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Abstract

This paper compares the energy efficiency of chip multipro-
cessing (CMP) and simultaneous multithreading (SMT) on modern
out-of-order processors for the increasingly important multimedia
applications. Since performance is an important metric for real-
time multimedia applications, we compare configurations at equal
performance. We perform this comparison for a large number of
performance points derived using different processor architectures
and frequencies/voltages.

We find that for the design space explored, for each workload,
at each performance point, CMP is more energy efficient than
SMT. The difference is small for two thread systems, but large
(18% to 44%) for four thread systems. We also find that the best
SMT and the best CMP configuration for a given performance
target have different architecture and frequency/voltage. There-
fore, their relative energy efficiency depends on a subtle interplay
between various factors such as capacitance, voltage, IPC, fre-
quency, and the level of clock gating, as well as workload features.
We perform a detailed analysis considering these factors and de-
velop a mathematical model to explain these results.

Although CMP shows a clear energy advantage for four-thread
(and higher) workloads, it comes at the cost of increased silicon
area. We therefore investigate a hybrid solution where a CMP is
built out of SMT cores, and find it to be an effective compromise.
Finally, we find that we can reduce energy further for CMP with a
straightforward application of previously proposed techniques of
adaptive architectures and dynamic voltage/frequency scaling.
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C.1.2 [Processor Architectures]: Multiple Data Stream Ar-

chitectures
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Performance, Design
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1. Introduction

This paper compares the energy efficiency of chip multipro-
cessing (CMP) [10] and simultaneous multithreading (SMT) [19]
for multimedia applications on modern out-of-order general-
purpose processors (GPPs). Multimedia applications are becom-
ing increasingly important for GPPs in a variety of systems in-
cluding desktops, laptops, tablet PCs, and likely future handheld
devices. GPPs have begun to support multithreading for im-
proved throughput, using either CMP or SMT. These techniques
are a good match for multimedia applications which are inher-
ently multithreaded. However, multimedia applications often run
on portable systems facing strict energy constraints. It is therefore
important to study the energy efficiency of general-purpose CMP
and SMT architectures for multimedia applications.

SMT allows multiple application threads to be run at the same
time, within the same processor, potentially increasing utilization
of the processor resources. Specifically, current wide issue out-
of-order processors are often unable to utilize the full supported
fetch/decode/issue width for a single thread. SMT utilizes these
otherwise wasted resources for other threads, potentially improv-
ing total throughput with little additional hardware. CMP, on the
other hand, improves throughput by adding additional processors
rather than improving their utilization.

At first glance, SMT may appear to be inherently more energy
efficient than CMP since it potentially uses its resources more ef-
fectively – SMT can get more IPC (instructions per cycle) from
less hardware. However, in reality, the comparison is more com-
plex, both in the analysis to understand the experimental results
and in the methodology to generate the right results.
Sources of complexity and our solutions.For real-time multi-
media applications, performance is a key constraint. A fair com-
parison of energy must therefore also consider performance. As
a result, we compare the energy of SMT and CMP at the same
performance, and perform this comparison for a wide range of per-
formance points. The complexity arises because each performance
point can be obtained by CMP and SMT using several combina-
tions of frequency and processor microarchitecture (referred to as
the core architecture). For example, a narrow width core archi-
tecture at a high frequency or a wider width core architecture at
a lower frequency can achieve the same performance but at dif-
ferent energy. A fair comparison must consider the combinations
that provide the minimum energy for SMT and CMP at that per-
formance point. This best combination for SMT could be different
from that for CMP, both could differ for different workloads and
different performance points, and both are difficult to determine a
priori. Given that at the fairest point of comparison, the processor
core architectures and frequencies employed by CMP and SMT
may be different and are not known a priori, it is no longer clear
which technique is most energy efficient.
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The complexity of the problem becomes most evident when
we try to analyze our results. Multiple subtle interactions dic-
tate which configuration would be most energy efficient for ei-
ther CMP or SMT, and which of these two best configurations
provides the lowest overall energy. The analysis involves con-
sideration of the amount of clock gating employed, the increase
in Power/IPCx (generally 2≤x≤3) with increasing processor
core complexity, and properties of the workload that make them
amenable to performance speedups from CMP and SMT.

Methodologically, the complexity arises because, as implied
by the above discussion, we must identify and explore a large
design space, and carefully choose the specific pairs of SMT
and CMP configurations that should be compared against each
other. To bound the design space explored, this work focuses
on out-of-order superscalar processors, based on contemporary
general-purpose designs. Undoubtedly, there are other architec-
tures that could be more energy efficient for these applications;
however, we chose out-of-order superscalar processors since our
focus is on general purpose processors which are becoming in-
creasingly important for portable devices (e.g., Pentium-M). We
simulate processor core complexities ranging from 2-wide to 8-
wide fetch/decode width. To consider a full performance contin-
uum, we evaluate the considered processor core architectures over
a range of frequencies, from 600 MHz to 1.6 GHz (with corre-
sponding voltages). For a given workload, we compare the energy
efficiency of CMP and SMT by considering configurations that
provide the same performance, and perform such comparisons for
all performance points in the investigated design space. For each
performance point, we identify the configuration (i.e., core archi-
tecture and frequency) that gives the minimum energy for SMT
and CMP, and compare these minimum energy values.

