
In Proceedings of the 18th International Parallel and Distributed Processing Symposium, April, 2004

Clustered Multithreaded Architectures – Pursuing Both IPC and Cycle Time

Jamison D. Collins Dean M. Tullsen
Department of Computer Science and Engineering

University of California, San Diego
La Jolla, CA 92093-0114

Abstract

Clustering is an architectural technique that allows the
design of wide superscalar processors without sacrificing cy-
cle time, but at the cost of longer communication latencies.
Simultaneous multithreading architectures effectively toler-
ate instruction latency, but put even more pressure on timing-
critical processor resources. This paper shows that the syn-
ergistic combination of the two techniques minimizes the IPC
impact of the clustered architecture, and even permits more
aggressive clustering of the processor than is possible with a
single-threaded processor.

Additionally, this paper shows that multithreading en-
ables effective instruction steering policies unavailable to a
single-threaded clustered architecture. This paper explores
the impact of aggressively clustering four complex proces-
sor structures, (1) instruction window wakeup and functional
unit bypass logic, (2) register renaming logic, (3) the fetch
unit, and (4) the integer register file, on a simultaneous mul-
tithreading processor.

1. Introduction

Processor architectures have traditionally achieved per-
formance gains through a combination of clock speed ac-
celeration and improvements in instruction level parallelism.
The resulting performance of a new processor generation
scales with the product of these two factors. Increasingly,
however, those factors can no longer be considered inde-
pendent. Wide superscalar execution implies both wide and
complex control and storage structures, all of which put sig-
nificant upward pressure on the processor cycle time [16].
Hardware clustering is a processor architecture technique
that allows a wide superscalar processor to still maintain
an aggressive clock rate. It groups pipeline resources into
smaller clusters, allowing local communication to travel
shorter distances, and allowing complex control logic to op-
erate on a subset of the total processor resources. How-
ever, these architectures still incur costs, particularly the in-
creased latency of non-local communication, which reduce
the achieved instruction throughput. For example, the Com-

paq Alpha 21264 [11] clusters the functional units into two
sets. Operand bypassing is fast within a cluster, but slower
between clusters. A hardware clustered architecture is a
compromise between a chip multiprocessor and a monolithic
superscalar. Like the chip multiprocessor, timing-critical re-
sources are distributed, but unlike the multiprocessor, some
resources (not timing critical) remain shared for higher effi-
ciency.

We expect this trend toward hardware clustering to con-
tinue, and advance in three directions – deeper clustering
(more pipeline functions clustered), heavier clustering (more
clusters), and higher inter-cluster communication costs. This
work will focus on the first trend, recognizing that as we
move along the other two directions, the results and princi-
ples shown in this paper will be amplified.

Simultaneous multithreading (SMT) architectures [25,
24, 27, 10, 14] have the ability to execute instructions from
multiple threads each cycle. These architectures effectively
tolerate virtually all latencies observed by instructions in the
pipeline. The additional latencies incurred by a clustered ar-
chitecture are no different.

Multithreading is highly synergistic with clustering for
three reasons. First, multithreading motivates the design of
wide superscalar processors. While it is not clear that an
8-issue general-purpose single-threaded processor would be
viable due to the lack of inherent ILP in most applications, an
SMT processor can easily take full advantage of an 8-issue,
16-issue, or wider processor – if we can build them with-
out sacrificing clock speed. Second, multithreading can in
some cases put even more pressure on timing-critical struc-
tures, such as the register file and possibly the rename logic.
Third, this work will show that multithreading also hides the
latencies introduced by clustering, enabling more aggressive
clustering configurations with smaller performance (instruc-
tion throughput) costs.

A clustered multithreaded architecture, then, has the abil-
ity to exploit both thread-level parallelism and instruction-
level parallelism, yet still maintain high clock rates to max-
imize overall throughput. Neither clustering or multithread-
ing preclude traditional multiprocessing on the chip, which
might include multiple clustered, multithreaded processors.

For a clustered processor to outperform a non-clustered
architecture, performance (measured, for example, in in-
structions per cycle) must not be degraded linearly with in-



creased communication costs between clusters. We show
that multithreading can make performance much less sen-
sitive to those costs than a conventional architecture. An
SMT processor also provides another dimension of freedom
(i.e., by incorporating the thread id) in devising instruction
scheduling algorithms to mitigate the effects of clustering
delays, and those algorithms are a primary focus of this re-
search.

This paper examines hardware configurations that cluster
the instruction queues, rename logic, fetch unit, and the reg-
ister file. We demonstrate techniques to minimize the nega-
tive performance effects of clustering in each of these envi-
ronments, in the context of a hardware multithreaded archi-
tecture. Despite the wide variety of clustering architectures
observed, several key principles are demonstrated:

First, SMT processors hide much of the latency incurred
by clustering. This ensures that a larger portion of the clock
rate increases enabled by clustering are translated into real
performance gain. This can also enable more aggressive
clustering approaches than might have been feasible with-
out multithreading. Thus, multithreading enables the pro-
cessor to be designed more aggressively for low complexity
and high clock rate than a non-multithreaded architecture.

Second, an SMT processor in several cases enables
the use of less complex instruction steering algorithms to
achieve the same performance. This ensures that we don’t
replace the complexity of wide communication with other
forms of complexity introduced by clustering.

Third, a clustered SMT processor design allows new in-
struction steering options that are either not feasible or not
possible in a conventional architecture. We show that the
best steering mechanisms are neither the same ones proposed
for non-threaded architectures, nor the most obvious multi-
threaded mechanisms (static assignment of threads to clus-
ters).

Fourth, the critical design issues of a multithreaded clus-
tered architecture are very different from a conventional clus-
tered architecture. The dominant performance phenomenon
for clustered SMT processors is that of stalled shared re-
sources, a phenomenon not exhibited in non-threaded archi-
tectures, and which significantly impacts the choice of steer-
ing algorithm.

Other techniques allow even single-thread workloads to
tolerate clustering delays by utilizing available thread hard-
ware. We demonstrate the effect of parallel compilation and
a previously proposed technique for dynamically transform-
ing a single threaded program into multithreaded.

