Yan Lin, Weekly report 07/05/05 General concept on fault tolerant computing

Measures of Fault-Tolerant Computing i) Dependability: - a qualitative description that encompasses the terms above and reflects the overall quality of service.

ii) Reliability: R(t) -- the probability that a system will function properly over the time interval 0... t. (Typical spacecraft requirement R(10 years) = 0.95, aircraft requirement R(10 hours = .999999999)

iii) Availability: A(t) -- the probability that a system is operating correctly and able to perform its function at time t. (Sometimes expressed differently -- maximum downtime in an interval, e.g. telephone system < 10 minutes in 40 years.)

iv) Performability: P(L,t) the probability that a system will perform at or above some level L at time t. (Example a large network.)

v) Maintainability: M(t), the probability that a failed system can be restored to working condition within time t.

vi) Testability: – the ability to test a system; often measured in test coverage (the percentage of faults of a given class that can be uncovered by the test procedure).

vii) Safety: S(t) -- the probability that a system will either perform its functions correctly or fail in a benign way. (Example, a nuclear power plant).

Basic hardware redundancy techniques

i) Replicate and Vote

Hardware -Implemented Triple Modular Redundancy (TMR)

ii) Duplicate and Compare

Duplex Self-Checking Approach (Stratus)

Computers run same programs in lockstep. If one pair internally disagrees, the other pair takes over immediately.

iii) Check and Replace (Standby Redundancy)

Active Hardware Redundancy - Detect error, remove fault, reconfigure, and recover state

basic operation of an active approach to fault tolerance

The Carter Self-checking Checker

Inputs		Normal	Outputs C2C1 Resulting from Single Stuck-at-1 Faults																	
B2B1	AZAI	Output	a	b	c	d	ė	ſ	g	h	i	j	k	1	m	n	0	p	9	r
01	01	10	11	10	11	10	10	10	10	10	10	11	11	10	10	00	10	10	10	11
01	10	01	11	01	01	11	11	01	01	11	01	01	01	01	01	01	00	01	11	01
10	01	01	01	11	11	01	01	11	11	01	01	01	01	01	01	01	01	00	11	01
10	10	10	10	11	10	11	10	10	10	10	11	10	10	11	00	10	10	10	10	11
Inputs		Normal	Outputs C2C1 Resulting from Single Stuck-at-0 Faults																	
B2B1	A2A1	Output	a	b	с	d	e	f	g	h	i	j	k	1	m	n	0	p	9	r
01	01	10	10	00	10	00	10	10	00	00	10	10	10	10	10	10	11	11	00	10
01	10	01	01	00	00	01	01	01	01	01	00	00	01	01	11	11	01	01	01	00
10	01	01	00	01	10	. 00	01	01	01	01	01	01	00	00	11	11	01	01	01	00
10	10	10	00	10	00	10	00	00	10	10	10	10	10	10	10	10	11	11	00	10

Assembly of n-input dual-rail signal comparison checker from basic two-input elements

Self-checking circuit that duplicates and compares using a tree of Morphic And gates as below

Input protection

Basic Modeling

R(t) = probability the system does not fail before time t, i.e., starting at t=0 the system provides acceptable service at least until time t.

If one was to create N identical systems, put them into service at t=0 and at time t group them into two subsets N_{μ} (those still working) and N_{f} (those that have failed) then:

 $N = N_0 + N_f$, and in the limit as N goes to infinity

 $R(t) = \frac{N_g(t)}{N_g(t) + N_f(t)} = N_g(t)/N = 1 - N_f(t)/N \text{ and Unreliability } Q(t) = 1 - R(t) - N_f(t)/N = 1 - N_g(t)/N$

 $dR(t)/dt = d(1 - N_f(t)/N)dt = -(1/N) dN_f(t)/dt$ - this will decrease as a function of time because modules that hailed cannot fail again.

We define the hazard function, or hazard rate, or failure rate function as dR(t)/dt

 $z(t) = (1/N_0(t)) dN_f(t)/dt = (1/N_0(t)) (-N) dR(t)/dt = \frac{1}{R(t)}$ where N_0(t) is the number of nodes remaining operational

This is the instantaneous rate (per module) that failures are occurring among the remaining working modules.