We consider two- and four-thread workloads derived from
combinations of 8 single-threaded multimedia benchmarks con-
sisting of low and high bit rate video and speech codecs. (N -thread
workloads run on an N -thread SMT or on an N -core CMP.)
Findings. Although SMT is known for its efficiency in utilizing
resources, we find that CMP is consistently more energy efficient
than SMT (comparable with two threads and significantly better
with four threads). More specifically, our results show that for the
design space explored, for each workload, at each performance
point, (1) the least-energy CMP configuration showed lower en-
ergy than the least-energy SMT configuration, (2) the energy dif-
ference was larger at the high-performance points and for four-
thread workloads (for four-thread workloads, the average benefit
of CMP over SMT was 44% for the highest performance points
and 18% for the lowest performance points), and (3) the least-
energy SMT configuration had moderately higher complexity and
higher frequency/ voltage. To understand the reasons for our re-
sults and to extend our findings to other systems and workloads
not simulated here, we perform a qualitative analysis and develop
an analytic model that exposes a subtle interplay between various
factors affecting the results.
Broader implications. Our results have two broad implications
beyond simply a comparison of SMT and CMP. First, our re-
sults clearly underscore the advantage of CMP for four-thread
(and higher) workloads for our applications. However, a four-
core CMP will have a much larger silicon area than an SMT with
moderately higher core complexity. Thus, the energy advantage
of CMP comes at an area cost. To get the best of both worlds,
for four-thread workloads, we study a hybrid CMP/SMT architec-
ture (HYB) where a CMP is built out of SMT cores (e.g., IBM
Power5). We find such a two-core CMP with two-thread SMT
cores has significantly higher energy efficiency than a pure SMT
processor. The hybrid architecture with two SMT cores generally

needs less silicon area than a 4-core CMP. Moreover, such an ar-
chitecture will also provide better energy for workloads that would
not scale well in performance across a four core CMP.

The second broad implication arises from our observation that
although CMP configurations generally give the best energy ef-
ficiency, different configurations are optimal at different perfor-
mance points (as is the case with SMT). This motivates the use
of recently proposed adaptive architecture and frequency/voltage
scaling techniques. We also find that applying these techniques in-
dependently on the different CMP processor cores to create a het-
erogeneous CMP provides even further energy savings for CMP.
While it may be possible to apply some of these techniques to
SMT, it is as yet unclear how this can be done.

2. Related Work

Although there is significant prior work comparing the perfor-
mance of CMP and SMT [20, 10], comparing the energy efficiency
of SMT with a superscalar [17], and comparing the area and lay-
out overheads of SMT and CMP [6], there is very little prior work
on energy related comparisons of SMT and CMP. The only such
work, to our knowledge, is by Kaxiras et al., also in the context
of multimedia applications [14]. However, that work considers a
VLIW processor core (which produces low IPC for the compiled
codes studied) and primarily compares average power at a given
frequency for CMP vs. SMT. It examines only two alternative core
architectures and only one workload. In contrast, we study out-of-
order superscalar processors (which give higher IPCs) and com-
pare energy at the same performance, for a wider range of work-
loads and core processor architectures. The primary conclusion
from the work by Kaxiras et al. is that at equal frequency, CMP
consumes more power than SMT. This does not contradict our re-
sults since we also find that CMP configurations have higher max-
imum and average power than corresponding SMT configurations
at a fixed (highest) frequency (e.g., leftmost points of Figure 3(a)
and (b)). A more detailed comparison of the two studies appears
in the extended version of this paper [15].

3. Experimental Methodology

3.1 Systems Modeled

3.1.1 Design Space & Naming Convention
We model two classes of systems- one supporting two threads

and the other supporting four threads as illustrated in Figure 1. For
the two-thread systems, we model a single core SMT that supports
two threads and a 2-core CMP (each core supports one thread). For
the four-thread systems, we model a single core SMT that supports
four threads, a 4-core CMP (each core supports one thread), and
a hybrid system, which is a 2-core CMP with each core being an
SMT supporting two threads.

To bound the design space explored, we focus on out-of-order
processors. To adequately represent this design space, we model
several core architectures for the out-of-order processor cores,
ranging from a fetch/decode width of two to eight. For each
fetch/decode width, we appropriately scale other resources (e.g.,
instruction window size and the number of functional units), as
discussed in Section 3.1.2. For a given CMP, we assume all pro-
cessor cores have the same configuration (except when we con-
sider adaptive architectures in Section 4.4.2).

We adopt the following naming convention, as also shown in
Figure 1. For a two thread system, we denote an SMT or CMP
system with cores with a fetch/decode width of N by SMT2-N
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Figure 1. Systems modeled and naming convention. An SMT, CMP or HYB processor is named as NAME<# of threads>–<fetch/decode
width of a core>, where NAME is SMT, CMP or HYB.

and CMP2-N respectively. Note that CMP2-N has two N -wide
cores whereas the SMT2-N has only one N -wide core. Similarly,
we use SMT4-N , CMP4-N , and HYB4-N to denote four-thread
SMT, CMP, and HYB systems (respectively) with cores that have
a fetch/decode width of N .

