INSTITUTE OF PHYSICS PUBLISHING

NANOTECHNOLOGY

Nanotechnology 15 (2004) 881-891

PII: S0957-4484(04)78404-4

CMOS-like logic in defective, nanoscale

crossbars

Greg Snider, Philip Kuekes and R Stanley Williams

Hewlett-Packard Laboratories, 1501 Page Mill Road, Palo Alto, CA 94304, USA

E-mail: snider.greg@hp.com

Received 22 March 2004

Published 9 June 2004

Online at stacks.iop.org/Nano/15/881
doi:10.1088/0957-4484/15/8/003

Abstract

We present an approach to building defect-tolerant, nanoscale compute
fabrics out of assemblies of defective crossbars of configurable FETs and
switches. The simplest structure, the complementary/symmetry array, can
implement AND-OR-INVERT functions, which are powerful enough to
implement general computation. These arrays can be combined to create
logic blocks capable of implementing sum-of-product functions, and still
larger computations, such as state machines, can be obtained by adding
additional routing blocks. We demonstrate the defect tolerance of such
structures through experimental studies of the compilation of a small
microprocessor onto a crossbar fabric with varying defect rates and compiler

mapping parameters.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Many proposed architectures for nanoscale electronics have
focused on the crossbar (figure 1) because of its simplicity
of fabrication and its inherent redundancy which supports
defect tolerance [1-7]. All such architectures assume that each
junction or crosspoint within the crossbar can be independently
configured to activate an electronic device, such as a resistor,
diode, or transistor. Such crossbars, if they can be built,
would provide a building block for implementing very dense
electronic systems.

A crossbar denotes both an interconnection topology and
a fabrication geometry. Different device types (resistor, diode,
transistor) can be incorporated into a crossbar, yielding dif-
ferent kinds of crossbars. Furthermore, micron-scale masking
can be used to realize multiple device types in side-by-side re-
gions within a single crossbar such that the nanowires maintain
electrical conductivity across and between regions. We refer
to these single-device type regions as tiles. Several adjacent
tiles can be combined into larger function units, which are re-
ferred to as composite tiles or blocks. Alignment precision for
masking, as compared to nanowire pitch, limits the minimum
tile to roughly 10 x 10 junction regions of the crossbar.

Some devices have the desirable property of being
configurable, which means that at some time after

0957-4484/04/080881+11$30.00 © 2004 IOP Publishing Ltd Printed in the UK

manufacturing, the devices at selected junctions may be
independently activated or deactivated. An activated device
(such as a resistor) functions as a normal electrical component
in the crossbar circuit. A deactivated device appears to
have vanished, functionally. A configurable resistor, for
example, behaves as if it were a resistor in series with a
switch, which may be opened or closed. When closed, the
resistor connects the upper and lower wires at its junction in
the crossbar; when the switch is open, the resistor has no
effect on the circuit. Configuring the device is the act of
setting the switch to be open or closed. This may be done
electrically, optically, mechanically or by some other means.
In the case of the crossbars fabricated at Hewlett-Packard
Laboratories, configuration is done electrically, with particular
voltages across the configurable device setting it to different
configuration states. A device which is reconfigurable may be
repeatedly activated and deactivated.

Nanoscale crossbars with reconfigurable resistors have
been built and used to implement small memory and logic
systems [1, 8]. Reconfigurable switch crossbars can be
used to create latches capable of both inversion and signal
restoration [9]. Inverting latches combined with configurable
resistor and diode crossbars are sufficient to implement
arbitrary logic and processing systems. Still, configurable,
nanoscale transistors in a crossbar would provide a more

881

http://stacks.iop.org/Nano/15/881

G Snider et al

interlayer

o —
=

4

plane 2 nanowires

plane 1 nanowires J J

-_\ﬂ(l

L L L ! junction

Figure 1. Schematic view of a nanoscale crossbar from two different perspectives. Junctions may be independently configured to behave as
electronic devices. A chemical ‘interlayer’ between the two planes of parallel nanowires, along with the nanowire composition, determine

the type of devices that may be configured.

configurable
BRETS H?* R — configurable
nFETS
metal
nanowires < #______,__..---"" cur_lﬁghurable
g switches
\

%_/

p-type nanowires

H_J

n-type nanowires

Figure 2. Logic block implemented with the complementary/symmetry array. Each junction in the pink quadrant may be independently
configured to implement a p-FET, while each junction in the blue quadrant may be configured to implement an n-FET. The junctions in the
two lower quadrants may be configured to be ‘closed’ switches, representing a low impedance path between the two nanowires defining the

junction.

powerful foundation for electronic computation. A system
built out of such crossbars might not require reconfigurability
(which, to date, has been more difficult to implement reliably
than simple configuration), and a vast fabric of transistors with
gain would offer considerable flexibility to system architects.

