greedy packing process will
be repeated until no more nodes can be packed. The detailed packing algorithm,
k m pack, is shown in Figure 3. On average, the total number of macrocells in
the mapping solution may be reduced by a factor of 6% after the above packing
process.
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Fig. 3. Pseudocode of k m pack algorithm.

Table I. Description of 16 Benchmark Circuits

Circuit duke2 C499 frg2 rot ex4p apex6 x3 apex5
#node 382 398 695 696 699 714 768 827
#PI 22 41 143 135 128 135 135 117
#PO 29 32 139 107 28 99 99 88
level 10 19 12 22 11 16 12 11
Circuit i8 C2670 s5378 mm30a pair C3540 alu4 des
#node 917 1299 1317 1500 1556 2097 2347 3026
#PI 133 233 196 124 173 50 14 256
#PO 81 64 210 121 137 22 8 245
level 12 26 24 108 18 42 14 15

3.6 Experiment Result

Our algorithm, k m flow, has been implemented in C language within the
Berkeley SIS and UCLA RASP [Cong et al. 1996] framework. We chose a set
of 16 MCNC benchmarks to test k m flow on a Sun Ultra II workstation with
512M memory. Table I shows the size of the 16 benchmark circuits before map-
ping (all are two-bounded networks).

In order to find out the optimal mapping depth for each benchmark and
compare it with the k m flow mapping solution, we implemented an algo-
rithm called k m enumerate. The k m enumerate algorithm can find the depth-
optimal mapping solution by performing an exhaustive cut enumeration in the
entire network, as proposed in Section 3.3. We would like to point out that
k m enumerate is impractical to use for a large k. We use it only to collect data
to analyze the optimality of k m flow algorithm.

In Table II, we list the mapping depth generated by k m flow and
k m enumerate under a different k and m. The data is in the form of x/ y ,
where x is the depth of mapping solution generated by k m flow and y is the
optimal mapping depth obtained by k m enumerate under the specified k and
m. A question mark ? means the optimal depth is still unknown because of the
extremely long runtime and large memory requirement of k m enumerate for
a large k. From Table II, we can see that although k m flow cannot guarantee
delay optimality in theory, in practice it is almost always able to find out the
depth-optimal mapping solution.
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Table II. Experimental Results Show that the k m flow Algorithm Can Achieve Depth-Optimal
Mapping in Practice

k = 6 k = 8 k = 10
Circuit m = 6 m = 7 m = 8 m = 9 m = 8 m = 9 m = 10 m = 11 m = 10 m = 11 m = 12 m = 13
duke2 4/4 4/4 4/4 4/4 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3
C499 5/5 5/5 4/4 4/4 4/? 4/? 4/? 4/? 3/3 3/3 3/3 3/3
frg2 4/4 4/4 4/4 4/4 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3
rot 6/6 6/6 6/6 6/6 5/5 5/5 5/5 5/5 4/4 4/4 4/4 4/4
ex4p 4/4 4/4 4/4 4/4 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3
apex6 4/4 4/4 4/4 4/4 4/4 4/4 3/3 3/3 3/3 3/3 3/3 3/3
x3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3 2/2 2/2 2/2 2/2
apex5 4/4 4/4 4/4 4/4 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3
i8 4/4 4/4 4/4 4/4 3/3 3/3 3/3 3/3 3/3 3/3 3/3 3/3
C2670 7/7 7/7 6/6 6/6 6/6 6/6 6/6 6/6 4/4 4/4 4/4 4/4
s5378 7/7 7/7 7/7 7/7 6/6 5/5 5/5 5/5 5/? 5/? 4/4 4/4
mm30a 21/21 21/21 21/21 21/21 20/20 20/20 20/20 17/? 19/? 15/? 15/? 15/?
pair 5/5 5/5 5/5 5/5 4/4 4/4 4/4 4/4 3/3 3/3 3/3 3/3
C3540 11/11 11/11 10/10 10/10 9/? 9/? 8/8 8/8 8/? 8/? 7/? 7/?
alu4 6/6 6/6 6/6 6/6 5/5 5/5 5/5 5/5 4/4 4/4 4/4 4/4
des 4/4 4/4 4/4 4/4 3/3 3/3 3/3 3/3 3/? 3/? 3/? 3/?

