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Abstract—Two approaches to high throughput processors are Chip Multi-Processing (CMP) and Simultaneous Multi-Threading

(SMT). CMP increases layout efficiency, which allows more functional units and a faster clock rate. However, CMP suffers from

hardware partitioning of functional resources. SMT increases functional unit utilization by issuing instructions simultaneously from

multiple threads. However, a wide-issue SMT suffers from layout and technology implementation problems. We use silicon resources

as our basis for comparison and find that area and system clock have a large effect on the optimal SMT/CMP design trade. We show

the area overhead of SMT on each processor and how it scales with the width of the processor pipeline and the number of SMT

threads. The wide issue SMT delivers the highest single-thread performance with improved multithread throughput. However, multiple

smaller cores deliver the highest throughput. Also, alternate processor configurations are explored that trade off SMT threads for other

microarchitecture features. The result is a small increase to single-thread performance, but a fairly large reduction in throughput.

Index Terms—SMT, layout area estimation, processor architecture, microarchitecture trade off.
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1 INTRODUCTION

RECENT advances in VLSI have created challenges to
continuing the current processor evolutionary trend.

The smaller minimum technology spacing allows more
system integration. However, most programs lack the
instruction level parallelism to take advantage of the
increased number of functional units. In addition, modern
processors have deeper pipelines and larger relative
latencies for memory accesses and routing delays. Two
techniques to solve some of these problems are Chip Multi-
Processing (CMP) and Simultaneous Multi-Threading
(SMT). However, most current research efforts ignore the
impact of silicon implementation on the performance trade
off of CMP and SMT.

SMT issues instructions to functional units simulta-
neously from multiple threads. This creates horizontal and
vertical sharing, which increases throughput through
thread-level parallelism and tolerates processor and mem-
ory latencies to increase processor efficiency. The problem
with a large SMT is that layout blocks and circuit delays
grow faster than linear with issue width. In addition,
multiple threads share the same level-1 cache, TLB, and
branch predictor units, which causes contention. The
resulting increase in cache misses and branch mispredict
rates limits performance.

On the other hand, CMP increases layout efficiency,
resulting in more functional units within the same silicon
area plus faster clock rates [16]. The problem with CMP is
that the hardware partition of on-chip processors restricts

performance. The hardware partition results in smaller
resources since the level-1 caches, TLBs, branch predictors,
and functional units are divided among the multiple
processors. Hence, single-threaded programs cannot use
resources from the other processor cores and the smaller
level-1 resources per core cause increased miss rates.

Consequently, we evaluate the Parallel On-chip Simulta-
neous Multithreaded processor (POSM), which is a combi-
nation of CMP and SMT. Hence, it still has the
CMP advantages of more functional units and a faster
clock than a wide-issue processor. The addition of SMT
increases the efficiency of the underlying CMP. However, a
wide-issue SMT has a microarchitectural advantage because
there is no hardware partition between processor resources.

Fig. 1 shows an example of the different types of
processors: superscalar, SMT, CMP, and POSM. Each box
represents a potential issue to a functional unit. Processors
with a faster clock have more rows of instruction, while a
wider issue width has more columns for more functional
units. The superscalar processor has low functional unit
utilization due to data dependencies, functional unit
dependencies, branch mispredictions, and cache misses.
Hence, there are numerous empty issue slots where a
functional unit goes unused for a cycle. SMT has the highest
functional unit utilization as there are typically a number of
instructions from independent threads vying to access the
functional units. The CMP has the same poor utilization as
the superscalar, but it has more functional units and a faster
clock due to the improved layout efficiency. Merging CMP
and SMT combines the advantages and disadvantages of
both the individual techniques.

In this paper, we perform a detailed area estimate using
routing and transistor level layout information to create
four processor configurations using comparable silicon
resources. We also perform a clock rate estimation using
circuit simulation and delay estimates. We then run cycle
accurate simulations on four processor microarchitectures
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to evaluate performance. The results show that area and
system clock effects give an advantage to the smaller cores.
In addition, the SMT overhead is larger for the wide
dispatch cores because SMT increases components that
grow superlinear with the processor pipeline width.

The remainder of this paper is organized as follows:
Section 2 discusses related work. Section 3 shows the base
CPU architecture used in this study. Section 4 describes the
simulation methodology. Section 5 compares the perfor-
mance of the different POSM, SMT, and CMP and CMP/
SMT configurations using three different assumptions:
equivalent execution resources, equivalent silicon area,
and including system clock effects. Section 6 shows the
resource utilization under each configuration. Section 7
gives the conclusions and summarizes the results.