3.1.2 Processor Core & Memory Parameters
Table 1 summarizes the processor core and memory hierarchy

parameters used for the experiments reported here – Width refers
to the fetch/decode width and Threads is the number of threads
supported by a processor core. Given that there are many ways
to reasonably scale processor core parameters with fetch/decode
width and many ways to set memory hierarchy parameters, we ex-
plored a few alternate parameterizations (e.g., Instruction window
size = Width x 16) and found that the trends were the same as
those presented here.

In all cases, the processor core is an out-of-order superscalar,
modeled after the MIPS R10000 superscalar core. Specifically,
the register file is separate from the reorder buffer as in modern
implementations. For SMT, we assume that all concurrent threads
share most resources in the processor, including the instruction
window, functional units, L1 caches, and register files; however,
each thread is given a separate branch prediction table and a return
address stack. Further, 32 additional integer and floating point
registers are assumed for each additional thread, to capture the
architectural state. Sizes of the instruction TLB and data TLB are
also increased to support additional threads on SMT processors as
given in Table 1. We use the ICOUNT policy [19] to prioritize
instruction fetch from different threads.

We model L1 instruction and data caches and a unified L2
cache. All threads of an SMT share the L1 data and instruction
caches. For CMP, each processor core has its own L1 data and L1
instruction cache, and all cores share an L2 cache through a com-
mon bus. The media applications studied have a relatively small
working set and a high computation to memory ratio. Therefore,
relatively smaller L1 caches are sufficient to obtain very high hit
rates. Both L1 instruction and data cache sizes were selected af-
ter a sensitivity analysis. For each application, we determined the
minimum cache size necessary to obtain a hit ratio over or close to
99% for the data cache and a hit ratio over or close to 98% for the
instruction cache. Across all applications, the largest such size was
found to be 8K for data and 16K for instruction cache. Therefore,
as summarized in Table 1, each CMP processor core was given an
8K L1 data cache and a 16K L1 I cache for all CMP systems. SMT
cores were given the same amount of cache per thread supported
(e.g., two-thread SMT has a 16K L1 data and 32K L1 instruction
cache). Consequently, in a given system, both CMP and SMT pro-
cessors have the same total amount of cache. (We also evaluated
another set of cache parameters where the SMT cache size was
smaller than the combined cache size on the corresponding CMP;
e.g., for 4-thread systems, we used 16K data cache for SMT and

8K for each of the four CMP cores for a total of 32K. The overall
trends in the results were the same as those reported here.) All
caches are non-blocking and writeback. A relatively large cache
line size of 64B was found to be beneficial for these applications
due to their streaming nature.

We did not perform a detailed sensitivity analysis for the L2
cache because (a) it does not have much impact on performance
since L1 hit ratios are very high, (b) the average power for the L2
cache is a small fraction of the total even for the large 1MB L2
cache we model (see Figure 5), and (c) the L2 cache is common to
all systems. For the same reasons, although we measure the energy
of the L2 cache, we do not include it in the total energy reported
in our comparisons.

We investigate all the core architectures at frequencies rang-
ing from 600MHz to 1.6GHz with voltages scaled according to
data for the Intel Pentium-M (Centrino) mobile processor which
supports this frequency range [1]. The configurations of a core
architecture at different frequencies may be interpreted as a sin-
gle processor supporting dynamic frequency and voltage scaling
(DVS) or as different fixed-frequency processor designs. Note
that, compared to wider processors, it may be possible for nar-
rower processors to support a higher frequency at a given voltage.
We did not model this effect since it is difficult to do so accurately
and would only further favor CMP processors, as easily confirmed
by our analysis in Section 4.3.

Henceforth, we use the term core architecture to refer to the
fetch/decode width and other parts dependent on this width. We
use the term configuration to refer to a combination of the core ar-
chitecture and frequency. For a given number of threads t and core
architecture c, we refer to CMPt-c (or SMTt-c or HYBt-c) as the
system architecture and the combination of system architecture
and frequency as the system configuration.

3.2 Workloads

We consider eight single-thread multimedia benchmarks cov-
ering high and low bit rate video and speech codecs. These bench-
marks are summarized in Table 2(a) and described in more detail in
previous work [11]. They form the core components of many high-
level multimedia applications (e.g., video teleconferencing, DVD
playback, video editing) and are representative of most widely
used media benchmarks. A real system would run several of these
benchmarks together as part of one or more such high-level ap-
plications. For example, a video teleconferencing application be-
tween N participants at N different sites would involve one video
and speech encoder and N -1 video and speech decoders at each
site. A participant may receive high or low bit rate streams de-
pending on the computation power and bandwidth available at the
other participating sites; therefore, a site may need to support dif-
ferent types of decoders and encoders within the same application.
Moreover, even a given benchmark may be parallelized creating
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Width Dependent Parameters
Fetch/decode rate Width ∈ {2, 3, 4, 5, 6, 7, 8}
Instruction window (reorder 24 * Width
buffer) size
# of integer functional units Width
# of floating point units 1 (Width ≤ 3), 2 (Width ≤ 6),