Several authors have proposed building field-effect
transistors (FETSs) out of carbon nanotubes [10-12] or silicon
nanowires [13—15]. The nanowire approach uses one nanowire
(perhaps made of metal) as the gate electrode, crossing over
the other nanowire (perhaps a doped semiconductor) which
forms the source and drain [2]. The channel would be formed
in the semiconductor nanowire in the region near the junction.
There are, of course, many hurdles to actually implementing
an FET in such a tiny area. For example, a semiconductor
nanowire with typical doping levels of 10'® atoms of boron or
arsenic per cubic centimetre would have, on average, only 0.1
dopant atom in a 5 nm X 5 nm junction [16]. As a result,
FETs at those dimensions might not behave predictably, if
they would even function at all. Higher doping levels would
increase the dopant density within the junction, but there are

882

thermodynamic upper bounds on the effective level that can
be achieved. Another strategy for injecting charge carriers
will most likely be needed. Leakage currents due to quantum
mechanical tunnelling of electrons through insulation between
the gate and the channel must also be kept in check in order to
hold power consumption to an acceptable level [17].

This paper focuses on the architectural possibilities
that would arise from crossbars of configurable FETs,
assuming both n-channel FETs (n-FETs) and p-channel
FETs (p-FETs). In particular, we show how mosaics of
such crossbars can implement CMOS-like logic capable of
universal computation. The functional redundancy in such
architectures also make them very forgiving of defects—a
likely characteristic of fabrication at the nanoscale—providing
that one can characterize and locate the defects prior to
configuration. For simplicity, some important architectural
considerations such as configuration and interfacing to a
micron-scale environment are not addressed here—these have
been covered to some degree by other authors [2, 18].

CMOS-like logic in defective, nanoscale crossbars

(a) Inverter

o0 WX

> W O O

— &—< £
< ﬁ : «— A
— AB+CD

(b) AND-OR-INVERT gate

Figure 3. Implementing logic by selectively configuring junctions.

2. Logic block

The basic building block for creating logic out of n-FET
and p-FET arrays, called the complementary/symmetry array,
is shown in figure 2. The horizontal and vertical lines in
that figure represent nanowires, with the horizontal wires in
one plane and the vertical wires in another. The horizontal
nanowires are metallic and the vertical are semiconductors,
with the vertical wires in the left half of the structure p-type,
and the remaining vertical wires n-type. The nanowires are
divided into four different quadrants, each quadrant possessing
different electrical properties due to the nature of the nanowire
types in that quadrant and the chemical properties of the
interlayer used in that region.

The dark grey rectangles at the top of figure 2
represent micron-scale structures (perhaps implemented on an
underlying silicon substrate) that supply power and ground
to the array. The small black circles represent connections
between the structures in two different planes. In this case,
they illustrate that the leftmost vertical wires are electrically
connected to the V,;; power supply, while the rightmost

vertical wires are electrically connected to ground. The
light grey quadrants at the bottom of the figure represent
configurable switches: each junction is normally ‘open’
with a high impedance path between the wires in the two
planes, but can be electrically configured to be ‘closed’” (a
low impedance path). The pink quadrant junctions are also
normally open, but each junction here can be configured to
be a p-FET, with the gate implemented with the horizontal
wire and the source and drain implemented with the vertical
wire. Each of the blue quadrant junctions, also normally
open, can be configured to be an n-FET, with the gate
implemented with the horizontal wire and the source and
drain implemented by the vertical wire. Although each
of the four quadrants is illustrated here as being sharply
defined, this is not necessary; each quadrant may be ‘fuzzily’
implemented (due to difficulties in aligning micron-scale
masks) with, say, defective wires near the boundaries, and
each quadrant may be a different size. The only requirement
is that junctions can be characterized and defective wires and
junctions located. Note that the interlayer may necessarily
be different in each quadrant through the use of micron-

883

G Snider et al

scale masking, though a later section will suggest a simpler
fabrication scheme.