The rest of this paper is organized as follows. Section 2
describes related work. Section 3 describes our simula-
tion methodology. Section 4 describes the different clus-
tered architectures we investigate. Section 5 presents the
performance of these clustered architectures under a mul-
tiprogrammed workload. Section 6 describes the perfor-
mance impact on single applications which have been multi-
threaded, and Section 7 concludes.

2. Related Work

Much previous research has evaluated the impact of clus-
tering various processor resources. Baniasadi and Moshovos
evaluate various queue clustering schemes for a single
threaded processor [4]. This work focuses on queue assign-
ment schemes when the instruction queue is split into four
queues. Balasubramonian, Dwarkadas and Albonesi investi-
gate the performance impact of clustering a single-threaded
processor of up to 16 clusters in [3], and propose a dynamic
scheme for selectively disabling clusters in order to reduce
communication costs. Aggarwal and Franklin explore the
use of different algorithms for assigning instructions to clus-
ters in [1].

Palacharla, Jouppi and Smith study complexity and delay
characteristics of processor structures as the processor issue
width is varied [16]. They identify structures most likely
to present the critical timing path for wide issue processors,
and present results from dividing the traditional out-of-order
queue into a series of instruction FIFOs to reduce complex-
ity. Canal, Parcerisa and Gonzalez propose a number of
queue clustering schemes [5]. The Alpha 21264 [9] clusters
functional units and replicates register files.

Additionally, a number of highly partitioned processors
have been proposed. Farkas, Chow, Jouppi and Vranesic pro-
pose the Multicluster Architecture [8], which divides func-
tional units, registers and the instruction window between
two clusters. They present a static instruction scheduling al-
gorithm to handle dependences on values present in the other
cluster. Rotenberg, Jacobson, Sazeides and Smith propose
Trace Processors [17], which dynamically divide program
instructions among multiple Processing Elements, each with
private functional unites. Sohi, Breach and Vijaykumar pro-
pose Multiscalar Processors [20], in which software guides
the division of programs into individual tasks, which are ex-
ecuted on small functional unit clusters known as processing
units.

Krishnan and Torrellas study the tradeoffs of building
multithreaded processors as either a group of single-threaded
CMP cores, a monolithic SMT core, or a hybrid design of
multiple SMT cores in [12]. However, they do not study the
effects of allowing threads or instructions to migrate between
different processor clusters, which is a primary focus of this
paper.

3. Simulation Methodology

All results in this paper are generated with SMTSIM, a
cycle accurate, execution driven simulator [22] that simu-
lates an out-of-order, simultaneous multithreading processor.
SMTSIM executes unmodified alpha binaries. The simu-
lated processor has 64KB 4-way set associative L1 data and
instruction caches, and an 8MB, 8-way set associative uni-
fied L2 cache. Latency to the on-chip L2 cache is 15 cycles
and to memory is a further 250 cycles. We model a 2Bc-
gskew branch predictor, similar to the EV8 branch predic-
tor [18], but without delayed ghr updates or shared hystere-
sis bits [18]. The predictor provides multiple predictions of



not taken branches or a single taken branch for each thread
which fetches on a cycle.

We model an 8-wide processor with 8 integer functional
units (two of which can perform loads and stores) and 3 float-
ing point functional units. The processor contains an integer
instruction queue of 128 entries, a 128 entry floating point
instruction queue, 256 floating point and 256 integer regis-
ters available for renaming (in addition to the 128 registers
to hold the logical register state of 4 hardware contexts).

When clustering the integer instruction queue, we model
four smaller queues of 32 entries each (retaining an aggre-
gate size of 128 entries). Because two load/store functional
units cannot be evenly divided among four functional unit
clusters, we allow one functional unit in each cluster to issue
memory operations, but each cluster can only issue such in-
structions every other cycle. Thus, total L1 cache bandwidth
remains the same as in the non-clustered processor.

Eight integer benchmarks from the SPEC 2000 suite are
studied (crafty, gcc, gzip, mcf, parser, twolf,
vortex, and vpr), all compiled with full optimization.
Benchmarks run reference inputs but we skip the first five
billion instructions before beginning detailed simulation.
Benchmarks are then simulated for 300 million instructions
times the number of threads. Threads are fetched using
the ICOUNT fetch policy [24] whereby those threads with
the fewest instructions at and before the queue stage in the
pipeline are chosen to fetch. In all configurations up to two
threads are fetched. In configurations with a single register
renaming unit, the first thread fetches up to eight instruc-
tions, and then any remaining fetch bandwidth is used by a
second thread. In configurations with two renaming clusters,
up to four instructions are fetched from each thread.

In multithreaded configurations, multiple benchmarks are
executed together. Each result in those sections represents
the average of eight runs with different permutations of
threads/applications, chosen such that each benchmark is
equally represented in the average result. We report perfor-
mance using the weighted speedup metric [23, 19]. Weighted
speedup is computed as the sum of the speedups seen by
individual threads (in a multithreaded execution) over the
throughput they achieved in a baseline configuration. This
metric prevents the experiments from achieving artificial
speedups (when reported by IPC) simply by biasing execu-
tion toward threads that have particular characteristics, with-
out necessarily improving global system performance.

All results reflect only the changes in instruction through-
put, ignoring cycle time changes. Thus, results are expressed
as slowdowns relative to a non-clustered architecture, even
though most of those architectures would achieve speedups
once the faster cycle time of the clustered architecture is ac-
counted for. We do not model the exact impact of clustering
on cycle time for several reasons. First, we are only striving
to find the best architectural configuration within each clus-
tering alternative – the cycle time is a constant across those
alternatives. Second, cycle time effects are highly dependent
on the specifics of the implementation, layout, and process.
Even if our estimates were correct for a particular implemen-
tation, they would be wrong for others.