3 (Width > 6)
# L1 ports 2 (Width ≤ 6), 3 (Width > 6)
# Address generation units 2 (Width ≤ 6), 3 (Width > 6)
Retirement rate # Int units + # FP units + # L1 ports
Load/Store buffer size 8 * Width

Thread Dependent Parameters
L1 data cache 8K * Threads, Write Back
L1 data cache associativity 4 (Threads ≤ 2), else 8
L1 instruction cache 16K * Threads, 4-way
iTLB & dTLB size 128 entries * Threads
Branch prediction 2K entries * Threads, bimodal agree
Return address stack size 16 * Threads
Integer register file size 32*Threads + reorder buffer size
Float register file size 32*Threads + (reorder buffer size)/2

Common Processor Parameters
Processor core speed 600 MHz to 1.6 GHz (voltage scaled)
Process technology 0.13 micron
Integer FU latencies 1/4/12 add/mult/div (pipelined)
FP FU latencies 4 default, 12 div.

(all but div. pipelined)
Branch penalty 16 cycles
Bit widths 64-bit data / 48-bit address

Common Memory Hierarchy Parameters
L1 & L2 cache line size 64B
L2 cache (on chip) 1MB, 16-way associative, write back

64B line, 1 port
Main Memory 16B/cycle, 4-way interleaved

Common Contentionless Memory Latencies
L1 instruction cache access time 1 cycle
L1 data cache access time 2 (≤ 16K), 3 (32K)
CMP bus latency 2 cycles
L2 cache access time (on chip) 8 cycles
Main Memory 100 cycles (L2 miss to memory)

Table 1. Processor core and memory parameters.Width refers to the fetch/decode width of a core andThreads refers to the number of
threads supported by a single core.

Benchmark Type Input size Base

of codec (Frames) IPC

GSMd Speech 1000 3.4
GSMe 1000 3.5
G728d Speech 1000 2.2
G728e 1000 1.9
H263d Video 450 3.1
H263e 50 2.0
MPGd Video 200 2.8
MPGe 50 1.5

(a)

2-thread Total 2-thread Total

workload IPC workload IPC

MPGe MPGe 2.9 MPGe GSMd 4.9
MPGe G728d 3.7 H263e H263d 5.0
H263e H263e 3.9 H263d G728d 5.3
G728e G728d 4.1 H263e GSMe 5.4
MPGe MPGd 4.2 GSMe G728d 5.7
H263e MPGd 4.7 H263d GSMe 6.6
H263d G728e 4.8 GSMe GSMe 7.0

(b)

4-thread workload Tot. IPC

MPGe MPGe MPGe MPGe 5.8
MPGe MPGe G728e G728d 7.0
H263d G728e H263d G728e 9.6
H263e H263d H263e GSMe 10.4
MPGe MPGd GSMe GSMe 11.2
MPGd GSMd H263d G728d 11.4
H263d GSMe H263d GSMe 13.2
GSMe GSMe GSMe GSMe 13.9

(c)

Table 2. (a) Single-thread benchmarks with IPC on most aggressive processor, (b) two-thread workloads, and (c) four-thread workloads.
(b) and (c) are ordered by the sum of the IPCs of the constituent threads when run individually on the most aggressive core configuration.

multiple independent threads that process different frames inde-
pendently. Thus, we can envisage realistic workloads consisting
of a number of different copies of different combinations of the
benchmarks in Table 2(a) with each copy working on its own data.

For the small-scale systems studied here (two or four thread
CMP and SMT), we can assume that the total number of threads
available for running in a realistic system will be larger than the
number of simultaneous threads supported in the system. A real-
time operating system (RTOS) must therefore choose which com-
bination of threads to co-schedule at each time, with considera-
tion for any synchronization among related threads (e.g., audio and
video for the same stream). The co-scheduling algorithm can have
an impact on the overall performance, but real-time co-scheduling
algorithms for SMT are still an open area of research [13]. To
eliminate dependence on the co-scheduling algorithm, we report
results separately for different combinations of N threads for an
N -thread system. Thus, for a two-thread system, we separately
report results for different pairs of the eight benchmarks of Ta-
ble 2(a). The actual performance of a full real-time application
would depend on how often the RTOS co-schedules each of the
specific combinations for its chosen co-scheduling policy.

Furthermore, a real RTOS scheduling policy may co-schedule
different parts of N concurrent benchmarks at different times. For
example, consider two benchmarks with very different execution
times per frame. The shorter frame may be co-scheduled along
with any part of a longer frame and it is possible the execution
characteristics are different depending on when the two frames
are co-scheduled. Again, to report results independent of the co-

scheduling policy and to average out such differences, we run sev-
eral frames of the co-scheduled benchmarks to get the average be-
havior for that benchmark combination. The maximum number of
frames we consider for each benchmark is reported in Table 2(a)
along with the IPC on an 8-wide (superscalar) core for each appli-
cation.

Studying all combinations of two and four out of our eight
benchmarks would have resulted in an inordinately large num-
ber of workloads (e.g., 36 possibilities for 2-thread systems). We
therefore selected a representative subset of these, summarized in
Table 2(b) and (c), using a methodology described further in [15].
The four-thread workloads are combinations of the two-thread
workloads [15]. When running on the HYB system, the con-
stituent two-thread pairs are paired again for each SMT core.