2 Related Work

Prior research on SMT showed the advantages of latency
tolerance and exposing parallelism through horizontal
sharing [8], [13], [22], [23]. A wide-dispatch SMT was also
compared to a CMP and found to have substantially higher
throughput. These studies assume “equivalent execution
resources” and demonstrated the advantages of horizontal
sharing over the hardware-partitioned approach of CMP.
The area impact from adding SMT was assumed to be
negligible and was ignored in the results. The faster clock
rate of a CMP was acknowledged, but was also not
included in the results.

Additional research combined SMT and CMP [11]. The
results showed that the combination of SMT and CMP
achieved nearly the same performance as a wide-dispatch
SMT, but assumed that the faster clock rate of the smaller
CMP core would result in higher throughput. This paper
also assumed “equivalent execution resources” and used a
simple frequency scaling to adjust the clock rate. We add
area effects and perform a detailed circuit analysis that
results in a substantially smaller frequency penalty.

The area effect of larger processor core layout structures
was shown in the Hydra [16]. A 4-core, 2-dispatch CMP was
found to be equal in area to a 6-dispatch superscalar, rather
than the 8-dispatch processor when using equivalent
execution resources results (4-cores multiplied by 2-dis-
patch). The wider total dispatch width of the CMP was

shown to provide higher throughput. This effort concen-
trated on CMP versus superscalar and did not look at SMT.
System clock effects are mentioned, but are not included in
the results.

Area estimates were also made on SMT processors [3].
The area overhead of SMT was shown to be substantial for
eight threads, but provided a higher throughput than
alternative microarchitecture techniques. The layout over-
head of SMT is in addition to the overhead of the larger
processor core of a wide-dispatch processor.

Detailed circuit delay and area calculations were shown
in [17]. The results showed the impact of increasing relative
wire delays in larger designs, as well as the impact of larger
layout structures to critical paths. Our work extends the
analysis to SMT.

Detailed layout area evaluations were performed on
SMT processors, but not CMP [3], [5].

The power dissipation of SMT was also explored [20].
This compared SMT to superscalar and found the SMT had
higher power efficiency. However, the power efficiency of
the smaller, more efficient layout of the CMP core remains
unexplored.

This research combines all of the above techniques,
except for power dissipation, which is reserved for future
research. If an SMT processor is compared with a CMP,
then both the area and clock cycle effects of the underlying
processor cores must be taken into account. Ignoring the
area effects of a smaller core gives a large advantage to the
wide-issue processor. Including the SMT layout overhead
increases the area impact by increasing structures that grow
much faster than the dispatch width. Ignoring the system
clock effect also gives a large advantage to the wide-
dispatch processor, while simply scaling the clock and
ignoring microarchitecture enhancements gives a large
advantage to the smaller CMP cores. The accuracy of the
results then depends on the accuracy of the layout estimates
and clock cycle analysis.

3 PROCESSOR MICROARCHITECTURE

CONFIGURATION

The base processor we are using for this research is derived
from the MIPS R10000 [1], [25]. We extend the R10000 by
increasing its functional unit resources to create the wider
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Fig. 1. CMP/SMT combinations trade microarchitecture efficiency for layout efficiency (more functional units and a faster clock, but less sharing).



dispatch processors and then add SMT threads. Note that
there are an unlimited number of possible configurations
that could be tried. However, we maintain the processor
configurations as close as possible to the prior research
efforts [8], [11], [13], [22], [23]. These prior SMT/CMP
papers also used a fixed pipeline. We attempt to maintain
the same pipeline except where forced to add a pipeline
stage due to excessive growth in critical path delay. We also
maintain a maximum limit of eight SMT/CMP threads to be
comparable to prior research.

The SMT processor notation is taken from [22]:
SMT.1.8 corresponds to an SMT processor with a single
cache-line fetch and eight threads. However, we add two
additional parameters to identify the various processor
configurations under study: the processor pipeline re-
source width and the number of on-chip processors.
Hence, we have ARCH.pW.fX.tY.dZ, where ARCH is the
type of microarchitecture (CMP, SMT, or POSM), pW is
the number of on-chip processor cores, fX is the number
of fetched cache-lines per cycle, tY is the number of
threads, and dZ is the processor pipeline resource width.
The pW parameter is the total number of cores per
processor, while the fX, tY, and dZ parameters are per
processor core.

The rest of this section details the calculations used to
configure the processor for equal resources, equal area, and
equal clock cycle. Both the layout area and circuit delays are
based on a 0.18�m (2000 technology). The reader may skip
the rest of Section 3 on the first pass through this paper and
return for the detailed calculations.