This research focuses on clustering of the integer execu-

Fetch /
Decode

Rename

Queue

Functional
Units

Register File

F
U

Q Q Q Q

F
U

F
U

F
U

Fetch /
Decode

Rename

Register File

F
U

Q Q Q Q

F
U

F
U

F
U

Fetch /
Decode

Ren

Register File

Ren

F
U

Q Q Q Q

F
U

F
U

F
U

Ren

Register File

Ren

F / D F / D

Data Cache

F
U

Q Q Q Q

F
U

F
U

F
U

Ren

RF

Ren

F / D F / D

RF

A B C D E

Figure 1. The five processor configurations explored
in this research. Black lines represent instruction paths,
gray lines added bypass paths added due to structure
splitting, and dotted lines indicate register value move-
ment. Non-split structures suffer no bypass penalty.

tion pipeline for a workload of integer applications. This is
merely to provide focus for the research. However, all of
the principles identified in this study will apply to a clus-
tered floating point pipeline running floating-point intensive
code.

4. Impact of Splitting Processor Structures

This section describes the five processor configurations
we explore, and the performance challenges presented by
each configuration. The point of this research is not to com-
pare these different architectures, but to recognize that each
of these configurations may make sense within a techno-
logical window in the future; thus, we would like to un-
derstand how each of these architectures interacts with a
multithreaded workload, and how to optimize performance.
The architectures are shown in Figure 1, and moving left to
right represents increasingly aggressive clustering. Notice
that this work stops just short of considering chip multipro-
cessors [15], which are just one extreme end of the multi-
threaded/clustered design space. We ignore them here, not
because they don’t represent a reasonable part of the design
space, but only because those architectures have been studied
extensively, and their completely static partitioning provides
fewer opportunities for the design optimizations which are
the focus of this paper.

Each of these configurations represents a family of pos-
sible architectures with varied number of clusters and cross-
cluster communication latencies. In each case, we have cho-
sen to study a single representative that is reasonable in the
near term, yet exhibits the important performance issues of
that class of architectures.

The clustering configurations considered in this paper are
as follows:

(A) The non-clustered processor Our baseline processor
is a conventional SMT processor. All pipeline stages have



a bandwidth of eight instructions, and full value bypass is
supported without additional delay.

(B) Clustered Execution Core The first structures we
partition are the processor functional units and instruction
queues. The central instruction queue is equally split into
four smaller, 32-entry queues. Each instruction queue has
exclusive access to two integer functional units (one capa-
ble of performing memory operations every other cycle) and
which can bypass values between each other with no addi-
tional delays. The execution of a dependent instruction is
delayed by two cycles when executing in a different cluster
from a parent. This configuration incurs performance losses
relative to the non-clustered processor from three sources:

(1) Dependent instruction execution delays — Because it
takes two cycles to wake up a dependent instruction in a dif-
ferent queue cluster, the observed execution latency of the
producing instructions can be effectively lengthened.

(2) Load imbalance — An instruction will not issue when
all issue slots in its cluster have been allocated, even if re-
sources are free in another cluster.

(3) Increased queue conflicts — attempting to insert an
instruction into a full queue results in a queue conflict, pre-
venting further instructions from entering queues and stalling
preceding pipeline stages. This can occur even though en-
tries may be available in other instruction queues.

(C) Register renaming clustering The second processor
structure we cluster is the register renaming logic, which is
reduced from a single, eight-wide register renaming unit into
two four-wide units by splitting the dependent instruction
comparator network and reducing the number of read ports
on the map table. Both units still allocate renaming registers
from a global free list as this simple structure is unlikely to
represent the critical path.

When instructions are renamed in one renaming cluster,
its map table is updated that cycle. The map table in the
other cluster also receives this information, but with a de-
lay. Attempting to rename instructions in a renaming cluster
lacking that thread’s most up-to-date renaming information
forces a stall until the renaming information arrives. Keeping
track of which thread can rename in which cluster is trivial,
because the cluster selection decision is made from the non-
clustered front-end. Processor performance is impacted in
two additional ways from clustering this stage:

(1) Renaming bandwidth — The reduced-width renam-
ing clusters can rename only four instructions per thread per
cycle. Accordingly, processors with a clustered renaming
unit utilize a slightly modified fetch policy in which the two
threads with lowest ICOUNT value fetch up to four instruc-
tions each. When multiple threads execute, this restriction
has a limited effect. However, single thread performance can
be severely affected.

(2) Renaming conflicts — Renaming conflicts occur when
some instructions cannot be renamed on a particular cycle.
This occurs either because two instruction groups which
reach register renaming simultaneously must both be re-
named in the same renaming cluster, or because a group of

instructions is attempting to rename in a cluster which does
not yet have the thread’s most recent renaming information.

(D) Front end clustering Front-end clustering divides the
pipeline stages which precede register renaming (fetch and
decode) into separate, four-wide pipelines. Each pipeline
has its own private instruction queue entries and functional
units (the register file, caches, and back-end pipeline stages
remain shared). Splitting the pipeline in this way can ac-
tually be advantageous. Previously, a stall at any point in
the pipeline (for example, due to an instruction queue be-
coming full) would cause instruction back-pressure and stall
fetch entirely. With a split processor front-end, a stall causes
back-pressure only in the pipeline in which it occurs. This
can prevent a single poorly behaved thread from impacting
the performance of the other threads in the processor, a prob-
lem noted in prior research [23]. However, the target pipeline
must be decided at fetch time, reducing our flexibility in as-
signing instructions to different processor clusters. In addi-
tion to several of the previously discussed performance is-
sues, a new form of renaming conflict is introduced with this
form of clustering.

(1) Out-of-order renaming conflict — This is similar to
the previous renaming conflict, except that (a) the later in-
structions can reach the renaming stage before the prior in-
structions are renamed, and (b) the later instructions could
be stalled arbitrarily long waiting for the earlier instructions
to be renamed (if the other pipeline is stalled).

(E) Register file clustering Having clustered the entire
processor front-end and execution core, the register file re-
mains the major shared structure. Even if it is replicated
among execution clusters to reduce the number of read ports
(as occurs in the Alpha 21264 [11]), the number of write
ports and total number of registers required on each of these
replicated register files remains large, likely putting regis-
ter file access on the critical timing path. Thus, we seek a
more aggressive mechanism for clustering the register file,
for the purposes of this research. We split the register file by
evenly partitioning registers between the two pipelines, with
no replication of register values between the two.