Figure 3(a) illustrates how the array can implement an
inverter by configuring a single junction in each quadrant. The
red dots in the light grey quadrants represent junctions that have
been configured to be closed crosspoint switches. The p-FET
symbol in the pink quadrant represents a junction configured to
be a p-FET, with the horizontal wire of the junction performing
the function of the gate, and the vertical wire the source and
drain. The n-FET symbol in the blue quadrant represents a
junction configured to be an n-FET. With this configuration,
an input signal, ‘A’, connects to the gates of the configured p-
FET and n-FET. The two FETs are also connected with closed
crosspoint switches in the two lower quadrants. The result is
a circuit that implements a CMOS-like inverter. The inverted
output is then available to be routed outside of the array.

An AND-OR-INVERT gate is shown in figure 3(b),
implemented by selective configuration of junctions in each
of the quadrants. Other logic functions can be implemented in
a straightforward manner by decomposing the desired function
into two sets of minterms (one set for the p-FET quadrant and
one set for the n-FET quadrant), and then using conventional
algorithms (such as Quine-McClusky) to minimize the FET
implementation for each set. In general, such synthesized
functions will also require the complement of each of its input
signals, easily supplied by the inverter of figure 3(a). Note that
all communication with the array is done through the horizontal
metal wires, leaving the vertical semiconductor wires relatively
short. This is desirable since the semiconductor wires are likely
to be several orders of magnitude more resistive than the metal
wires; keeping them short helps to minimize signal degradation
and to minimize propagation delay due to resistive—capacitive
(RC) time constants.

The array is flexible with respect to the routing of signals
into and out of it. A particular input signal may be brought in at
any of the horizontal nanowires in the top two quadrants, and
an output driven out on any of the horizontal nanowires in the
bottom two quadrants, limited only by the ability to allocate
junctions within the array to implement the computation. If
the array is defect-free, the inputs can be freely permuted, as
can the outputs, and signals may be connected on either side
of the array.

The array is also robust with respect to defective junctions
since defects can be avoided by routing around them, provided
that the defective junctions can be determined prior to
configuration.

3. Compute fabrics

A useful modification of the basic logic block is shown in
figure 4. Since logic functions implemented using a sum-
of-products representation generally require input variables
to be presented in both true and complemented forms, most
signals produced by logic gates will, at some point, need to be
inverted. Sending both the true and complemented forms of
each signal through an external routing network will consume
twice as many routing resources than one would prefer. This
variation allows each signal to be inverted locally (and only if
necessary for implementing the function), so that only a true
form of each signal need be sent through the routing network.
Hence, the block can implement any general logic function

884

W=
>
@

\—

(]

F—
£ £ A
= =
O L=
£ £ B

Figure 4. Modified logic block. The additional switches between
the configurable p-FETs and n-FETSs provides separation between
the microwires supplying V,,; and ground (dark grey rectangles) and
also supply internal routing for creating local inverters in the array.
In this example, the input signal B is inverted within the block.

when presented only with the uncomplemented form of each
input variable, limited only by the number of usable FETs and
the fan-in and fan-out constraints of the block.

Using reflections and rotations, two basic arrays (figure 3)
can be interleaved to form the configurable bidirectional buffer
block shown in figure 5. This block can take a signal on any
wire on either side, amplify it (with inversion), and drive it
out on any wire on the other side. The choice of direction on
each wire and the mapping of an input wire to an output wire
are independent, making this a useful component in building
a routing network.

Larger computational structures can be built by combining
the arrays with configurable switch tiles for routing. One
example is the logic fabric shown in figure 6. The routing
structure on the right provides local communication between
the logic arrays on the left as well as communication with
external signals.

One can hierarchically combine structures, such as the
logic block, bidirectional buffer block and routing tiles, to build
still larger fabrics as shown in figure 7.