Table III. Total Mapping Depth of k/m-Macrocell Versus k-LUT on 16 MCNC Benchmarks

Total depth for k/m-macrocell
by k m flow Total depth for k-LUT

m = k m = k + 1 m = k + 2 m = k + 3 by FlowMap
k = 6 99 99 96 96 95
k = 7 90 88 87 87 81
k = 8 84 83 82 78 75
k = 9 74 73 71 68 65
k = 10 73 70 67 67 62

Table IV. Total Number of k/m-Macrocells Versus Total Number of k-LUTs on 16 MCNC
Benchmarks

Total # of k/m-macrocells
by k m flow Total # of k-LUTs

m = k m = k + 1 m = k + 2 m = k + 3 by FlowMap
k = 6 7872 7728 7607 7554 7419
k = 7 6742 6574 6528 6496 6349
k = 8 6045 5971 5908 5909 5646
k = 9 5628 5526 5535 5513 5275
k = 10 5148 5128 5105 5075 4789

We also compare the k/m-macrocell mapping solution generated by k m flow
with k-LUT mapping solution generated by FlowMap. Table III shows the total
mapping depth of k/m-macrocell vs. k-LUT on the 16 benchmarks. Table IV
shows the total number of macrocells vs. the total number of k-LUTs on
16 benchmarks. FlowMap is a depth-optimal k-LUT mapping algorithm based
on flow computation. Since k/m-macrocells can be regarded as k-LUTs with
additional m-product-term constraints, the optimal depth of a k-LUT mapping
solution is the lower bound of the optimal depth of a k/m-macrocell mapping
solution.
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Table V. Quick Success Rate of Flow Computation in
k m flow on 16 Benchmarks

m = k m = k + 1 m = k + 2 m = k + 3
k = 6 99% 99% 99.6% 99.8%
k = 7 97% 98% 99% 99%
k = 8 97% 98% 98% 99%
k = 9 96% 96% 97% 97%
k = 10 96% 96% 97% 97%

We can see that the mapping results of k m flow (both depth and number of
macrocells) are close to the k-LUT mapping results when m = k + 3. It implies
that the k/m-macrocell is almost equivalent to a k-LUT if m is slightly larger
than k. This observation is consistent with the results reported by Kouloheris
[1993 (p. 75)] where the author claimed the number of product terms needed to
implement the function of a k-LUT grows almost linearly with k. Increasing the
flexibility of the macrocell by allowing more product terms to be implemented
will not significantly improve the performance.

The k m flow algorithm is a hybrid of flow computation and cut enumera-
tion. The complexity of flow computation is O(n2) [Cong and Ding 1994]. The
complexity of cut enumeration can be estimated as O(npq2),3 where n is the
number of nodes in the network, and p is max{size of max-volume-k-feasible
cone}, and q is the max number of k-feasible cuts inside any cone. The equation
assumes we will do a cut enumeration for every node in a cone of size p. The
conservative estimation on the complexity to enumerate all k-feasible cuts for
a single node is O(q2) because the input network is two-bounded. In order to
get a polynomial complexity, we can bound the number of cuts enumerated by
a constant number. Therefore, the complexity of k m flow is bounded by the
complexity of flow computation O(n2).

The percentage of nodes where the max-volume or min-volume k-feasible
cut returned by flow computation is m-packable is called quick success rate.
Quick success rate is a characteristic of individual network and may differ from
network to network. Fortunately, the quick success rate is on average 98% for
k = 6, 7, . . . , 10 and m = k, k +1, . . . , k +3 of the 16 benchmarks. Detailed data
is shown in Table V. It implies that k m flow has a complexity close to O(n2) in
practice. It is understandable that due to this high success rate, k m flow will
use almost the same cuts as FlowMap finds to create macrocells, resulting in
the similar mapping depth.