Because there is no direct communication between reg-
ister files, for a thread to switch pipelines its most recently
produced register values must be copied to the pipeline it
is switching to. We assume a specially allocated software
buffer is used to hold the intermediate values, and model this
swapping event by causing the thread switching pipelines to
issue 31 store instructions into its current pipeline, followed
by 31 load instructions into the other pipeline. This is a con-
servative mechanism for thread switching, but any realistic
mechanism will be slow, and this assumption forces us to
deal with that latency.

This scheme incurs two new performance costs:
(1) Increased register conflicts — With a single (logical)

register file, we run out of renaming registers only when all
registers in the machine are allocated. However, now that
registers are allocated separately from each register file, a



0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 2 3 4

Number of Threads

F
ac

to
r 

In
cr

ea
se

 in
 E

xe
cu

ti
o

n
C

yc
le

s 
o

ve
r 

N
o

n
-c

lu
st

er
ed

Thread id

Mod4 / min Q / reassign

Mod4 / min Q / maintain

Mod4 / next Q / reassign

Mod4 / next Q / maintain

BCut / min Q / reassign

BCut / min Q / maintain

BCut / next Q / reassign

BCut / next Q / maintain

SDeps / min Q / reassign

SDeps / min Q / maintain

SDeps / next Q / reassign

SDeps / next Q / maintain

Figure 2. Factor of increase in execution cycles due
to queue clustering compared to a non-clustered pro-
cessor running the same number of threads. Results
are shown for various queue assignment schemes as the
mechanisms for choosing the next queue and response
to a full queue are varied.

register conflict occurs whenever either register file runs out
of registers.

(2) Thread switch delays — When a thread switches the
pipeline it fetches into, it must now explicitly copy all integer
register state between the two independent register files.

5. Performance Impact of Splitting Processor
Structures

This section examines the performance impact and de-
sign space for each of the architectures described in the pre-
vious section. We focus on (1) understanding the interac-
tion of clustering with multithreading and (2) maximizing
total performance by designing instruction and thread steer-
ing mechanisms which minimize the IPC loss relative to a
non-clustered architecture. Results in this section assume
a multithreaded workload composed of permutations of the
single-threaded SPEC benchmarks.

5.1. Design of a queue clustering architecture

In the processor with partitioned instruction queues, in-
structions are assigned to an instruction queue immediately
after they are renamed. Various queue assignment schemes
have been proposed which assign instructions to queues, uti-
lizing instruction specific information. For example, the
branch-cut scheme [4] assigns instructions to the same in-
struction queue until a branch is encountered, at which point
a new queue is chosen. Each of these schemes is extended
and modified to work within a multithreaded architecture.

Our instruction steering mechanism explores three some-
what independent policy choices: When does a thread switch
queues? Which queue does it switch to? How permanent
is the queue assignment? For the first option, we consider
a high-performing subset of previously proposed instruction
steering mechanisms:

0

10

20

30

40

50

60

70

80

90

1 2 3 4

Number of Threads

P
er

ce
n

ta
g

e 
o

f 
C

yc
le

s 
w

it
h

 
Q

u
eu

e 
C

o
n

fl
ic

ts

Thread id

Mod4 / min Q / reassign

Mod4 / min Q / maintain

Mod4 / next Q / reassign

Mod4 / next Q / maintain

BCut / min Q / reassign

BCut / min Q / maintain

BCut / next Q / reassign

BCut / next Q / maintain

SDeps / min Q / reassign

SDeps / min Q / maintain

SDeps / next Q / reassign

SDeps / next Q / maintain

Figure 3. Percentage of cycles on which queue conflicts
occur. Results are shown for various queue assignment
schemes as the mechanisms for choosing the next queue
and response to a full queue are varied.

(1) mod4 switches queues every 4 instructions [4].
(2) branch-cut switches queues after each branch [4].
(3) seek dependencies sends instructions to the queue

which contains the younger parent of the instruction under
consideration, unless all operands are already available [4].

(4) thread id is a new policy that only makes sense on a
multithreaded processor. This scheme eliminates clustering-
induced instruction latency penalties by always sending in-
structions from the same thread to the same cluster.

The choice of target queue after a switch is governed by
one of two policies: The next queue scheme maintains a
next queue for each renaming cluster (shared by all threads).
When queried, it returns the id of the next queue in round-
robin order. The other scheme, fewest instructions, always
chooses the queue containing the fewest total instructions.

The last policy governs the processor’s response to queue
conflicts. Normally when an instruction is assigned to an
instruction queue the assignment is permanent (the queue
maintain policy). If the particular instruction queue is full,
however, this approach can result in excessive queue con-
flicts. Thus, we also evaluate queue reassign, which permits
instructions which cause queue conflicts to be reassigned to a
different instruction queue on the cycle following the conflict
(as well as following instructions).

Figure 2 shows the result of various combinations of these
policies. It shows that for well-performing policies, mul-
tithreading makes the processor significantly more tolerant
of cluster delays. It also makes the processor more toler-
ant of steering policies; policies which are not competitive
at one thread can be very competitive with the most com-
plex schemes at four threads (for example, the simple mod4
is similar to the best seek dependencies with four threads).

The seek dependencies policy typically outperforms other
approaches. However, it is highly sensitive to the queue reas-
signment policy. Schemes which tend to insert a large num-
ber of instructions into the same instruction queue over a
short period are more likely to cause a queue conflict. When
this happens, not allowing instructions to be reassigned is
disastrous, and not steering instructions to the shortest queue



when possible also hurts. Recall that a poor cluster as-
signment stalls one thread, but a queue conflict impacts all
threads. Thus, those schemes which don’t necessarily opti-
mize cluster assignment only improve with increased thread-
ing, but those that increase queue conflicts can get signifi-
cantly worse. The simple mod4 scheme naturally spreads in-
structions among all queues, achieving fairly consistent per-
formance for any number of threads, regardless of the other
queue policies. In fact, the very simplest scheme, mod4 /
nextQ / maintain is quite competitive with the other schemes
if there is sufficient thread-level parallelism.

