Yan Lin, Weekly report 07/05/05
Genera concept on fault tolerant computing

Measures of Fault -Tolerant Computing
i) Dependability: - a qualitative description that encompasses the terms above and reflects the
overall quality of service.

ii) Reliability: R(t) -- the probability that a system will function properly over the time interval
0.. t. (Typica spacecraft requirement R(10 years) = 0.95, aircraft requirement R(10 hours
=.999999999)

iii) Availability: A(t) -- the probability that a system is operating correctly and able to perform its
function at time t. (Sometimes expressed differently -- maximum downtimein aninterval, e.qg.
telephone system < 10 minutes in 40 years.)

iv) Performability: P(L,t) the probability that a system will perform at or above some level L at
timet. (Example alarge network.)

v) Maintainability: M(t), the probability that a failed system can be restored to working condition
withintimet.

vi) Testability: — the ability to test a system; often measured in test coverage (the percentage of
faults of agiven classthat can be uncovered by the test procedure).

vii) Safety: S(t) -- the probability that a system will either perform its functions correctly or fail in
abenignway. (Example, a nuclear power plant).



Basic hardware redundancy techniques
i) Replicate and Vote
Hardware-Implemented Triple Modular Redundancy (TMR)
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i) Duplicate and Compare
Duplex Self-Checking Approach (Stratus)
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Backup

Computers run same programs in lockstep. If one pair internally disagrees, the other pair takes

over immediately.
iii) Check and Replace (Standby Redundancy)
Active Hardware Redundancy — Detect error, remove fault, reconfigure, and recover state

basic operation of an active approach to fault tolerance

Nermal Degraded
Bal Operation Operation
— L
Fault
Occurs
¥ Y
Error Fault Detection
Qceurs and it
A N y
System R
Failure - and Recovery



The Carter Self checking Checker
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Table 3-12. TSC dual-rail comparator responses o stuck-ai-faulis.
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Assembly of n-input dual-rail signal comparison checker from basic two -input el ements

/..—Dual-rail signals for comparison
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Self-checking circuit that duplicates and compares using atree of Morphic And gates as below
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Using Complementary Logic to Detect Common Faults in a Duplicated System

Functional circuit Duplicate complementary circuit
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Basic Modeling

I{t) = probability the system does not fail before time t. f.e. starting at t=0 the system
provides acceptable service at least until tirme t.

IF ome was to create ™ identical systems, put them o service at =0 and at time © group them inta
twir suhseis \':z (those still working) and N { these that have failed ) then:

M= and in the limit as N goes (o infinity
Nl

Rit) = crmmmmmeeeceee = Bt = 1= Mt)™ and Unveliabilivy ity =1 - Rioy=N0i™ = 1 - Nites
MoltHN )

dReyde = dil - Ndtp™pde = - (1) dNgtyde - this will decrease as a function of time because
msdules that hatled cannot fanl agzam.

We define the hazard Tunction, or Bazard vale, or filure rate Tunction as
dReydi
et = (UN(e) dNdehide= (0N iy N dRoyde = —-——- whene Mgt is the number of
Rith nodes remaining operational

This is the instantaneous rate (per moduale) that wilures are vccarring ameng the remaining

working muodules. .

A non-redundant system with Constant Failure Rates

The Reliability function for Non-Redundant Systems

dR(t)/dt = -z(t) R(t) if we assume that the failure rate is a constant A then

dR(t)/dt = - L R(t) which has the solution
R(t) = e At
and if there are several independent components, all of which must work:
R(t) = RI(t) * R2(t) * R3(3) ..* Rm(t) then R(t) =e-Alt *e A2t * e A3t % . % e Amt

or R(t)=e - (A 1+.243..fum)t You just add the failure rates of the internal
components

The constant failure rate is commonly used for most reliability modeling.

It’s a reasonable approximation to reality and it is mathematically tractable.



UCLA
Mean Time to Failure: MTTF

MTTFE = -
i= I
The MTTF can be calculated by finding the expected value of the time of
failure. From probability theory, we know that the expected value of a random
variable, X, is

E[X)= j " xftdx

where fix) 1s the probability density tunction. In reliability analysis we are inter-
ested in the expected value of the time of failure (MTTF), so

MTTF = J” it

—_[f dR(t)

dt =| tR{t)+_[R(t)dr | J'R(f)dz

MTRBEF is simply the integral of the reliability function from 0 to infinity, and
for non-redundant systems:

1.1 Basic Concepts of Combinational Reliability Models
For statistically independent events P(A and B) = P(A) * P(B)
Given a system of n modules: M(1), M(2), M(3), ...M(n),
and a reliability for each module: R(1), R(2), R(3)....R(n)
where R(i) is the probability the ith module is OK
We perform an experiment to see which state the system is in.

There are 2" possible outcomes:

WW, W WOW P(S1) = R(1) *R@)* v *R(n-1)  *R(n)
WWW.uW.F P(S2) = R()*R2)* . *R(n-1)  * (1-R(n))
WW,W....F W P(S3) = R(l) *R2)* v *(1 R(n-1)) * R(n)
F, F.F.....F,F P(S2) =(1-R(1)) * (1- R(zm *(l-R(n-lJ)*[l-R(n}]

To determine the reliability of a redundant system simply sum the probabilities
of being in a working configuration.
If the system can tolerate two module failures, add the first three probabhilities

P(S1-all work) + P(S2-all but one work) + P(S53-all but two work) etc. -

The Concept of Coverage

Coverage“c” isdefined as the conditional probability, given that a fault occurs, that the system
will be able to recover fromiit.

Itis ameasure of the “goodness’ of the fault -tolerance features of asystem. We shall seethat itis
the most important (sensitive) parameter in determining the reliability of fault-tolerant systems.



Expanding the combinational models to include coverage:

Going back to the basic concept of listing outcomes and summing those that correspond to a
working system:

WW WL WW P(ST) = R(1) * R(2) < Rin-1)  * Rin)
WWW....WEF P(52) = R(H*R2D)* ... * R(n-1) * (1-R(n))
WWW. L FW PB3) = R(D*R2)* ..it® (1-R(n-1)) * R(n)
F, I'F F.F  P(52" =(1-R(1) * (1-R2))*...*(1-R(n-1)) * (1-R(n))

For all cases where an active computer fails there are now two cases -- one multiplied by ¢ -- the
probability of correct recovery and one multiplied by (1-c) the probability of incorrect recovery.
Only the correctly recovered outcome can be counted.

This gets a bit complicated since failures of spares that are never called upon to replace active
units have no coverage associated with their failure.

Consider a system with one active units and two spares: (The left unit starts as the active unit
and spares are selected for replacement going from left to right.)

R — p(WWW) + c*p(FWW) + p(WEW) +p(WWE )+ p(WFF) + ¢*p(FWE) + c*c*p(FFW)]

of course p(FFF) is excluded but what are the assumptions in including p{FFW)?
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CONSIDER OUR NON-REDUNDANT SYSTEM: LET'S EXTEND THIS TO A SUBSYSTEM
WITH 3 MODULES
R(t+dt)-R(t) =-R(t)* X dt
S0: ALL THREE MODULES WORK

dR(t) Lol St S1: ONE HAS FAILED, TWO WORK
————————— =- L R(t) » R(t)=e

: $2: TWO HAVE FAILED, ONE WORKS
$3: ALL HAVE FAILED

Yields the following State Diagram
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