For workloads with threads from different applications, there is
an inherent problem when attempting to compare the same amount
of work on all system architectures. For the first application of a
given workload, we run the same number of frames for all CMP
and SMT system architectures. During that time, the amount of
work done by the other threads can change slightly for different
system architectures. This is an inherent property of SMT and
CMP architectures. Since we assume that the RTOS has enough
threads to schedule and we want to maximize the throughput of
the system, we run the other threads until the first thread finishes
its maximum number of frames. Thus, the first thread executes
the same number of instructions on all core architectures. To over-
come the problem of the other threads executing a slightly differ-
ent number of instructions on different system architectures, when
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comparing energy efficiency, we use energy and execution time
metrics that are normalized to the number of instructions executed
– Energy Per Instruction (EPI) and Time Per Instruction (TPI).1

Note that this problem does not arise when all threads in the work-
load are from the same application, since all threads finish almost
at the same time due to the fairness of SMT’s ICOUNT policy and
the symmetry of CMP. We study several such workloads for all
systems, and they follow the same overall patterns as the others.
We also measured the discrepancy in instruction counts and found
that it was < 5% for most and < 12% for all workloads.2

3.3 Simulation Environment and Methodology

We model the performance of the systems in Section 3.1 us-
ing a version of the RSIM simulator [12] modified to support both
SMT and CMP. RSIM is an execution-driven, cycle level simula-
tor that models the full impact of branch and address speculation
(e.g., modeling wrong path instructions) and contention at all re-
sources. All applications are compiled with the SPARC SC4.2
compiler with full optimization (O4). Previous work showed that
for the benchmarks studied here, performance scales virtually lin-
early with processor frequency, since the amount of time spent on
memory stalls is negligible [11]. We therefore run simulations at
one base frequency, and use linear scaling to obtain execution time
at other frequencies. We validated this by running actual simula-
tions with frequencies at 100MHz intervals. (It was impractical to
simulate all frequencies over the 1GHz range reported here.)

We use a combination of tools integrated with RSIM to model
the dynamic and static energy of all systems. To model dy-
namic energy of processor cores and caches, we use the Wattch
tool [5] integrated with RSIM. Wattch is enhanced to model du-
plicated resources, additional tags for thread IDs, etc. For CMP,
we model the energy consumption of the bus between the L1 and
L2 caches using models from the Orion project [21].3 We assume
a bus length of 5mm with two cores and 10mm with four cores.
However, as shown in Figure 5, the bus energy is very small.
We also model the static energy consumption of major structures
like caches, register files, and the instruction window using the
HotLeakage model [22]. For this purpose, we model the tempera-
ture of major structures on the processor using temperature models
described in [18]. However, for the structures we model and for
the 0.13 micron technology parameters we use, we find that the
leakage power is less than 2% of the dynamic power.

We assume aggressive clock gating for all CMP and SMT
cores, as in many current general-purpose processors [3]. Al-
though it is relatively easy to disable clocking of unused ports of
the multi-ported structures and unused functional units, it is prac-
tically not possible to achieve 100% clock gating. Some clock gat-
ing events are expensive to identify and some of the gating is fore-
gone to avoid lengthening critical paths, race conditions, unequal
clock distributions, extensive validation and di/dt effects [9]. We
assume that all but 10% of the unused circuitry can be turned off
with clock gating in typical industrial clock-gated circuits, as men-

1We cannot use IPC since we vary the frequency as well. TPI =

1/(Frequency × IPC).
2The only other reasonable alternative would be to consider a specific
number of frames from the other threads. This has the drawback that some
thread contexts/cores will remain idle when the shorter thread(s) finishes,
and would likely favor CMP (since the idle processor could be deactivated
with CMP). Nevertheless, we evaluated several workloads with this alter-
native and found the results to be similar.
3We thank Li-Shiuan Peh and Hang-Sheng Wang for quickly generating
and providing us the bus models.

tioned by Brooks et al. [5]. (For reference, for the Pentium 4 pro-
cessor, the idle power consumption was found to be 15% to 20% of
the power consumed when running MPEG [7].) We later discuss
the sensitivity to this parameter and give results with 20% ungated
circuitry and with no gating at all (Section 4.3.1).

3.4 Metrics and Representation of Collected Data
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Figure 2. Example EPI vs. TPI graph.

When considering energy as a metric of comparison, one must
also consider the performance obtained. One common metric used
is the energy-delay product (i.e., energy/performance) [8]. How-
ever, this metric is unsatisfactory if the user desires a fixed amount
of performance or is constrained by a fixed amount of energy (e.g.,
battery life). Specifically, for real-time applications such as those
studied here, there is often a fixed desirable performance target
(derived from the application deadlines and the rest of the load on
the system). We therefore focus our effort here on understand-
ing optimal energy configurations, given a fixed performance tar-
get (the data and analysis for the optimal performance configura-
tion for a fixed energy target is similar). We report results for the
energy-delay product and other more conventional metrics in [15].
Recall from Section 3.2 that we use the normalized energy per in-
struction (EPI) and time per instruction (TPI) to measure energy
and performance respectively.