Simply partitioning assignment by thread id works very
poorly, even with sufficient threads. In this configuration,
the processor takes little advantage of the diversity between
threads, and load balance issues which cause queue conflicts
eventually stall the whole processor.

For this configuration, performance is highly correlated
with the number of queue conflicts incurred by the instruc-
tion scheduling strategies. Figure 3 shows the percentage of
cycles on which an instruction queue conflict occurs. Some
configurations, such as the SDeps / next Q / maintain config-
uration, result in a significant number of queue conflicts. A
single-threaded processor will suffer slightly due to load im-
balance (a queue conflict when another queue is not full).
However, the multithreaded processor is very sensitive to
a stalled shared resource (in this case, the shared pipeline
stage which feeds the instruction queues). For the thread id
policy, it only takes one thread to experience queue conflicts
to stall the whole processor, which happens frequently. Ad-
ditionally, with this policy no queues get to take advantage of
the inherent parallelism between instructions from different
threads.

5.2. Renaming Clustering

Splitting the register renaming logic reduces pressure on
the renaming structures, and significantly reduces the com-
plexity of the mapping logic (which is linear in delay and
quadratic in area as a function of renaming width). However,
it can lead to performance losses from both direct and indi-
rect sources. Renaming conflicts directly stall the pipeline
when more than four instructions are sent to the same renam-
ing cluster, or when instructions are sent to a cluster which
hasn’t yet received the thread’s most recent renaming infor-
mation. Indirectly, the effectiveness of our queue clustering
scheme is restricted because each renaming cluster has ac-
cess to only two of the four instruction queues, leading to
increased queue conflicts.

We explore two general approaches to renaming clus-
ter assignment — deferred assignment and fixed renaming
schemes. In both cases the entire fetch group uses the same
renaming cluster. Some of our fixed assignment schemes de-
fine a short-term mapping of threads to renaming clusters,
grouping threads according to some metric (for example,
performance), and keeping that grouping for a fixed number
of cycles.

Deferred assignment assigns instructions to a cluster im-
mediately before they are renamed. For example, if one in-

struction group can be renamed in only one renaming clus-
ter (because its most recent renaming information hasn’t yet
propagated to the other cluster) and another can be renamed
in either, then the groups will be assigned such that both are
renamed. When both instruction groups can be renamed in
either cluster they are assigned randomly. Deferring renam-
ing assignment not only allows instructions to bypass renam-
ing conflicts, but also allows instructions to continue to be
renamed even when the instruction queues following one of
the renaming units are full.

After renaming instructions in a particular renaming clus-
ter, a thread cannot send instructions to the second renam-
ing cluster until that unit receives this most recently gener-
ated renaming information. However, because communica-
tion between renaming clusters requires a constant amount
of time, it is trivial to count the number of cycles which have
elapsed since a particular cluster was last used, ensuring that
no instructions are sent to the other cluster until this delay
has elapsed. This policy could be extended to handle config-
urations with more than two renaming clusters.

We consider the following renaming assignment schemes:
(1) Deferred renaming assigns instruction groups to re-

naming clusters immediately before they are renamed, in
such a way as to minimize the number of instructions which
cannot be renamed in the following cycle.

(2) Fetch-time assigns instructions to renaming clusters
similar to the deferred scheme, but does so at fetch-time, and
thus is a fixed assignment scheme. To minimize renaming
conflicts, a thread is only fetched if its instructions can be
assigned to the renaming cluster it last used, or if it has not
been fetched for at least as many cycles as the renaming de-
lay (a likely indication that renaming information will be up
to date in both clusters when these instructions reach it). If
both threads can be assigned to either cluster, they are as-
signed randomly.

(3) Balance-IPC observes thread behavior (in this case
instructions committed in each cluster) and attempts to map
threads to clusters so as to balance this metric across the clus-
ters. Thread behavior is recorded for some period of time
(e.g., 512 cycles), and then a mapping is created. The cre-
ated mapping assigns threads to clusters so as to minimize
the difference in instruction throughput in the two clusters,
assuming the threads do the exact same thing they did in the
measurement period. This mapping is used for the next pe-
riod, during which time new information is gathered for the
following period. This is also a fixed assignment scheme.

(4) Time-based is a fixed scheme that rotates threads
through all balanced assignments of threads to clusters (in
which the number of threads assigned to each cluster is as
even as possible). This scheme spends only a portion of the
time in the worst performing configuration, yielding average
case, rather than worst case, performance.

In addition to balance-IPC, a number of schemes of this
class were investigated which observed different attributes
of the instruction stream (instructions committed, cache be-
havior, branch behavior etc.), including symbiosis-based
schemes similar to those explored in [19]. However, we
found that most schemes performed similarly. Because well-
performing threads often share many characteristics (high



0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 3 4

Number of Threads

F
ac

to
r 

In
cr

ea
se

 in
 E

xe
cu

ti
o

n
C

yc
le

s 
o

ve
r 

N
o

n
-c

lu
st

er
ed

Deferred

Fetch-time

Balance-IPC / 512 cyc

Balance-IPC / 4096 cyc

Time-based / 32 cyc

Time-based / 512 cyc

Time-based / 4096 cyc

Figure 4. Factor of increase in execution cycles due to
queue clustering compared to a non-clustered processor.
Results are shown for various renaming cluster assign-
ment schemes as the renaming delay is varied.

IPC, low branch misprediction rate, high cache hit rate, and
cause few instruction queue conflicts), adapting to any of
these attributes would tend to group the same threads to-
gether. Thus, we present results only for the best performing
of these schemes (balance-IPC).

Figure 4 compares the IPC from our different renaming
clustering schemes as the number of executing threads is var-
ied between one and four. The investigated schemes, shown
from left to right, are: deferred assignment, fetch-time as-
signment, balance-IPC and time-based schemes. Multiple
balance-IPC and time-based configurations are shown, as-
suming different cluster swapping frequencies. All configu-
rations assume a renaming delay (the latency for mappings
to be communicated to another cluster) of three cycles.