3.1 Defining the Four Processor Configurations
with Equivalent Execution Resources

The POSM.p4.f1.t2.d4 has four processors (p4), a single
instruction fetch port (f1), two SMT threads (t2), and a four
wide dispatch width (d4). The POSM.pr.f1.t2.d4 is based on
a MIPS R10000 with the addition of an SMT thread. The
other processor configurations are assumed to have an
equivalent total set of execution resources. Hence, a
processor with half the number of CMP cores has twice
the functional unit resources within each core. The entire
processor resources are scaled linearly, as done in prior
research [8], [11], [13], [22], [23]. This approach appears to
be a fair comparison since each processor configuration has
an equal number of functional units. However, it ignores

the fact that implementation of multiple interconnected
functional units take substantially more silicon area.

There were also several changes made to the base
POSM.p4.f1.t2.d4 processor to improve performance be-
yond the R10000. The level-2 TLB is increased by a factor of
4 because SMT places more pressure on the TLB unit. Also,
a single level of larger private resources, such as a large first
level TLB with no second level TLB, increases resource
partitioning which would reduce performance. A smaller
level-1 resource backed by a large, shared second-level
resource allows more flexibility for resource sharing.

The branch predictor was originally a simple branch
target buffer (BTB), but was changed to a gshare unit by
adding a 1K pattern history table (PHT). The R10000-d9 has
a wider issue rate and deeper pipeline, which results in a
higher branch mispredict penalty. Thus, the wide issue
processor makes use of the larger branch predictor
(4K PHT). The original 16MB level-2 cache was too large
to fit on-die in 0.18�m technology. So, an on-chip level-2
cache (512KB) is added to back up the level-1 cache and
reduce the load on the external bus. An additional pipeline
delay was added to the L2 for all the processor configura-
tions with more than one core. An additional pipeline delay
was added to the L2 for all the processor configurations
with more than one core to allow for arbitration and routing
delays. The original 16MB level-2 cache then becomes a
level-3 back-side cache.

The processor cores are stepped out across the die, while
only a single instance of I/O, miscellaneous, JTAG, L2 cache
interface bus, MESI cache coherence, and external interface
logic are needed. TheCMP cache coherent interface also adds
an extra pipeline stage. Table 1 shows the processor resources
for a trade based on equivalent execution resources.

3.2 Defining Processor Configurations with
Equivalent Silicon Resources

This section extends the SMT/CMP comparisons by using
equivalent silicon resources as the basis. All the processor
configurations are adjusted to be as close as possible in area
to the POSM.p4.f1.t2.d4, but rounded to a higher processor
resource width. We extrapolate the R10000 (originally
designed in 1996 0.35�m technology) to 0.18�m. We then
add SMT features to this design.

We calculate the SMT processor area by scaling the
individual layout blocks due to the increased number of
functional units and the addition of SMT threads [3]. The
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TABLE 1
Processor Configuration with Comparable Execution Units, but Unequal Silicon Area

This gives an advantage to the wide issue processor configurations.



register files and remapping tables are the most critical
layout blocks for SMT. The register file is a block that
increases by Oðd3Þ, where d is the dispatch width, because
the RAM cell grows in the X dimension due to the increased
number of ports and in the Y dimension because of the
added word lines and times the increased number of
renaming registers. The remapping tables, register files, and
instruction queue areas were calculated using a clustered
layout implementation. Clustering reduces the penalty
substantially for large register file arrays. However, this
does add a cycle penalty when bypassing between clusters.
SMT provides latency tolerance and will dispatch ready
instructions from other threads, so the associated perfor-
mance penalty will not be as large as in a single-threaded
processor. Hence, we assumed a 0-cycle intercluster bypass
penalty, giving the wide-dispatch SMT processor a slight
advantage.

Our area analysis started with layout from the R10000
and from custom layouts. Multiported RAM structures
were extrapolated, as shown in Fig. 2a and Fig. 2b. The
RAM cell grows in the X dimension with the addition of
data bit lines and in the Y dimension with additional
address lines. This results in an Oðn2Þ increase in the area of
the RAM cell with increasing issue width. Alternative
register file configurations are also possible to reduce area
for the wider issue processor cores, but there is an
associated impact to performance [19], [21].

Wevalidated our layout estimationmodel byusing a 256K
L2 cache and comparing with the Stanford Hydra (Table 2).
The starting layout size of the R10K is the same. The 6-wide
dispersal processor is 180mm2 versus 223mm2, which is
43mm2 or 19.3 percent more conservative. 10mm2 of this
difference is because we used 96 instruction queue entries
instead of 128 and 7mm2 because we round down when
adding the FP multiplier because this is an expensive unit.