For a CMP or SMT with a given core architecture, varying the
processor frequency provides a continuum of performance points.
Any of these points could be achieved either as a fixed-frequency
design or in a system with DVS support. We collect data for CMP
and SMT systems using all combinations of core architectures and
frequencies given in Section 3.1. For a given class of systems (2
or 4 thread), for each workload, for each performance point (i.e.,
TPI), we compare all the system configurations that provide that
performance, to determine which system gives the least energy for
that performance. In general, the lowest EPI system is different
for different performance points.

Figure 2 illustrates how we represent the collected data to per-
form this comparison for 2-thread systems. It plots EPI versus
TPI for the MPGe MPGd workload. Each curve in the figure
represents one core architecture for an SMT or CMP system and
each point on a given curve represents a different frequency (from
1.6GHz on the left to 600MHz on the right). Only four systems
are shown for clarity - CMP2-8, SMT2-2, SMT2-5 and CMP2-3.
The points along a vertical line on this graph represent points of
equal performance. The lowest point on the line represents the
configuration that gives the least energy for that performance. For
example, for a target TPI of 0.4ns, CMP2-3 provides the least en-
ergy. CMP2-3 also turns out to provide the least-energy for a large
performance range for this workload.

In general, the least-energy system architecture may be differ-
ent in different performance ranges for two reasons. First, not all
system architectures may be able to provide all performance points
on the extreme left and right sides of the TPI axis. For example,
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in Figure 2, CMP2-8 is least-energy for a few of the leftmost TPI
values, because CMP2-3 is unable to provide that level of perfor-
mance even at the maximum frequency. Second, in the middle
performance ranges, the least-energy configuration could change
if the curves of two architectures cross. This crossing can occur
due to the non-linearities in the voltage vs. frequency curve.

4. Results

We performed all our analysis using graphs such as shown in
Figure 2 – one graph per 2-thread or 4-thread workload, 14 curves
per 2-thread graph (7 each for CMP and SMT), and 21 curves
per 4-thread graph (7 each for CMP, SMT, and HYB). To distill
the information from these graphs into a more readable form, Fig-
ures 3(a) and (b) show the EPI values of the best SMT and the best
CMP architectures for the entire performance range. Figure 3(b)
shows the best HYB architecture as well. To save space, only
a few representative workloads are shown since other workloads
follow similar trends. Since one system architecture is the best-
energy architecture for a range of performance points (using dif-
ferent frequencies), we label the performance points at which the
best system architecture changes (going from left to right). The
best architectures are marked as sn, cn, and hn to indicate SMT,
CMP, HYB respectively, with a core fetch/decode width of n.

Tables 3(a) and (b) supplement the above graphs by tabulating
the magnitude of the EPI difference between the best SMT and
CMP configurations, as a percentage of the SMT configuration.
Since we cannot tabulate each of the infinite performance points
and since an average over the entire space is not too meaningful,
we divide the TPI axis on the EPI-TPI time graphs into three re-
gions (high, medium, and low), based on the performance degra-
dation relative to the highest performance configuration (which is
always the 8-wide, 1.6GHz CMP for all workloads). For two-
thread workloads, the performance degradation is from 1X to 1.5X
for the first region (highest performance), 1.5X to 3X for the sec-
ond region (medium performance), and > 3X for the third region
(lowest performance). For four-thread workloads, the performance
degradation is from 1X to 2X, 2X to 4X, and > 4X respectively
for the three regions. For the highest performance region, we only
include points where at least one SMT configuration can achieve
that performance.

For each region, the tables give the average percentage im-
provement (in EPI) of the best CMP configuration over the
best SMT configuration (and best hybrid configuration for four-
threads) at different performance points in this region. The aver-
age is calculated by finding the area between the two curves for
that region and dividing that by the TPI difference for that region.
Note that for a given region in this table, the optimal CMP, SMT,
and HYB architectures may be different at different points in the
region.

The EPI vs. TPI graphs as shown in Figure 3(a) and (b) also
convey information regarding absolute performance and average
power. The performance of systems with 8-wide cores at 1.6GHz
is given by the topmost points on each curve. Further, for a given
TPI, EPI is proportional to the average power. Since the discus-
sion below focuses on energy at equal performance (i.e., EPI for
given TPI), it follows that the discussion also applies to average
power (for different performance points).

4.1 Results Across All Configurations

Our data shows that for all our systems and workloads, for
all performance regions, a CMP architecture gives the least EPI.