4. Defects

Because of the regular, symmetric structure of a crossbar and
the large number of redundant components contained in its
junctions, one would expect crossbar structures to be highly

CMOS-like logic in defective, nanoscale crossbars

0
1=

Y

'

Y

m
(‘>| Dl [==] rr||:=-

[3

m

Pt

'3

m

"
L=

A
g

Figure 5. Bidirectional buffer block. Signals entering one side can be regenerated (with an inversion) and driven out the opposite side.

external signals

1 '
1 1L IEEEE]
1 IEEERI
1 1 T
o
1 1 NN
—L_ L1 .l.:-l
: 1080 Blotk
FrEREE
1 '
1 1 IEEEE]
1 1
1 1 IEEEE]
1 1 IEEEN]
AR A
-t U }I
MM R |
1 I I NN
PR
i 'l 1 I
1 1 1
1 I 1
1 1 1
i
1 1
1

Figure 6. Logic fabric: logic and routing resources combined to
form a larger computational structure.

tolerant of defects, if those defects can be determined prior
to the mapping of a circuit onto the crossbar. ‘Stuck open’
junctions—junctions that are incapable of being configured
as an electronic component but that do not short out the pair
of wires that form it—have the smallest impact since they
generally do not restrict the use of the wire pair. ‘Stuck closed’
junctions—junctions that are either shorted or permanently
configured as an electronic component—are more problematic,
since they require either the mandatory use of that junction in
a circuit mapped onto the crossbar, or that the wires making up
that junction be marked unusable. Wires may also be broken
or shorted, easily handled by marking such wires as unusable
during circuit mapping.

This section explores the effect that defects have on
compute fabric utilization and on the algorithms needed to
map circuits onto the fabric. We assume that defects can be
located prior to mapping using a separate test procedure.

4.1. Methodology

We performed a set of simulations that explored the layout
of a single application onto a particular compute fabric
while varying the defect probability and two layout algorithm
parameters. A hardware compiler was used to automatically
map the application (written in the C language, which we use
as our hardware description language) onto the target fabric.

The target fabric consisted of 64 identical logic blocks
implementing the complementary/symmetry array (figure 8)
combined with a routing network similar to the fabric in
figure 7. The sizes of the n-FET and p-FET regions were
intentionally quite large to ensure that they could feasibly be
fabricated using conventional masking processes. The n-FET
and p-FET arrays differ in size due the approach we have taken
in clustering functions within arrays (discussed in section 4.2).
Abundant routing resources were supplied to ensure that any
failure to map the application onto the fabric was due to an
inability to allocate resources within the logic blocks and
not because of an inability to route. Defects were limited
to the ‘stuck-open’ type, randomly distributed throughout all
junctions formed by the crossing of two nanowires. Junctions
formed by a nanowire crossing a microwire were assumed to
be non-defective.

The application was a simple, 4-bit microprocessor
implemented in 143 lines of C code. The instruction memory
for the processor contained a short program for implementing a
two-pole, low pass filter using 18 words of 6 bits; this memory
was included in the compiled circuit.

Three parameters distinguished a single compilation:

(1) Defectprobability (p): the probability of a nanowire/nano-
wire junction being ‘stuck open’; this varied from 0% to
20% in increments of 2%.

(2) Maximum function inputs (m): essentially the maximum
of number of input variables that synthesis was allowed
in creating a sum-of-product representation of a logic
function. For example, AND gates with up to m inputs
could be fabricated while AND gates with (m + 1) inputs
could not. The value of m also equals the maximum
number of p-FETs (or n-FETs) that could be chained
together (with the source of one connected to the drain
of the next) along a single nanowire. Larger values of m

885

G Snider et al

Routing <
(pmmmE s |
Bidirectional | I : I 5 I I
Buffers E £ g i
k : H i :
[W e U e
LTTTIA T LI T LTI TH N LTI T
Logic
Fabrics< [W e [
Rl
\

Figure 7. Larger computing fabrics may be built out of combinations of logic and routing blocks, hierarchically organizing them in a

fractal-like pattern.

produce denser logic implementations, but these are also
more difficult to map onto defective crossbars.

(3) Cluster packing density (d): the maximum percentage of
resources within a logic block that could be allocated for
implementing logic gates. This varied from 100% (which
would give maximum utilization on a defect-free fabric)
down to 40% in steps of 20%. Reducing the density,
d, provides more flexibility in mapping synthesized
functions onto defective crossbars, but tends to increase
the number of logic blocks required to implement the
entire circuit.

An experiment consisted of 50 compilation attempts with
the same set of experimental parameters (defect probability,
maximum function inputs, cluster packing density). Each
compile used a different pattern of random defects when the
defect probability was non-zero. There were three possible
outcomes of a single compilation.