The trend observed when clustering the instruction
queues is continued here — as the number of executing
threads is increased, clustering-related IPC losses decrease.
However, we see that none of the clustering policies has as
much of an impact on performance as the amount of thread
parallelism. The indirect effects of renaming clustering (re-
stricting our ability to distribute instructions to queue clus-
ters) exacerbates the stalled shared resource problem and
plays a dominant role when multiple threads execute. Us-
ing the most aggressive renaming scheme (deferred) yields
an increase of 14% in cycles during which queue conflicts
occur for two executing threads, and 7% for three threads.

The two-thread configuration is not significantly im-
pacted by the clustering scheme used. The single thread con-
figuration performs poorly due to the 4-instruction single-
thread throughput limit. Section 6 explores techniques to
mitigate single-application performance losses.

In this configuration, threads swap clusters rarely since
a non-zero renaming delay prevents a thread from being re-
named in different clusters on back-to-back cycles. How-
ever, the deferred scheme does allow threads to switch in
response to a queue conflict, showing a slight benefit over
other approaches.

When more than two threads execute, the more aggressive
schemes, deferred assignment and fetch-time, achieve very

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 3 4

Number of Threads

F
ac

to
r 

In
cr

ea
se

 in
 E

xe
cu

ti
o

n
C

yc
le

s 
o

ve
r 

N
o

n
-c

lu
st

er
ed

Fetch-time

Balance-IPC / 512 cyc

Balance-IPC / 4096 cyc

Time-based / 32 cyc

Time-based / 512 cyc

Time-based / 4096 cyc

Figure 5. Factor of increase in execution cycles due to
front-end clustering compared to a non-clustered pro-
cessor for various pipeline assignment schemes.

good performance. Both these schemes minimize the stalled
shared resource problem, which in this case is the pipeline
stage which feeds into the renaming stage.

In other experiments (not shown), we found that perfor-
mance was only slightly improved by reducing the renam-
ing delay to one cycle, despite a smaller number of renam-
ing conflicts occurring. Renaming conflicts play a smaller
performance role than queue conflicts because a renaming
conflict only prevents the second group of four instructions
from being renamed on a particular cycle, whereas a queue
conflict may prevent any instructions from being renamed on
that cycle.

5.3. Front-end clustering

Instruction throughput losses in the previous architecture
are primarily due to increased susceptibility to the stalled
shared resource problem when back-pressure causes the ear-
lier fetch and decode stages to stall. If we also cluster those
stages, complexity is decreased slightly (e.g., in the fetch
unit), but we also make it much more difficult for a single
thread to clog up the entire pipeline. Splitting the proces-
sor’s eight-wide front-end (fetch, decode and other pipeline
stages which precede register renaming) yields two indepen-
dent, four-wide pipelines, each of which leads to a private
register renaming stage, private instruction queues, and sepa-
rate functional units. In this architecture, instructions cannot
switch pipelines after being fetched.

We utilize modified versions of the assignment schemes
described in the previous section. In this case such schemes
determine which pipeline to fetch into, rather than simply
which renaming cluster to use.

Figure 5 presents the performance of a number of front-
end renaming assignment schemes as the number of threads
is varied between one and four. Schemes shown are, from
left to right: fetch-time, balance-IPC, and time-based swap-
ping schemes. For this processor configuration, we assume
that a longer, five-cycle renaming delay will be necessary.

As before, we see that multithreading still provides toler-
ance of clustering delays, even with the heavy partitioning



0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1 2 3 4

Number of Threads

F
ac

to
r 

In
cr

ea
se

 in
 E

xe
cu

ti
o

n
C

yc
le

s 
o

ve
r 

N
o

n
-c

lu
st

er
ed

Balance-IPC / 512 cyc
Balance-IPC / 4096 cyc 
Time-based / 512 cyc 
Time-based / 4096 cyc 

Balance-IPC / 512 cyc / swap free
Balance-IPC / 4096 cyc / swap free
Time-based / 512 cyc / swap free
Time-based / 4096 cyc / swap free

Figure 6. Factor of increase in execution cycles due
to register file clustering compared to a non-clustered
processor. Results are shown for balance-IPC and time-
based schemes, modeling a cost to swap register files
(left) and no cost (right).

we have here.
The primary factor in the performance of these results is

the frequency of switching. Less is gained in this architecture
by switching, and the costs are higher. The time-based / 32
cyc scheme switches too often and incurs a large number of
out-of-order renaming conflicts.

When threads switch pipelines less often, these perfor-
mance losses are avoided. Performance is much less sen-
sitive to queue conflicts because only the pipeline responsi-
ble for the conflict is stalled. Balance-IPC performs better
than time-based both because it tends to group threads in
better performing combinations, and because threads swap
pipelines less often; when the new mapping agrees with the
old mapping, no threads change pipelines.

In addition to simplifying control and providing an effi-
cient mechanism for clustering register renaming, clustering
the front end also opens the door to splitting further proces-
sor structures which would not have been feasible to cluster
with a unified front-end, such as the register file, as will be
shown in the next section.

5.4. Register File Clustering

Up to this point in this research, the register file remains
one of the few remaining large shared processor structures.
Normally this structure is difficult to split, both because of
the difficulty in determining which register values should be
stored in which smaller register file, and because of the inef-
ficiency of partitioning the renaming registers. A processor
with a clustered front-end presents a platform more suited
to splitting the register file; a separate private register file is
added to each pipeline, and a register conflict will stall only
the pipeline in which it occurs.

Because register values are no longer directly accessi-
ble from both pipelines and must be explicitly copied be-
tween clusters (at nontrivial costs), only balance-IPC and
time-based schemes are feasible, and only those which re-
tain mappings for significant time.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 thread
SPEC

2 threads
SPEC

4 threads
SPEC

1 thread
SPLASH

2 threads
SPLASH

4 threads
SPLASH

F
ac

to
r 

In
cr

ea
se

 in
 E

xe
cu

ti
o

n
C

yc
le

s 
o

ve
r 

N
o

n
-c

lu
st

er
ed

Queue - Mod4 / min Q / reassign
Renaming - Deferred
Front-end - Balance-IPC / 4096 cyc
Register file - Balance-IPC / 4096 cyc

Figure 7. Average factor of increase in execution cy-
cles for manually and automatically parallelized bench-
marks for different clustering configurations. Slow-
down is shown relative to a non-clustered processor with
the same number of threads.