Workload High Med Low

MPGe G728d 4 3 2
H263d G728e 5 4 1
MPGe MPGe 7 7 2
G728e G728d 8 6 3
H263e H263e 8 6 4
H263e H263d 8 8 4
MPGe MPGd 9 6 3
H263e MPGd 10 8 3
H263e GSMe 10 10 4
H263d G728d 10 10 4
GSMe G728d 11 10 5
MPGe GSMd 13 10 6
H263d GSMe 15 16 8
GSMe GSMe 19 18 9

Average 10 9 4
(a)

Workload CMP vs. SMT CMP vs. HYB

Hi Med Lo Hi Med Lo

MPGe MPGe MPGe MPGe 30 23 10 10 7 5
MPGe MPGe G728e G728d 30 24 10 10 8 5
H263d G728e H263d G728e 42 37 16 6 5 1
H263e H263d H263e GSMe 45 39 19 9 10 6
MPGe MPGd GSMe GSMe 47 43 21 18 15 8
MPGd GSMd H263d G728d 50 46 22 17 15 7
H263d GSMe H263d GSMe 53 51 25 13 14 10
GSMe GSMe GSMe GSMe 54 49 24 21 17 10

Average 44 39 18 13 11 6
(b)

Table 3. Range of % EPI savings of the best-energy CMP
over the best-energy SMT and HYB for different performance
regions (a) two-thread workloads and (b) with four-thread
workloads for high, medium, and low performance regions.

Comparing CMP and SMT, for two thread workloads, the differ-
ence between them is mostly small (average 10%, 9%, and 4%
respectively over the three regions). For four thread workloads,
CMP is significantly better than SMT (average 44%, 39%, and
18% for the three regions). In both cases, the difference increases
with increasing performance.

Focusing on HYB, our data shows that it is significantly more
energy efficient than SMT and comes close to CMP for many per-
formance points and workloads. On average, the difference be-
tween CMP and HYB is reduced to 13%, 11%, and 6% for the
three regions, respectively.

4.2 The Best Core Architectures

Figures 3(a) and (b) show that for all the workloads, the best
CMP uses a less or equally complex core architecture (i.e., lower
or same fetch/decode width) than the best SMT and the best HYB
at any given performance point. HYB is closer to CMP than SMT.
(The total resources available to CMP, however, are larger because
CMP has more processor cores.)

Further, different core architectures are the best in different per-
formance regions. Systems with fixed (vs. adaptive) architectures
need to pick one overall best core architecture to implement. We
define this to be the architecture that, when averaged across all per-
formance points, has the least EPI difference from the best core at
the same performance point. Note, however, that the overall best
architecture may not have performance points for the entire perfor-
mance region covered by all core architectures. Further, this also
assumes the presence of dynamic frequency/voltage scaling since
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Figure 3. EPI for best-energy SMT, best-energy CMP and, best-energy HYB configuration at different performance points for (a) two-
thread workloads and (b) four-thread workloads. The best system configurations are marked as sn, cn, or hn to represent SMT, CMP, and HYB,
respectively, with cores of fetch/decode width of n. They are marked only at the points where the best configuration changes, going from left to
right.
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an architecture is best only at the appropriate frequency. We find a
4-wide core to be the overall best for CMP for both two and four
thread systems, a 5-wide core is best for SMT2 and HYB4, and a
6-wide core is best for SMT4. More details are in [15].

4.3 Analysis of the Results

Section 4.3.1 provides a qualitative analysis for the underly-
ing reasons for the superior energy efficiency of CMP over SMT,
and determines factors that could make SMT more energy effi-
cient. Section 4.3.2 formalizes the intuition from Section 4.3.1 by
providing a mathematical model. These sections are complex, but
essential to understand our results and extrapolate to other system
parameters and workloads.

4.3.1 Qualitative Understanding
We know that EPI = Power × TPI = αCV 2f × TPI ,

where α is the switching activity factor, C is the total capacitance,
V is the supply voltage, and f is the frequency.4 α and C depend
on the core architecture. We refer to the reciprocal of αCV 2f as
the energy efficiency, or simply the efficiency, of the corresponding
system configuration. It follows that for a given class of system
(superscalar, CMPN, or SMTN, where N is the number of threads)
and a given TPI, the minimum EPI occurs for the configuration
that has the highest energy efficiency as defined above.

Figure 4 illustrates the effect of each factor in the energy effi-
ciency term. For a specific TPI (selected from the middle part of
the performance range), for CMP2 and SMT2 running the work-
load MPGe MPGe, parts (a)-(f) of the figure respectively show the
variation with core complexity (i.e., fetch/decode width) of IPC ,
C , α, αC , V 2f , and EPI. Note that for the V 2f plot, the fre-
quency value for a given core width is determined as the ratio of
TPI and IPC with that core. We show the graph of the product αC
due to its significance – αC is proportional to the average power
at a given voltage/frequency. It is also interesting to see the contri-
bution to average power from different structures. Figure 5 shows
this information for four systems and the MPGe MPGe workload.

To understand when the lowest EPI is obtained, the following
discusses, for a given TPI (i) how each of the above terms varies
with core width, and (ii) the relative values of each term for CMP
and SMT for the same core width.
(a) IPC (SMT ≤ CMP for our workloads): For both SMT and
CMP, we expect IPC to increase with core complexity at a dimin-
ishing rate, eventually leveling off, as seen in Figure 4(a). For
our compute-bound workloads, at a given core complexity, CMP
achieves almost perfect speedup in IPC, equal to the number of
threads or processor cores. The IPC speedup achieved by SMT at
that core complexity depends on the superscalar IPC of the indi-
vidual applications and on the resource sharing interactions among
the constituent applications. The higher the superscalar IPCs and
4This only considers dynamic power. Static or leakage power was neg-
ligible for the simulated technology. Although static power is expected
to become more important and CMP’s higher area for equal performance
may seem to imply higher static power, there are several factors that make
it unclear whether static power will favor CMP or SMT. First, analogous
to clock gating, static power can also be contained using power gating
and various process technologies (e.g., SOI, multiple-threshold transistors,
etc. [4]). Second, most of the chip area is typically consumed by the L2
cache which is common to both CMP and SMT. Finally, several factors
favor CMP when comparing at equal performance – SMT’s higher aver-
age dynamic power implies higher temperature which increases leakage,
SMT’s slightly more complex cores require higher area, CMP’s lower re-
source utilization implies higher potential for power gating, and CMP’s
lower required frequency allows for slower but lower leakage transistors.