(1) The application was successfully placed and routed on the
target.

(2) Compilation failed because of insufficient resources
within at least one logic block for allocating a logic
function. This occurred when there were too many defects
for the allocation algorithm to find a legal configuration.

(3) Compilation failed because of an insufficient number of
logic blocks to hold all synthesized logic functions for the
application. This could only occur with a cluster packing
density of less than 100%.

4.2. Compilation

For compilation we used the Xax hardware compiler [19, 20]
which compiles programs written in a subset of the C language

886

48 28 56

—

Figure 8. The size of the complementary/symmetry array used in
the experiments.

down to circuits. We added additional modules to handle
compilation onto various nanoscale targets, including those
built from the complementary/symmetry array. Xax is also
part of a larger design environment, called Nano, which
provides a testbed for creating hypothetical computing fabrics
out of mosaics of multiple types of tiles, compiling onto them,
and doing logic- and SPICE-level simulation of the resulting
circuits. Nano also allows us to inject random defects into our
modelled architectures.

Figure 9 is a screenshot of our design environment,
showing a half-adder circuit (written in C) compiled onto a
logic block augmented with a small routing block on the right.
The p-FET crossbar is coloured pink as in previous figures,
and the n-FET crossbar is coloured blue. Light grey crossbars
represent configurable switches. Junctions marked with red
‘X’srepresent ‘stuck open’ junctions that the mapping software
must avoid; in this particular case, 10% of the junctions in
all crossbars have been randomly marked as defective. The

CMOS-like logic in defective, nanoscale crossbars

defective junction

configured junction

Architecture: CMOSsmall
Hew Open Save SaveAs Zoomin Zoom Out
Tiles new =
] Gnat =
= |
input 1 Gy Dot
input 0 e input 1
P g — p
] phaset #'
D— sum B 1 input0
] snart
(e
2, c —» carry
*‘ o |+ 108 &
* we miouns (OB 2 — sum
i+ o + 0
TRt Ne | | 't
1 ng HEts 1 i f i
+ o s + 0n % = - . -
+od s o? | s i
o | Mossc | Schewas Semce | Probes |

Figure 9. A half-adder implemented in the complementary/symmetry array. Red X’s represent defective, ‘stuck-open’ junctions, and yellow
dots represent configured junctions. The half adder was compiled from C, using a resource allocation algorithm to avoid defective junctions.

f(A B) = AB

Y

Figure 10. Implementing a logic function (a NAND gate) in the complementary/symmetry array.

environment displays configured junctions with small yellow
circles, with the type of component created determined by the
type of crossbar that the junction resides in (n-FET, p-FET, or
switch).

The compiler front-end goes through a series of passes
to translate an algorithm to a circuit consisting of simple
logic gates and flip-flops. This circuit is then optimized
using SIS logic synthesis software [21] to create a more
efficient circuit built out of sum-of-product nodes and flip-
flops. This representation is nearly ideal for our purposes since
the complementary/symmetry array naturally implements an
inverted sum-of-products (AND-OR-INVERT) gate.

The implementation of an AND-OR-INVERT gate in the
fabric requires synthesis of an n-FET structure and p-FET
structure. The strategy for doing so may be understood by
analogy with conventional CMOS: for all possible input values,

the output of the gate must either

e pull the output line to V,,, or
e pull the output line to ground,

but never both at the same time (that would be a short from
Vaa to ground) and never neither (that would leave the output
floating). Since the p-FETs connect to V4, at least one p-
FET path must turn on for f(A, B, C), and at least one n-
FET path must turn on for f(A, B, C). In other words, the
functions implemented by the n-FET structure and the p-FET
structure are complements of each other. We use the output
from SIS to build the p-FET structure, inverting all of the
inputs (since p-FETs invert) and implementing each product
term with a single vertical chain of p-FETs, and then create
the final sum by ‘wired-ORing’ the products (figure 11). To
derive the n-FET structure, we take the function produced

887

G Snider et al

& Nano
Architecture: CMOSProcessarFabric
Mew Open Sawe Sasveds Zosmin Zoom Dut

A

§

s

e
23 32 22 32 2%

B
22 22 239 22 22

B B e e

cA+EAR

Open Comple Step Fun o Externsl

‘Application: nanolowpass.c

Figure 11. A portion of the experimental fabric configured with the microprocessor application. Junctions marked with red ‘x’s are
assumed defective; junctions with yellow dots are those which have been configured by the compiler.

by SIS, complement its output rather than its inputs, then
invoke SIS again to produce an optimized sum-of-products
representation of the complemented function. For example,
if SIS produced the function f(a, b, ¢), we would create the
function f(a, b, c¢) and use SIS to produce an optimized sum-
of-products implementation (figure 10). Each product term
of this result would be implemented with a single chain of n-
FETs, and the final sum would be ‘wire-ORed’ to the output
of the p-FET structure.