Our estimates show that the superscalar.p1.f1.t1.d8, a
single core (p1), single instruction cache fetch (f1), single-
thread (t1), 8-dispatch wide pipeline (d8) processor can fit
within the same area that the Hydra assumed for a
6-dispatch processor. The 4-processor configurations are
within 4.3 percent. We believe the clustered register file and

the block-by-block layout estimate performed in this study

are more accurate for the wide dispatch processors [3]. In

any case, our estimates are more favorable for the wide

dispersal processors, allowing more functional units within

a fixed area for the larger cores.
Table 3 shows the processor core areas of the POSM

configurations assuming comparable silicon resources. Col-

umn 1 gives the name of the functional block. Column 2

shows the scaled 0.18�m MIPS R10K area per functional

block. The remaining columns show the SMT/CMP

processor configurations. Each configuration is shown

first with scalar cores and then with SMT added. The

CMP.p8 already has eight multiprocessors, so SMT is not

added. The subtotal for the total core processor is

multiplied by the number of CMP processors in Table 4

and added to the level-2 cache, I/O, and miscellaneous

overhead to arrive at the total chip area.
Table 5 gives the processor resources for the equivalent

silicon resource comparison. The POSM with four proces-

sors (POSM.p4.f1.t2.d4) is the baseline. The other processor

configurations are allowed to have equal or slightly larger

areas. The SMT overhead increases with the core size

because the larger register files and remapping tables grow

at a super linear rate. The issue width increases with the

number of CMP partitions because of the increased layout

efficiency of the smaller core processors.
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Fig. 2. (a) Single-instruction issue register file with single bit read lines. (b) Dual-instruction issue register file with single bit read lines increases in

both the X and Y dimensions for Oðn2Þ area increase.

TABLE 2
Silicon Area Estimates Are Conservative Compared with Prior
Research Area Estimates (Hydra), Especially for the Larger

Dispath Width (d6 = Six Instruction Wide Pipeline)



Table 6 shows alternate microarchitecture configurations

with nonequal layout area. The configurations in bold type

are the ones used in this study. The configurations below

them in italics have additional processor resources, but with

a corresponding area increase. Naturally, the configurations

with larger layout area would outperform the ones chosen

for this study as they have more processor resources. But,

this would not create an equal comparison. The

SMT.p1.f2.t8.dXX configurations show the area and func-

tional unit resources as the dispatch width is increased from

d9 to d16. Increasing the dispatch width increases the

resource area throughout the pipeline. If the wide-issue

SMT is allowed more silicon resources, the other config-

urations could be increased as well. The CMP.p8.f1.t1.dX

configurations could be enhanced by either increasing the

dispatch width from 2 to 3 or by adding SMT.
Alternative microarchitectures for the wide-issue SMT

are shown in Table 7. Here, we attempt to improve

performance by trading SMT threads for other microarch-

itecture features. The SMT.p1.f2.t4.d11 has a single core
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TABLE 3
Processor Core Area Calculation Using 0.18�m Technology

Scale MIPS R10K to different core sizes, then add SMT.

TABLE 4
Processor Die Size Using 0.18�m Technology

Combines multiple core areas plus interconnect, L2 cache, and I/O to create equal area CMP/SMT configurations.



(p1), a two block fetch (f2), only four threads (t4), but an

increased dispatch width of 11 (d11). The wider dispatch

width increases the number of functional units and

resources, as well as increasing the width of the entire

pipeline. However, the reduced number of SMT threads

reduces the utilization of the processor resources.

SMT.p1.f2.t4.64KB.d12 has smaller, faster first level caches

of 64KB, less SMT threads, but an increased dispatch width

of 12. SMT.p1.f1.t4.d12 has only four threads and only a

single block instruction cache fetch, but maintains the full

128KB L1 cache. SMT.p1.f1.t6.BP4x.d9 has six threads (t6), a

single block fetch (f1), and the baseline dispatch width of

nine instructions (d9), but increases the branch prediction

structures by four times (BP4x). SMT.p1.mbf2.t4.BP4x.d9

has four threads and a 4x branch predictor plus adds a

single-thread two-block fetch mechanism that predicts two

fetch blocks per cycle (mbf2). The improved branch

prediction and improved fetch mechanism reduce mispre-

diction penalties and reduces fetch bottlenecks. All of these

microarchitectures are feasible alternatives within the same

silicon area, trading SMT threads or cache size for better

branch prediction or more execution resources. More

extensive microarchitecture options are also possible, but

were beyond the scope of this paper [6], [10], [15].
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TABLE 5
Area Calculation Summary for Equal Processor Die Size (Comparable Silicon Resources)

TABLE 6
Area Calculation Summary with Increased Functional Unit Resources and, Hence, Unequal Silicon Resources

Various processor configurations would give more performance if silicon area were ignored.