From our observations on the range k = 6 to 10, the cones in which cut
enumeration is performed are usually small, with less than 50 nodes inside. An
exhaustive cut enumeration on a small network with no more than 50 nodes
usually runs very fast. Therefore, the k m flow algorithm shall be an efficient
algorithm to generate the k/m-macrocell mapping solution for medium k. For
a large k, the cone may be large and even the local cut enumeration may take
a long time to finish. Table VI shows the total CPU time (in seconds) needed to
generate all the mapping solutions for 16 benchmarks. Since the quick success

3Assume cut enumertation is done on a two-bounded network.
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Table VI. Total CPU Runtime of k m flow Algorithm on
16 Benchmarks

m = k m = k + 1 m = k + 2 m = k + 3
k = 6 105.9 101.7 96.8 96.1
k = 7 149.1 106.0 106.4 105.3
k = 8 119.0 119.0 118.7 119.3
k = 9 140.0 137.8 138.4 138.7
k = 10 210.5 207.8 206.3 207.6

Fig. 4. k/m logic block.

Fig. 5. 4-LUT logic block.

rate is usually very high, in practice, skipping local enumeration may cause
little impact on the mapping quality and may save the runtime.

4. INVESTIGATION OF k/m-MACROCELL-BASED ARCHITECTURES

In Section 3 we used the unit area and the unit delay model to evaluate the qual-
ity of our k/m-macrocell mapping algorithm. In order to collect more accurate
delay and area information to draw an architectural study conclusion, we use
VPR [Betz et al. 1999], an FPGA placement and routing tool developed at the
University of Toronto, to do placement and routing for our k/m-macrocell-based
architecture and compare this architecture with the traditional 4-LUT-based
architecture in terms of total area and critical path delay.

4.1 Area and Delay Models

Figure 4 shows the schematic diagram of the logic block used in our k/m-
macrocell-based architecture (we call it the k/m the logic block). Figure 5 shows
the logic block used in 4-LUT-based architecture [Betz et al. 1999] (we call it
the 4-LUT logic block). Since the area of a logic block is greatly affected by the
number of transistors in the basic cell, we use the ratio between the number
of transistors in k/m-macrocell and that in 4-LUT to estimate the ratio of the
area of the two logic blocks (i.e., k/m logic block vs. 4-LUT logic block). For the
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Fig. 6. Schematic diagram of k/m-macrocell.

logic block delay, we assume that it is proportional to the number of transistors
on the longest path of the basic cell.

4.1.1 Detailed Description of k/m-Macrocell Implementation. Our k/m-
macrocell consists of k inverters, km 3:1 MUXs, km 2-bit-SRAMs, m 1-bit-
SRAM, km 2:1 MUXs, m k-input AND blocks, and one m-input OR block shown
in Figure 6. The 3:1 MUX in the product-term block is used to choose x, x ′, and
1 for each input, so its logic function is f = xab + yab′ + a′ = yb′ + xb + a′ =
p′ + a′ = (pa)′, p = yb + xb′. Therefore it can be implemented by the circuit
shown in Figure 7(a), costing eight transistors. (We assume that SRAM can
provide both data and its complementary, i.e., b′ is provided.) There are three
transistors on the longest path a signal would pass (one pass transistor and
two n-transistors). The 2:1 MUX can be implemented by the circuit shown in
Figure 7(b). It costs four transistors and there is one pass transistor in the
longest path. The 1-bit-SRAM needs six transistors (see Betz et al. [1999], pp.
208, for the schematic diagram) and 2-bit-SRAM needs 12 transistors. The x-
input AND block and y-input OR block can be implemented by multiple-level
NAND gates and NOR gates. Here we adopt two-level gates to implement them
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Fig. 7. 3:1 MUX and 2:1 MUX.

Fig. 8. x-input AND blocks.

as shown in Figures 8 and 9. The number of transistors used in the block is listed
in the figures. For a z-input NAND (NOR) gate, there are z n-transistors (p-
transistors) on the longest path; thus the number of transistors on the longest
path of each x-input AND block and y-input OR block are listed as follows:

7-input AND block: 3 + 3 = 6; 10-input OR block: 3 + 3 = 6;
8-input AND block: 3 + 3 = 6; 11-input OR block: 4 + 3 = 7;
9-input AND block: 3 + 3 = 6; 12-input OR block: 4 + 3 = 7;
10-input AND block: 3 + 4 = 7; 13-input OR block: 4 + 4 = 8.