It is unfortunate that the number of products for a function
and its inverse are not generally the same, and the disparity
between the two can grow as the number of variables increases;
this puts a practical limit to the number of function variables
that we can handle for any given function. The compiler can
force SIS to respect an upper bound on the number of input
variables using the maximum function inputs parameter.

After producing the n-FET and p-FET structures for each
of the functions in our optimized circuit, we then group the
functions together into logic blocks to minimize the number
of arrays needed to implement the entire circuit. This process,
known as clustering, is implemented using a simple greedy
algorithm that groups functions together based on the number
of input and output signals that they share—the more signals
they have in common, the more attraction they share to the
same cluster. The experimental parameter cluster packing
density can be used to force sparser packing of gates within
a cluster, thereby generally increasing the number of clusters,
by limiting the percentage of resources within an array that are
available for allocation. The clusters are then placed into logic
blocks using simulated annealing.

888

Allocation of p-FETs, n-FETs and switches within a logic
block is done using a pruned exhaustive search algorithm,
described by Hogg and Snider [22].

Figure 11 shows an example of a compilation of the 4-bit
microprocessor onto the crossbar fabric. In this particular case,
6% of all junctions have been randomly marked defective (red
X’s). The compiler routes around the defects, implementing
logic functions by allocating working junctions (yellow dots)
and wires.

4.3. Experimental results

The raw experimental results are shown in figure 12. Each
graph shows the results of compiling the application onto
the fabric with function inputs limited to 10, 8, 6 and 4. A
single data point on a graph corresponds to 50 compiles of
the application onto the target fabric with the parameters that
distinguish it (defect probability, maximum function inputs,
cluster packing density). Within a single graph, the effects
of different cluster packing densities are shown as separate
curves. If a graph is missing a curve for a particular cluster
density (such as for densities less than 1.0 for 10 inputs)
it is because there were insufficient resources in that case
for the compiler to successfully map the application. Note
that cluster packing densities less than 1.0 will tend to cause
the implementation to ‘spread out’ in space, requiring more
clusters (and logic blocks to contain them); hence the number
of clusters required for each packing density is also shown in
parentheses.

Compilation time for successful compiles was largely
independent of defect rate, cluster density, and function inputs.

CMOS-like logic in defective, nanoscale crossbars

2 8
L1 1

60 —

% successful compiles
1

100
10 inputs i 8 inputs
cluster density = 1.0 o0 6
(17 clusters) 407 cluster density = 1.0 (18)
A a (10 clusters)
20
07T 6 8 10 12 w 16 18 20 0 2 4 65 8 10 12 14 16 18 20
% defects % defects
100
6 inputs 8- 4inputs
60
cluster density = 1.0 0 : o e
il A (12 clustrs)
0 -

% successful compiles
g

2 4 6 g 10 12 14 16 18 20
% defects

2 4 6 8 M 12 14 16 18 20
% defects

Figure 12. Exploration of mapping a 4-bit microprocessor onto a nano compute fabric, varying the defect density in the fabric and the

mapping parameters (cluster density, maximum function inputs).

Table 1. Typical breakdown of time spent in each compiler pass.

Compiler pass Time (s)
Parsing 1.0
Translation 1.0
Optimization 0.4
Synthesis (SIS) 18.6
Technology mapping 0.1
Clustering/placement 41.3
Resource allocation 5.1
Routing 5.0

Table 1 shows a typical breakdown of time spent on each of
the compiler passes for the experiments. Note that only the
final two passes of the compiler were dependent on a specific
configuration of defects.

The application was also mapped, using SIS, to 4-
input lookup tables (LUTs) as are commonly found in field-
programmable gate arrays (FPGAs). The mapping required
95 LUTs.