TABLE 7
Alternate Wide Issue SMT Area Calculation with Equal Layout Area Trade Off SMT Threads

for Other Microarchitecture Features in an Attempt to Improve Performance



Hence, there are a wide number of possible configura-
tions. The ones used in this study were selected as having
the highest performance within the given layout area of the
baseline configuration. Configurations with excessive lay-
out areas would imply an unfair advantage. For example,
simply increasing the number of functional units always
increases performance if layout area and clock cycle effects
are ignored. We also attempted to scale the entire processor
resources with the number of CMP cores. This correlates
with prior research efforts for a more direct comparison and
attempts to avoid creating resource bottlenecks.

3.3 Defining the Pipeline Stages and Clock Cycle

The larger the processor, the more difficult it becomes to
maintain a fast clock rate without adding additional
pipeline stages or more exotic microarchitecture techniques
that affect the instructions per cycle (IPC) [7]. The smaller
core processors have shorter pipelines and/or faster clock
rates. Prior SMT/CMP research assumed a fixed pipeline
and then scaled the system clock based on the increased
circuit and routing delays without any further microarch-
itecture modifications [11]. This simplistic approach is
heavily biased in favor of the smaller processor cores since
it ignores possible pipeline improvements. The issue stage
delay increases by 300 percent when going from the
basel ine POSM.p4. f1 . t2 .d4 to the wider issue
SMT.p1.f2.t8.d9 core. We attempt to solve the critical path
problems as they are created through increasing the
processor core resources, but with as minimal impact to
the original pipeline as possible. The process cycle time was
limited by the issue and bypass stages. The penalty of an
added pipeline stage was shown to be less than 2 percent
for single-thread performance [23].

The processor pipelines for each of the POSM config-
urations are shown in Table 9. The POSM.p4.f1.t2.d4 and
CMP.p8.f1.t1.d2 pipelines are derived from the MIPS
R10000. However, the POSM.p2.f2.t4.d6 and the
SMT.p1.f2.t8.d9 require longer pipeline stages due to larger
processor area and increased logic paths. Each cell within
the table represents a pipeline stage with the associated
delay estimate. For example, the issue and register fetch are
within the same pipeline stage within the POSM.p4.f1.t4.d4,
but have been broken into separate pipeline stages in the
POSM.p2.f2.t4.d6.

We create two partitions within the SMT.p1.f2.t8.d9

processor pipeline because of the extensive instruction issue

logic delay, but did not include the extra stage delay of

intercluster forwarding. The intercluster forwarding is less

of a penalty with SMT since there is no forwarding between

threads. Also, there may be other techniques to reduce the

area and delay of these components and we did not want to

risk penalizing the large core. The wakeup logic becomes

slower as the number of entries in the instruction window

grows. Also, a pass through the wakeup logic is performed

for each issued instruction. The critical path values shown

in Table 8 are derived from published circuit delays based

on the processor dispatch width [17]. However, we add the

area of the bypass muxes. The larger SMT register file

dramatically increases the bypass delay when the register

file is placed between the functional units. Hence, we used

the alternative layout that assumed the functional units are

collocated below the register file. The added delay required

to interact between the functional units and the register file

is included in the additional pipeline stage for register fetch

and retire. The bypass delay is estimated for each of the

processor configurations within Table 8. An additional

adjustment of 50ps is assumed for each additional level

within the source mux. The bypass delay was then added to

the estimated worst-case path of the ALU. The cache related

delays for the Fetch and Operand fetch stages were taken

from [24]. Cache sizes greater than 32KB had to be

pipelined to avoid impacting the clock cycle. Hence,

Table 9 shows the POSM.p4.f1.t2.d4 has a 5-stage pipeline

from fetch to operand fetch and the wide-issue

SMT.p1.f2.t8.d9 processor has a 9-stage pipeline. Pipelining

and clustering maintained the processor clock as close as

possible to the baseline processor.
We normalize the clock rates of the processors based on

the POSM.p4.f1.t2.d4 (four MIPS R10000 CMP cores)

processor to give a Normalized IPC (NIPC). The processor

clock cycle delay is the worst case of all the pipeline stages

and is listed at the far right of Table 9. The normalized clock

is based on the ratio of the system clock frequencies. The

number of pipeline stages can be traded for improved

frequency to any or all of the processor configurations.