4.1.2 Transistor Count for k/m-Macrocell Area Estimation. The total tran-
sistor number of a k/m-macrocell is the sum of following items: k invert-
ers (2k transistors), km 2-bit-SRAM (12km transistors), km 3:1 MUX (8km
transistors), m 2:1 MUX (4m transistors), m 1-bit-SRAM (6m transistors), m
k-input AND block (m× (#transistors per k-input AND)), and 1 m-input OR
block (#transistors per m-input OR), that is, 2k + 20km+ 10m+ m× (#transis-
tors per k-input AND)+#transistors per m-input OR.
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Fig. 9. x-input OR blocks.

Fig. 10. Schematic diagram of 4-LUT-cell.

4.1.3 Transistor Count for k/m-Macrocell Delay Estimation. The longest
path a signal would pass in the k/m-macrocell consists of an inverter, a 3:1
MUX, a k-input NAND block, a 2:1 MUX, and an m-input NAND block. There-
fore the number of transistors in the longest path of k/m-macrocell is

k = 7, m = 10: 1 + 3 + 6 + 1 + 6 = 17;
k = 8, m = 11: 1 + 3 + 6 + 1 + 7 = 18;
k = 9, m = 12: 1 + 3 + 6 + 1 + 7 = 18;
k = 10, m = 13: 1 + 3 + 7 + 1 + 8 = 20.

4.1.4 Transistor Count for 4-LUT Area and Delay Estimation. The 4-LUT
cell we compare to is shown in Figure 10. Because we use four transistors to
implement the 2:1 MUX, there should be extra four inverters for four inputs to
provide their complementaries which are not drawn in this figure. This 4-LUT
actually consists of 16 1-bit SRAMs, 4 inverters, and 15 2:1 MUXs. Therefore the
total number of transistors used in this 4-LUT cell is 16×6+15×4+4×2 = 164.
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Table VII. k/m Logic Block Area Estimation

k = 7, m = 10 k = 8, m = 11 k = 9, m = 12 k = 10, m = 13
#Trans. of k/m-macrocell 1742 2156 2616 3148
#Trans. of k/m-macrocell vs.
#Trans. of 4-LUT cell 10.6 13.2 16.0 19.2
Assumed delay ratio of
k/m-macrocell vs. 4-LUT cell 3.4 3.6 3.6 4.0

The longest path a signal would pass is from an inverter to each level of 2:1
MUX; thus there are five transistors in the longest path.

Therefore, based on the above transistor counting and the estimation model
for the logic block, we have the area and delay ratio of k/m-macrocell versus
4-LUT cell listed in the Table VII.

4.2 Experimental Setting of VPR

We used VPR version 4.22 to do placement and routing for the mapping solution
of the k/m-macrocell-based architecture and that of the 4-LUT-based architec-
ture. The authors of VPR extensively studied area/delay tradeoff for 4-LUT-
based architecture. They proposed a detailed 4-LUT-based FPGA architecture
under TSMC’s 0.35-µm, 3.3-V process [Betz et al. 1999]. The 4-LUT logic block
they proposed is identical to what Figure 5 shows. Two corresponding routing
architecture files are attached with VPR package. In terms of interconnect con-
figuration, one is simple and thus offers less area but a larger delay (we call
it RA1), and the other is more complicated and offers a smaller delay but at
a cost of larger area (we call it RA2). RA1 uses only buffer switched wires of
length 1, while RA2 uses 50% buffer switched wires of length 4 and 50% pass
transistor switched wires of length 4. As we only wanted to compare two archi-
tectures rather than getting an absolute result, it was reasonable to scale the
area and delay parameters in the architecture file of 4-LUT-based architecture
according to the area and delay estimation ratio between k/m logic block and
4-LUT logic block as discussed in Section 4.1 in order to derive the routing ar-
chitecture file for k/m-macrocell-based architecture, that is, we compared our
k/m-macrocell-based architecture with their 4-LUT-based architecture by only
changing the parameters related to the area and delay of the logic block in the
routing architecture files.