A non-redundant system with Constant Failure Rates

The Reliability function for Non-Redundant Systems

 $d\mathbf{R}(t)/dt = -z(t) \mathbf{R}(t)$ if we assume that the failure rate is a constant λ then

 $d\mathbf{R}(t)/dt = -\lambda \mathbf{R}(t)$ which has the solution

 $\mathbf{R}(\mathbf{t}) = \mathbf{e} \cdot \lambda \mathbf{t}$

and if there are several independent components, all of which must work:

 $R(t) = R1(t) * R2(t) * R3(3) ... * Rm(t) then R(t) = e -\lambda 1t * e -\lambda 2t * e -\lambda 3t * ... * e -\lambda mt$

or $\mathbf{R}(t) = \mathbf{e} \cdot (\lambda 1 + \lambda 2 + \lambda 3.. + \lambda \mathbf{m})t$ You just add the failure rates of the internal components

The constant failure rate is commonly used for most reliability modeling.

It's a reasonable approximation to reality and it is mathematically tractable.

r

Mean Time to Failure: MTTF

$$MTTF = \sum_{i=1}^{N} \frac{t_i}{N}$$

The MTTF can be calculated by finding the expected value of the time of failure. From probability theory, we know that the expected value of a random variable, X, is

$$E[X] = \int_{-\infty}^{\infty} x f(x) dx$$

where f(x) is the probability density function. In reliability analysis we are interested in the expected value of the time of failure (MTTF), so

$$MTTF = \int_{-\infty}^{\infty} tf(t)dt$$

$$= -\int_{0}^{\infty} t \frac{dR(t)}{dt} dt = \left[-tR(t) + \int R(t)dt\right]_{0}^{\infty} = \int_{0}^{\infty} R(t)dt$$

MTBF is simply the integral of the reliability function from 0 to infinity, and for non-redundant systems:

 $\int_{0}^{\infty} e^{-\lambda t} = \frac{1}{\lambda}$

1.1 Basic Concepts of Combinational Reliability Models

For statistically independent events P(A and B) = P(A) * P(B)

Given a system of n modules: M(1), M(2), M(3), ...M(n),

and a reliability for each module: R(1), R(2), R(3),...R(n) where R(i) is the probability the ith module is OK

We perform an experiment to see which state the system is in.

There are 2ⁿ possible outcomes:

To determine the reliability of a redundant system simply sum the probabilities of being in a working configuration.

If the system can tolerate two module failures, add the first three probabilities

P(S1-all work) + P(S2-all but one work) + P(S3-all but two work) etc.

The Concept of Coverage

Coverage "c" is defined as the conditional probability, given that a fault occurs, that the system will be able to recover from it.

It is a measure of the "goodness" of the fault-tolerance features of a system. We shall see that it is the most important (sensitive) parameter in determining the reliability of fault-tolerant systems.

UCLA

Expanding the combinational models to include coverage:

Going back to the basic concept of listing outcomes and summing those that correspond to a working system:

For all cases where an active computer fails there are now two cases -- one multiplied by c -- the probability of correct recovery and one multiplied by (1-c) the probability of incorrect recovery. Only the correctly recovered outcome can be counted.

This gets a bit complicated since failures of spares that are never called upon to replace active units have no coverage associated with their failure.

Consider a system with one active units and two spares: (The left unit starts as the active unit and spares are selected for replacement going from left to right.)

R = p(WWW) + c*p(FWW) + p(WFW) + p(WWF) + p(WFF) + c*p(FWF) + c*c*p(FFW)]

of course p(FFF) is excluded but what are the assumptions in including p(FFW)?

MARKOV MODELS

Dents Dens Dens A

CONSIDER OUR NON-REDUNDANT SYSTEM:

$$R(t+dt) - R(t) = -R(t) * \lambda dt$$

$$\frac{dR(t)}{dt} = -\lambda * R(t) \Rightarrow R(t) = e^{-\lambda t}$$

LET'S EXTEND THIS TO A SUBSYSTEM WITH 3 MODULES

UCLA

S0: ALL THREE MODULES WORK

- S1: ONE HAS FAILED, TWO WORK
- S2: TWO HAVE FAILED, ONE WORKS
- S3: ALL HAVE FAILED

Yields the following State Diagram