However, the pipeline depth also reduces performance.
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TABLE 8
Bypass Delays Set the Critical Path



4 SIMULATION METHODOLOGY

SMT requires a detailed simulator to accurately model the
effects of pipeline and memory latency tolerance. Thus, a
detailed simulation must be performed that accurately
models the active instructions and their data dependencies.
We started from the SimpleScalar version 2.0 simulator,
which already models the pipeline effects, including wrong
path execution after branch mispredicts. We then added
modifications to more closely model to the R10000 [2]. Next,
we added SMT support. Finally, we added multiprocessing.

A multiprogram workload is used because it is easy to
model and exists for workstation and server environments.
A multithreaded workload has more same-type resource
bottlenecks as well as issues with extracting parallelism. A
multithreaded workload also has beneficial sharing within
the caches while a multiprogrammed workload does not.
However, it is difficult to extract substantial parallelism
from some applications [12]. We explore the processing
extremes, single-threaded, and multiprogrammed work-
loads and discuss how POSM can be combined with other
techniques to increase thread parallelism. While not
explored in this research, the layout area and system clock
effects are expected to affect multithreaded workloads in a
similar fashion. More total functional units and a faster
clock rate will improve both multiprogrammed and multi-
threaded performance.

The application characteristics can also impact the design
trade off. Tasks with large cache footprints require larger
on-die caches and less functional unit resources. Kalla et al.
[9] implement a POSM.p2.f1.t2.d5 with a large 1.875MB L2
cache and on-die L3 directory and memory controller. A
trade off is still required between CMP/SMT within the
remaining core area.

We test several SMT processor configurations using the
Spec95 benchmarks. Ten benchmarks are used, five integer
and five floating-point. There are a huge number of possible
combinations of benchmark runs on the various processor
configurations and various numbers of threads. Thus,
10 runs with a selection of spec95 benchmarks (compress,
fpppp, hydro2d, ijpeg, li, m88ksim, perl, swim, turb3d,
wave) are created and then stored. The selected benchmarks
are then run on each configuration. Each simulation is run
for (number of threads)*(100 million instructions). We then
average the 10 runs to provide an average performance
result as we vary the number of threads from one to the
maximum thread limit of each processor configuration.
Over 500 billion instructions were executed for the final
simulation run used in this study.

5 SIMULATION RESULTS

The simulation results section follows the same format as
Section 4: simple scaling using equivalent execution
resources, impact of using equivalent silicon resources,
followed by normalized system clock. Prior SMT research
used comparable execution resources as the comparison
basis when comparing SMT and CMP [8], [11], [13], [22],
[23]. However, layout area grows much faster than linear
with respect to the dispatch and issue width of the
processor. Thus, using comparable silicon resources affects
the performance trade off [16]. Thus, we see the results with
optimistic equivalent execution resource assumptions, then
apply layout constraints, and then clock cycle effects.

5.1 POSM with Comparable Execution Units

This section uses the processor configurations from Table 2
to create four processor configurations with comparable
execution units. We attempted to use the same approach
and similar processor configurations as done in prior
research [8], [11], [13], [22], [23]. However, SMT is added
to the intermediate CMP cores as well as the large
processor, so each chip has an equal number of threads.
CMP results can be extracted from the POSM (CMP/SMT)
core results by only considering the number of threads up
to the hardware limit. Thus, a CMP.p4.f1.t1.d4 is equivalent
to a POSM.p4.f1.t4.d4 with only four active threads (one per
processor core).

Performance increases quickly with additional threads
on all the configurations (Fig. 3). The large SMT processor
has the highest performance over the entire range of threads
because of the flexibility of vertical and horizontal sharing.
However, note that the negative area and system clock
effects of SMT and larger processors have not been
included.

5.2 POSM Based on Equal Silicon Area

This section extends the trade off by adding the effects of
layout implementation. Hence, the processor configurations
are taken from Table 5. Including the inefficiencies of larger
layout structures reduces the performance advantages of
the processors with larger cores.

The results are shown in Fig. 4. The SMT.p1.f2.t8.d9 has
the least number of functional units, but the most horizontal
sharing. Hence, it has the highest single-thread perfor-
mance. However, the smaller total number of functional
units limits SMT throughput.

The CMP.p8.f1.t1.d2 performance increases linearly as
each available thread initiates a program. This is expected
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TABLE 9
Critical Path Delays



since each additional thread has a small, but private set of

resources. However, it is worse than the POSM.p4.f1.t2.d4,

except for eight threads, because of limited caches, branch

predictors, and out-of-order logic. Therefore, the

CMP.p8.f1.t1.d2 has the largest number of functional units,

but they are frequently idle due to cache misses, branch

mispredicts, and data dependencies. Comparing Fig. 4 with

Fig. 3 shows that the layout inefficiencies of the larger

processor cores reduce performance.