Figure 6 shows the performance impact of clustering the
register file as the number of threads is varied from one to
four. We model two instruction assignment schemes (time-
based and balance-IPC), and for each scheme show perfor-
mance modeling a cost for threads to swap clusters (requiring
the execution of 31 stores followed by 31 loads, as described
in Section 4), and another set of results assuming threads
swap clusters at no cost.

Due to the clustered processor front-end, the performance
loss from splitting the register file is minimal; our best per-
forming configuration (balance IPC / 512 cyc) performs
typically within 2% of a processor with a unified register
file. While the actual mapping of threads to clusters mat-
ters (balance-IPC continues to outperform time-based), the
frequency of thread swapping plays a dominant performance
role. Recall that balance-IPC does not cause threads to swap
clusters when the newly established mapping agrees with the
prior mapping, resulting in significantly fewer total swaps.
Overall, we see that in a processor with a clustered front-
end, it is feasible to cluster the register file as well.

6. Single Application Performance

To this point, we have concerned ourselves primarily with
the performance of an aggressively clustered processor run-
ning a multiprogrammed workload; but even when clustering
only instruction queues, single thread performance can be
significantly reduced. While we have shown that increasing
the number of executing threads is an effective technique to
reduce clustering-related IPC losses, that approach is not al-
ways possible – sometimes the workload on a multithreaded
processor is only composed of a single application. This sec-
tion explores that scenario in more detail.

This section will explore the performance of applications
parallelized by offline and online techniques when running
on the the family of clustered SMT processors we have de-
fined.



0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

crafty gcc gzip mcf parser twolf vortex vpr average

F
ac

to
r 

In
cr

ea
se

 in
 E

xe
cu

ti
o

n
C

yc
le

s 
o

ve
r 

N
o

n
-c

lu
st

er
ed

Single thread, renaming deferred
DMT 2 Contexts, Renaming Deferred
DMT 3 Contexts, Renaming Deferred
DMT 4 Contexts, Renaming Deferred

Figure 8. Factor of increase in execution cycles when
applying register renaming clustering to a processor
augmented with Dynamic Multithreading.

We show results (Figure 7) for five explicitly par-
allelized SPLASH2 benchmarks (ocean, radiosity,
raytrace, volrend and water-nsquared) and a se-
lection of the SPEC benchmarks (applu, equake, mgrid
and swim) which have been automatically parallelized via
the SUIF [9] compiler.

All benchmarks were fast forwarded over initialization
code, and 500 million total instructions (or until program
completion) were simulated from the point at which mul-
tiple threads began executing. Average results are shown for
each group of benchmarks, corresponding to one, two and
four thread configurations.

As we increase the number of threads, not only does over-
all performance improve, but the slowdown incurred due to
clustering decreases as well. Adding a second executing
thread dramatically reduces slowdown compared to more ag-
gressive clustering schemes, and executing four threads con-
tinues this trend. Averaging over all benchmarks, the most
aggressive configuration (register file clustering), when exe-
cuting four threads, sees only a 13.9% loss in IPC compared
to the non-clustered processor, in contrast to the 33.2% loss
for a single thread. Thus, for applications that can be paral-
lelized, the multithreaded architecture again allows the pro-
cessor to retain a much higher portion of the clock rate im-
provements.

Current and emerging research is exploring techniques for
parallelizing programs which cannot be safely parallized by
a compiler. These techniques include threaded multi-path
execution [26], helper threads such as speculative precompu-
tation [6, 7, 28], and speculative multithreading [2, 21, 13].

We specifically model the IPC impact of Dynamic Mul-
tithreading (DMT) [2] on a processor implementing regis-
ter renaming clustering. The results, shown in Figure 8, are
shown as slowdown compared to a non-clustered DMT pro-
cessor with the same total number of thread contexts, and the
processor is clustered with deferred renaming clustering and
the mod4 / minQ / reassign queue scheme.

The results indicate that such techniques have the poten-
tial to mitigate clustering related performance losses just as
the more conventional multithreading techniques do. While

with a single thread, we observe significant pformance losses
(31%), adding a second available thread context reduces
these costs (21%) compared to a non-clustered configuration.
As additional thread contexts are added, these performance
losses are further reduced, down to only 18% for four total
thread contexts.

7. Conclusion

This paper examines the design space of a wide selection
of heavily clustered, simultaneous multithreading processor
architectures. The results demonstrate several key principles
that impact the design of these systems.

(1) SMT processors can hide much of the latency incurred
by clustering. For example, when clustering the register re-
naming hardware, multithreading reduces the performance
cost of clustering from 30.4% down to only 12.3%. This en-
ables more aggressive clustering approaches than might have
been feasible without multithreading, enabling the proces-
sor to be designed more aggressively for low complexity and
high clock rate than a non-multithreaded architecture. This
architecture can sustain both higher IPC and higher clock
rates than architectures that do not combine both of these
techniques. (2) We show that an SMT processor in several
cases enables the use of less complex instruction steering al-
gorithms to get the same performance, reducing complexity
in that way as well. (3) This paper introduces new instruc-
tion and thread steering options that are either not feasible
or not possible in a conventional architecture. (4) The dom-
inant performance phenomenon for clustered SMT proces-
sors is that of stalled shared resources (a phenomenon that is
not relevant for non-multithreadedarchitectures). Instruction
steering mechanisms need to be designed carefully. Those
that either minimize these effects, or eliminate them (by al-
lowing other threads to bypass stalled stages) are the most
effective. (5) Even single-application workloads can toler-
ate clustering delays by utilizing the thread hardware. Run-
ning a single application using multiple threads reduces the
cost of clustering from 33.2% down to 13.9%. Emerging
techniques for accelerating a single thread using idle multi-
threading hardware can also be applied, and we demonstrate
how Dynamic Multithreading [2] reduces the performance
impact of renaming clustering from 31.1% down to 18.8%.