4.4. Analysis and discussion

To compare the compilation results for different mapping
parameters at different defect rates, we made the simplifying
assumption that the area required by any single mapped circuit
was proportional to the number of clusters generated by the
compiler for that case. This is crude but will certainly be true
to first order, especially given the small size of the generated
circuits (between 10 and 31 clusters).

The ‘optimal’ choice of the mapping parameters (cluster
density, function inputs) for a given defect rate was chosen
from the graphs in figure 12 by selecting the parameter tuple
that yielded the smallest area while still successfully compiling
all 50 attempts. The results are in shown in figure 13. It
is interesting that the area required was largely independent
of the function inputs parameter, up to a defect rate of

3.0 —
6 inputs

20 4 inputs

relative area
|

YT ginpus

% defects

Figure 13. Area required as a function of defect rate, using the
‘best” mapping parameters for that rate.

about 6%. One might expect a larger number of function
inputs to produce fewer functions, thus requiring less area.
Although fewer functions are indeed produced in that case, the
disparity between the sizes of each function’s n-FET and p-
FET networks makes them more difficult to pack into clusters,
negating some of their potential area advantages. Beyond a
defect rate of 6%, fewer function inputs generally produced a
smaller area penalty.

By making some very rough estimates, we may
compare these results with a conventional FPGA. If we
assume 30 nm centre-to-centre spacing of nanowires, then
a complementary/symmetry logic block occupies about
10~'" m?. If we multiply this by a factor of 5 to account for
the routing network, a factor of 10 to account for configuration
overhead, and another factor of 10 for the 10 arrays needed
for the application, this results in a total area for the circuit of
about 5 x 107 m2. If we assume that an FPGA (using present
technology) can pack 100000 LUTs (and the supporting
routing network) onto a 2 cm x 2 cm die, then the 95 LUTs
for this application would require an area of approximately

889

G Snider et al

Metal nanowires
(gates)

Metal nanowires

(switches)
Swich ~——"
Interlayer

P semiconductor

\\nanowires

N semiconductor

\{nowires

Transistor
Interlayer

Figure 14. If the same interlayer can be used for both p-FET and n-FET arrays, then three layers of wires can be separated with two
different interlayers. Each interlayer between adjacent planes would be uniform, eliminating the need for interlayer regions.

4 % 1077 m?. The nano crossbar implementation under these
assumptions would thus be about 100 times denser than the
FPGA.

The study we have done here is only a starting point due
to a number of limitations and assumptions.

(1) Only one application, which may not be representative,
was mapped onto a single target, which was not optimized.

(2) We have assumed that defects in nanowire/nanowire
junctions are uniformly distributed throughout the fabric,
neglecting any defect clustering. We have also assumed
that nanowire/microwire junction defects are negligible.

(3) We have presumed that all junction defects may be found
prior to compilation using tests that run in a reasonable
amount of time.

(4) Only ‘stuck-open’ defects were considered; ‘stuck-
closed” and other defects such as open or shorted
nanowires were ignored.

(5) We have not addressed transient faults or other electrical
issues.

5. Fabrication issues

One challenge in the layout of the complementary/symmetry
array shown in figure 4 is the need to create different regions
within the interlayer with different chemical compositions.
For example, the n-FET region is likely to require a
different separating chemical layer than the configurable
switch regions. This can likely be accomplished through
lithographic processes, and the resulting structure will be
tolerant of errors in registration or alignment as long as the
wires and junctions can be analysed for defects.

Another possibility presents itself if the same chemical
interlayer can be used for both the p-FET and n-FET regions.
This is at least plausible—the interlayer in both cases may be
nothing more than a thin oxide insulator separating the gate
from the FET channel in each junction. In this scenario, the
complementary/symmetry array and other structures described
in this paper can be implemented using three parallel planes of

890

wires, with adjacent planes separated by a uniform interlayer
(figure 15) [18]. This would eliminate the need for multiple
interlayer regions at the cost of an additional interlayer and an
additional plane of wires.