5.3 POSM Based on Equal Silicon Area with System
Clock Effects

This section adds the circuit delay and pipeline effects
discussed in Section 2.3. The results are shown in Fig. 5.
Here, the IPC is reduced by the internal pipeline depen-
dencies during simulation and then scaled by the system
clock normalization factor. Thus, the SMT.p1.f2.t8.d9 and
POSM.p2.f2.t4.d6 processors are negatively affected by the
longer pipeline and slower system clock.

The SMT.p1.f2.t8.d9 still has the highest single-thread
performance. However, the performance gap is reduced.
The POSM.p2.f2.t4.d6 has 4 percent lower single-thread
performance, but much higher throughput than the

SMT.p1.f2.t8.d9. The CMP.p8.f1.d2 processor achieves the
highest throughput.

Comparing Fig. 5 versus Fig. 4 shows that ignoring the
effects of circuit delays on the processor throughput gives
the larger processor cores a big advantage. This demon-
strates the combined impact of adding both layout area and
clock cycle affects to the CMP/SMT trade off. Greater
throughput is achieved with the smaller CMP cores,
although the wide issue SMT does have the best single-
thread performance.

5.4 Alternate SMT Microarchitectures with Area and
Clock Effect

The alternate SMT micro-architectures traded various
threads for other features [3], [4], [5]. The results are shown
in Fig. 6. Performance results are only possible for up to the
maximum number of hardware SMT threads. Hence, the
SMT.p1.f1.t4.d12 only shows results for up to four threads
(t4). The additional resources also provide more opportu-
nities for sharing between SMT threads. However, despite
the increased processor resources, the lack of the additional
SMT threads reduced throughput. Several microarchitec-
ture techniques were tried: increased branch predictor
resources by four times (BP4x), two block fetch from same
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Fig. 3. Performance assuming equivalent execution resources shows
microarchitectural efficiency of wide issue SMT results in best
performance.

Fig. 4. Performance comparison using equivalent silicon area reduces

the advantage of the wide issue processors in relation to the smaller,

more layout-efficient CMP cores.

Fig. 5. Performance using equal silicon area and system clock effects shows the layout efficiency of the smaller CMP cores provides the highest

throughput on a real system.



thread (mbf2), and smaller first-level caches to remove a
pipeline stage and provide area for other features (64KB).
These changes improved single thread performance
slightly. The baseline POSM.p4.f1.t2.d4 still has higher
throughput and was shown as a reference.

At some point, multithreading will stop increasing
throughput and will actually reduce performance due to
cache and branch prediction contention, but, for SMT, it
was effective for the eight threads and the SPEC95 work-
loads used in this study.

6 RESOURCE UTILIZATION

Previous studies have shown the effects of SMT on shared
resources [22], [23]. We extend these results to include
POSM configurations. Fig. 7 shows the miss rates for single-
thread results. The hardware partition of multiple proces-
sors increases the miss rates. The level 1 data and
instruction cache miss rates increase within the smaller
processor cores since the cache is partitioned between the
cores, resulting in a smaller per core cache. The large
increase in TLB miss rates is due largely to a small number
of programs whose footprint does not fit within the smaller
partitioned resources.

The average single-thread results hide the variation in
performance between individual benchmarks. Fig. 8 shows
single-thread performance under four conditions: a best-
case program with small resource demands (compress), a
worst-case program with high resource demands both with
and without prefetch (FPPPP), and the average of the
10 Spec95 benchmarks. The results are obtained for each

processor configuration in instructions per cycle and then
normalized by the processor clock rates. Performance is
highest for the SMT.p1.f2.t8.d9 and drops slightly for the
POSM.p2.f2.t4.d6 and begins to drop more quickly for the
POSM.p4.f1.t2.d4 and the CMP.p8.f1.t1.d2.

Performance is low for the POSM.p4.f1.t2.d4 and
CMP.p8.f1.t1.d2 due to the hardware partitioning. A single
thread is placed on one of the POSM processors, but has no
access to the resources on the other processors. Thus, a
single thread on a CMP.p8.f1.t1.d2 uses only 1/8th of the
total functional units. The smaller processor has a faster
clock rate and a shorter pipeline than the larger processor,
but this fails to compensate for such a large reduction in
functional unit resources. The level-1 caches, level-1 TLB,
out-of-order support, and branch prediction units are also
smaller for each of the individual processors. This increases
miss rates that increase memory latencies and idles
functional units. However, programs with small resource
demands can perform best on multiprocessors. The Com-
press program runs the fastest on a POSM.p4.f1.t2.d4.
Compress has high cache hit rates, even on the smaller
POSM.p4.f1.t2.d4 cache, and takes advantage of the faster
processor clock rate.