Acknowledgments

We would like to thank the anonymous reviewers for pro-
viding useful comments on this paper. This work was funded
by a Focht-Powell fellowship, a grant from Intel Corpora-
tion, and NSF grant CCR-0105743.

References

[1] A. Aggarwal and M. Franklin. An empirical study of the
scalability aspects of instruction distribution algorithms for



clustered processors. In International Symposium on Perfor-
mance Analysis of Systems and Software, Nov. 2001.

[2] H. Akkary and M. Driscoll. A dynamic multithreading pro-
cessor. In 31st International Symposium on Microarchitec-
ture, Nov. 1998.

[3] R. Balasubramonian, S. Dwarkadas, and D. Albonesi. Dy-
namically managing the communication-parallelism trade-off
in future clustered processors. In 30th Annual International
Symposium on Computer Architecture, June 2003.

[4] A. Baniasadi and A. Moshovos. Instruction distribution
heuristics for quad-cluster, dynamically-scheduled, super-
scalar processors. In 33rd International Symposium on Mi-
croarchitecture, Dec. 2000.

[5] R. Canal, J.-M. Parcerisa, and A. Gonzalez. Dynamic cluster
assignment mechanisms. In Proceedings of the Sixth Interna-
tional Symposium on High-Performance Computer Architec-
ture, Jan. 2000.

[6] R. Chappell, J. Stark, S. Kim, S. Reinhardt, and Y. Patt.
Simultaneous subordinate microthreading (ssmt). In 26th
Annual International Symposium on Computer Architecture,
pages 186–195, Oct. 1999.

[7] J. Collins, H. Wang, D. Tullsen, C. Hughes, Y. Lee, D. Lav-
ery, and J. Shen. Speculative precomputation: Long-range
prefetching of delinquent loads. In 28th Annual Interna-
tional Symposium on Computer Architecture, pages 14–25,
July 2001.

[8] K. Farkas, P. Chow, N. Jouppi, and Z. Vranesic. The multi-
cluster architecture: Reducing cycle time through partition-
ing. In 30th International Symposium on Microarchitecture,
Dec. 1997.

[9] M. Hall, J.-A. Anderson, S. Amarasinghe, B. Murphy, S.-
W. Liao, E. Bugnion, and M. Lam. Maximizing multipro-
cessor performance with the suif compiler. IEEE Computer,
29(12):84–89, 1996.

[10] H. Hirata, K. Kimura, S. Nagamine, Y. Mochizuki,
A. Nishimura, Y. Nakase, and T. Nishizawa. An elementary
processor architecture with simultaneous instruction issuing
from multiple threads. In 19th Annual International Sympo-
sium on Computer Architecture, pages 136–145, May 1992.

[11] R. Kessler. The alpha 21264 microprocessor. In IEEE Micro,
March/April 1999.

[12] V. Krishnan and J. Torrellas. A clustered approach to multi-
threaded processors. In 12th International Parallel Process-
ing Symposium (IPPS), Mar. 1998.

[13] P. Marcuello and A. Gonzalez. A quantitative assessment of
thread-level speculation techniques. In International Parallel
and Distributed Processing Symposium, May 2000.

[14] D. Marr, F. Binns, D. Hill, G. Hinton, D. Koufaty, J. Miller,
and M. Upton. Hyper-threading technology architecture and
microarchitecture: A hypertext history. Intel Technology
Journal, 6(2), Feb. 2002.

[15] K. Olukotun, B. Nayfeh, L. Hammond, K. Wilson, and K.-Y.
Chang. The case for a single-chip multiprocessor. In Sev-
enth International Conference on Architectural Support for
Programming Languages and Operating Systems, Oct. 1996.

[16] S. Palacharla, N. P. Jouppi, and J. E. Smith. Complexity-
effective superscalar processors. In 24th Annual International
Symposium on Computer Architecture, June 1997.

[17] E. Rotenberg, Q. Jacobson, Y. Sazeides, and J. Smith. Trace
processors. In 30th International Symposium on Microarchi-
tecture, Dec. 1997.

[18] A. Seznec, S. Felix, V. Krishnan, and Y. Sazeides. Design
tradeoffs for the alpha ev8 conditional branch predictor. In
29th Annual International Symposium on Computer Archi-
tecture, May 2002.

[19] A. Snavely and D. Tullsen. Symbiotic jobscheduling for a si-
multaneous multithreading processor. In Ninth International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems, Nov. 2000.

[20] G. Sohi, S. Breach, and T. Vijaykumar. Multiscalar proces-
sors. In 22nd Annual International Symposium on Computer
Architecture, June 1995.

[21] J. G. Steffan and T. C. Mowry. The potential for using thread-
level data speculation to facilitate automatic parallelization.
In Proceedings of the Fourth International Symposium on
High-Performance Computer Architecture, Jan. 1998.

[22] D. Tullsen. Simulation and modeling of a simultaneous mul-
tithreaded processor. In 22nd Annual Computer Measurement
Group Conference, Dec. 1996.

[23] D. Tullsen and J. Brown. Handling long-latency loads in a
simultaneous multithreaded processor. In 34th International
Symposium on Microarchitecture, Dec. 2001.

[24] D. Tullsen, S. Eggers, J. Emer, H. Levy, J. Lo, and R. Stamm.
Exploiting choice: Instruction fetch and issue on an imple-
mentable simultaneous multithreading processor. In 23rd
Annual International Symposium on Computer Architecture,
pages 191–202, May 1996.

[25] D. Tullsen, S. Eggers, and H. Levy. Simultaneous multi-
threading: Maximizing on-chip parallelism. In 22nd Annual
International Symposium on Computer Architecture, pages
392–403, June 1995.

[26] S. Wallace, B. Calder, and D. Tullsen. Threaded multiple
path execution. In 25th Annual International Symposium on
Computer Architecture, June 1998.

[27] W. Yamamoto and M. Nemirovsky. Increasing superscalar
performance through multistreaming. In Conference on Par-
allel Architectures and Compilation Techniques, pages 49–
58, June 1995.

[28] C. Zilles and G. Sohi. Execution-based prediction using spec-
ulative slices. In 28th Annual International Symposium on
Computer Architecture, pages 2–13, July 2001.