6. Summary

Configurable crossbars of n-FETs and p-FETs may be
combined with configurable switch arrays to create a
composite structure capable of implementing AND-OR-
INVERT gates. Such gates are powerful enough to implement
general computation. We have shown how these structures can
be combined with routing to create general compute fabrics.
The uniformity and redundancy of crossbars makes
possible defect tolerance. Resource allocation algorithms
can be used to allocate junctions for logic gates in the
presence of defects, and simple routing algorithms can be
used to interconnect them. The single interlayer version of
these structures is tolerant of variations in layout of different
interlayer regions—different regions do not need to be sharply
defined nor of the same size as long as the resulting system can
be characterized. The double interlayer version is simpler in
that each interlayer is homogeneous with no need for different
regions, but requires an additional wire layer and interlayer.

References

[1] Chen Y, Jung G, Ohlberg D, Li X, Stewart D, Jeppesen J,
Nielsen K, Stoddart J and Williams R 2003 Nanoscale
molecular-switch crossbar circuits Nanotechnology 14
462-8

[2] DeHon A 2003 Array-based architecture for FET-based
nanoscale electronics IEEE Trans. Nanotechnol. 2 23-32

[3] Stan M, Franzon P, Goldstein S, Lach J and Ziegler M 2003
Molecular electronics: from devices and interconnect to
circuits and architecture Proc. IEEE (November) 1940-57

[4] Goldstein S and Budiu M 2001 Nanofabrics: spatial
computing using molecular electronics ISCA: Proc. 28th
Int. Symp. on Computer Architecture

[5] Kuekes P J, Williams R S and Heath J R 2000 Molecular wire
crossbar memory US Patent Specification 6,128,214 (issued
October 3)

CMOS-like logic in defective, nanoscale crossbars

(6]

(7]

(8]

(9]
[10]

(11]

[12]

[13]

Kuekes P J, Williams R S and Heath J R 2001 Molecular-wire
crossbar interconnect (MWCI) for signal routing and
communications US Patent Specification 6,314,019 (issued
on November 6)

Chen Y and Williams R S 2003 Configurable nanoscale
crossbar electronic circuits made by electrochemical
reaction US Patent Specification 6,518,156 (issued
February 11)

Luo Y et al 2002 Two-dimensional molecular electronics
circuits Chem. Phys. Chem. 3 519-25

Kuekes P 2003 Molecular crossbar latch US Patent
Specification 6,586,965 (issued July 1)

Tans S J, Verschueren A R M and Dekker C 1998
Room-temperature transistor based on a single carbon
nanotube Nature 393 6680

Avouris P, Hertel T, Martel R, Schmidt T, Shea H R and
Walkup R E 1999 Carbon nanotubes: nanomechanics,
manipulation, and electronic devices Appl. Surf. Sci. 141
201

Nygard J, Cobden D H, Bockrath M, McEuen P L and
Lindelof P E 1999 Electrical transport measurements on
single-walled carbon nanotubes Appl. Phys. A
69 297

Guo L J, Krauss P R and Chou S Y 1997 Nanoscale silicon
field effect transistors fabricated using imprint lithography
Appl. Phys. Lett. 71 1881

[14]
[15]
[16]
[17]

[18]

[19]

[20]

[21]

[22]

Kuekes P J and Williams R S 2003 Molecular wire transistor
(MWT) US Patent Specification 6,559,468 (issued May 6)

Huang Y, Duan X F, Cui Y, Lauhon L J, Kim K H and
Lieber C M 2001 Logic gates and computation from
assembled nanowire building blocks Science 294 1313

Heath J and Ratner M 2003 Molecular electronics Phys. Today
(May) 43-9

Packen P 1999 Pushing the limits Science 24 2079

Williams S and Kuekes P 2001 Demultiplexer for a molecular
wire crossbar network US Patent Specification 6,256,767
(issued July 3)

Snider G, Shackleford B and Carter R 2001 Attacking the
semantic gap between application programming languages
and configurable hardware Proc. ACM/SIGDA Int. Symp. on
Field Programmable Gate Arrays (Monterey, CA, Feb.
2001)

Snider G 2002 Performance-constrained pipelining of software
loops onto reconfigurable hardware Proc. ACM/SIGDA Int.
Symp. on Field Programmable Gate Arrays (Monterey, CA,
Feb. 2002)

Sentovich E et al 1992 SIS: a system for sequential circuit
synthesis Technical Report Memorandum No. UCB/ERL
M92/41 University of California, Berkeley

Hogg T and Snider G 2004 Defect-tolerant logic in
reconfigurable crossbars /[EEE Trans. Nanotechnol. to be
submitted

891