Yet, there are some applications that perform substan-
tially better on the larger SMT.p1.f2.t8.d9. The FPPPP
benchmark has a large instruction cache footprint compared
to the average Spec95 application. Hence, the instruction
cache miss-rate increases dramatically as the cache size is
reduced, causing poor single-threaded performance on
smaller processors.
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Fig. 6. Alternate SMT microarchitectures have improved single-thread performance, but reduced throughput.

Fig. 7. Single-thread shared resource miss rates show increased miss rates due to CMP hardware partitioning.



Fig. 9 shows the resource statistics for the 8-thread
results. The multiple-thread statistics show the increased
contention as SMT threads are added. Miss rates are fairly
similar when all the processor configurations are running
eight threads. The wide issue SMT has a larger cache than
the smaller cores, but the larger number of threads per core
increases contention between threads. However, the smaller
processor cores still have higher data TLB and level 1
instruction cache miss rates because they cannot hold
programs with large resource footprints. The main memory
traffic has also increased in the multithreaded case, as seen
by the increase in the third level cache miss rate (L3). The
L3 miss rate is negligible for the CMP.p8.f1.t1.d2, but
increases to 0.1 percent for the SMT.p1.f2.t8.d9 configura-
tion. However, the L3 miss rate is still small due to the high
cache hit rates of the SPEC95 application benchmarks.

7 CONCLUSIONS

Prior research has already shown that a CMP has higher
throughput than a wide issue superscalar processor.
Separate research has analyzed SMT and CMP processors
and even CMP/SMT processors. We have extended this
research by comparing more multicore processor config-
urations, adding layout area estimates, and including clock
cycle analysis. The layout and clock cycle analysis assump-
tions favored the wide dispersal SMT. The SMT processor
did show the best single-thread performance with im-
proved throughput over a single-threaded processor core
even when layout effects are included. However, the CMP

layout efficiencies offset the microarchitecture inefficiency
of fixed processor core partitions for maximum throughput
performance that far surpasses the wide issue SMT
processor. Relative wire delays continue to increase,
making layout efficiency even more important for future
fabrication technology. Our results show that:

. The SMT layout overhead increases with the
processor dispatch width due to the larger register
files, remapping tables, and instruction queues.

. Performance evaluations using “comparable silicon
resources” give multicore processors more func-
tional units and a higher clock rate, resulting in
higher throughput than single-core SMT processors.

Our research showed the throughput potential of the
POSM microarchitecture. However, substantial effort is
needed in compiler research to expose more parallelism in
order to reduce the runtime of a single multithreaded
program. Also, the amount of parallelism was fixed at eight
threads to match prior research. An additional study would
be to increase the number of threads. SMT will eventually
saturate the processor resources and reduce performance.
The saturation point is highly dependent on the type of
workload [14]. CMP layout efficiency gains are reduced as
the cores become too small, plus the communication latency
and routing area to the L2 cache increases. It is possible that
adding SMT to the 8-core CMP would have further
increased performance for the Spec95 benchmarks with
minimal additional area [5].

Another area that was not discussed is power dissipa-
tion. This is a key design consideration as the number of
functional units on a single die reaches the point where it is
difficult to cool the device. SMT maintains a consistently
high throughput, which increases the performance per watt
and reduces changes in current (di/dt) while performing
useful work. However, larger SMT processors also have
larger layout structures. Larger layout structures have
higher layout parasitics, which increases the average power
dissipation. SMT also reduces wasted execution, which
reduces power. Power density is also reduced through
CMP, as the power is distributed across a larger portion of
the die. Hot spots typically occur around power consuming
units, such as the integer and floating-point units. Attempt-
ing to separate these functional units within a single, wide
issue processor causes long interconnect delays. This is not
an issue for CMP processors as there is already a hardware
partitioning between CMP cores. Hence, the CMP hot spots
are reduced compared to a wider issue core running at the
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Fig. 8. Single-thread performance for small (compress), large (FPPP),

and average size programs is higher on wide-issue processor cores

except for some applications that fit within the resources of the smaller

but faster CMP cores.

Fig. 9. Eight-thread SMT shared resource statistics show increased contention due to SMT.



same power level. This would yield an even higher
throughput for a CMP core if thermal hot spots become
the limiting factor. A thorough analysis is beyond the scope
of this paper, but is part of ongoing research.
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