VPR reports routing area in the number of min-width transistors and the
delay of critical path in seconds. We added up the logic block area to the routing
area and got the total area of each mapping solution.

4.3 Experimental Results

We compared k/m-macrocell-based architecture with 4-LUT-based architecture
by running VPR on their mapping solutions for the 16 MCNC benchmarks
under the experimental settings mentioned above. The k/m-macrocell mapping
solutions were obtained by running k m flow algorithm and then performing
k m pack to further reduce the number of macrocells. The 4-LUT mapping
solutions were obtained by running FlowMap followed by greedy-pack.
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Table VIII. Normalized Area and Delay of k/m-Macrocell-Based Architecture on the
16 Benchmarks

Results under routing architecture RA1
k = 7, m = 10 k = 8, m = 11 k = 9, m = 12 k = 10, m = 13

Ak/m tile/A4−LUT tile 1.56 1.70 2.16 2.15
Total area 1.15 1.20 1.16 1.27
Crit. path delay 0.79 0.75 0.68 0.67
Routing area percentage 59% 56% 52% 48%

Results under routing architecture RA2
k = 7, m = 10 k = 8, m = 11 k = 9, m = 12 k = 10, m = 13

Ak/m tile/A4−LUT tile 1.46 1.59 1.47 2.03
Total area 0.85 0.86 0.81 0.83
Crit. path delay 0.86 0.81 0.74 0.73
Routing area percentage 71% 67% 63% 58%

Based on the estimation ratio discussed in Section 4.1, the average to-
tal area and critical path delay comparison between these two architectures
are shown in Table VIII. Ak/m tile refers to the area of the max-basic tile in
k/m-macrocell-based architecture, which is the sum of the area of k/m logic
block and the max-routing area per tile among the 16 benchmarks. A4−LUT tile
refers to the area of the max-basic tile in 4-LUT-based architecture, which is
the sum of the area of 4-LUT logic block and the max-routing area per tile
among the 16 benchmarks. The area and delay of k/m-macrocell-based archi-
tecture were normalized with 4-LUT’s =1. We compared the total area and
critical path delay of the two architectures under the two routing architectures
RA1 and RA2 mentioned in Section 4.2. We also reported the routing area
percentage in k/m-macrocell-based architecture on the 16 benchmarks after
routing.

For LUT-based FPGA, when k is small, most of the area is devoted to routing.
With the increase of k, routing area decreases, but the area increase of logic
blocks could be more than the decrease of routing area. Because the area of
k/m-macrocell blocks does not grow exponentially as k-LUT does, the logic
block area is much less than k-LUT-based architecture’s; thus the total area
decreases. Since the logic depth and routing area decrease, the total critical
path delay decreases.

From the results, we can see that k/m-macrocell-based architecture can have
14–31% delay reduction with more area in RA1 and less area in RA2 when
compared to 4–LUT-based architecture.

5. CONCLUSIONS AND FUTURE WORKS

We have studied a novel FPGA architecture based on k/m-macrocells through
this article and proposed a k/m-macrocell technology mapping algorithm,
named k m flow. In a set of 16 MCNC benchmarks, it produces optimal map-
ping depths in most test cases. Using this algorithm and this set of benchmarks,
we have shown that k/m-macrocell-based FPGAs are similar to k-LUT-based
FPGAs in terms of the mapping depths and the number of macrocells being
used. The high quick success rate (Table V) suggests that k/m-macrocell can
provide similar flexibility to a lookup table while each k/m-macrocell is much
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smaller than a k-LUT. We have analyzed the delays and areas of k/m-macrocell-
based FPGAs using VPR on this set of benchmarks. We compared the results
with those of traditional 4-LUT-based FPGAs. Our comparison has shown that
k/m-macrocell-based FPGAs can significantly outperform 4-LUT-based FPGAs
in terms of delay.

Future works includes two directions. (i) We can use a packing process to pack
mapped k/m-macrocells into multiple-output macrocells in order to support
CPLDs mapping. (ii) As the area and delay models we used for k/m-macrocells
in Section 4 are primitive, a more accurate and detailed model needs to be
studied.
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