the more negative the interaction, the more difficult it is for SMT
to get a high IPC speedup. Thus, for our workloads, we expect
that the SMT IPC will be ≤ the CMP IPC at a given complexity,
with the relative difference depending on the above two factors.
(b) CapacitanceC (SMT < CMP): C increases rapidly with com-
plexity, and depends only on the power model used. It is pro-
portional to the maximum power of a processor. We see that at
any core complexity, C of SMT is only a little higher than that
of the superscalar, since an SMT processor adds very little hard-
ware to the base superscalar. C for CMP, however, is a factor of
N higher than that of the corresponding superscalar (and hence
SMT), where N is the number of processor cores.
(c) Activity factor α (SMT > CMP): Since α is the fraction of to-
tal transistors switched per cycle, informally, it depends on (i) the
amount of clock gating or other power management techniques
in the system, and (ii) on the fraction of total transistors that are
“useful” to switch (this is roughly correlated to IPC/C, since more
useful switching implies higher IPC and more total transistors im-
ply higher C). Without clock gating or other power management
techniques, the value of α is always roughly the same. As clock
gating and other power management techniques become more ag-
gressive, α becomes more sensitive to IPC/C.

With increasing complexity, α will either stay roughly constant
(e.g., with no clock or power gating) or will change roughly cor-
related to IPC/C. At lower complexities, IPC/C could increase a
little, but at higher complexities, this ratio will generally go down.
Figure 4(c) shows this trend.

To compare α for SMT and CMP at a given core complexity,
we note that α for CMP is the same as that for the correspond-
ing superscalar. α for SMT is higher than for the superscalar
(and hence for CMP) since SMT sees a higher resource utiliza-
tion. Again, the factor by which α is higher for SMT depends on
the amount of clock gating (and other power management) and on
the IPC speedup from SMT (relative to C) over the corresponding
superscalar. For example, with no clock gating, α stays the same
as the superscalar (and CMP). More aggressive clock gating and
higher IPC speedup of SMT will increase the value of α relative
to CMP.
(d) αC (SMT < CMP): From the above discussion, we can deduce
that αC increases with increasing width. Comparing CMP and
SMT, αC is lower for SMT (at a given core width) due to its lower
IPC and C, and high clock gating.
(e) V2

f (SMT > CMP for our workloads): Since f is inversely
proportional to IPC for a given TPI and since V also depends on
f , the V 2f curve decreases rapidly with increasing complexity
and IPC (following IPC3 where V ∝ f ). At a given complexity,
SMT will have a higher value of V 2f than CMP since the IPC of
SMT is lower for our workloads.
(f) EPI (SMT ? CMP): The EPI graph in part (f) is the product of
the previous two curves (αC, V 2f ). For both CMP and SMT, with
increasing complexity, αC generally increases. At lower com-
plexities, this increase is offset by the decrease in V 2f (due to
increasing IPC), reducing EPI . As the IPC increase diminishes,
however, the decrease in V 2f is insufficient, causing EPI to in-
crease again. Thus, each EPI vs. core complexity curve has a
minimum point, which is the highest energy efficiency point men-
tioned above.

Putting it together – Why is CMP EPI better than SMT EPI?
For SMTN to have a better EPI than CMPN (N is the num-

ber of threads), the most energy efficient SMT configuration (call
this CminSMT ) must have a higher efficiency than the most ef-
ficient CMP configuration (call this CminCMP ). Let us start by
considering the relative efficiency of SMT at the CminCMP con-
figuration. Based on the above discussion, at the core complexity
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power), (c) activity factor, α, (d) αC (proportional to average power), (e)V 2f , and (f) EPI.

0

1

2

3

Rename Br.Pred InsWin Ld/St-Q IntReg FloatReg Ins$ Data$ ALU FPU ResBus CLK L2$ CMPBus

W
at

ts

CMP2-4

SMT2-4

CMP2-5

SMT2-5

Figure 5. Average power of individual structures for CMP2-4, SMT2-4, CMP2-5, SMT2-5 for MPGeMPGe at the maximum frequency.

of CminCMP , SMT has an advantage over CMP from C , which
is much lower than that for CMP. However, SMT has a disadvan-
tage from α (based on clock gating and IPC speedup from SMT)
and V 2f (based on IPC speedup from SMT and CMP). If SMT
has a high enough IPC speedup (relative to CMP), then it is pos-
sible that this disadvantage is offset by the lower C , and SMT has
a lower EPI than CMP at CminCMP (lower bounds for this IPC
speedup are presented in the next section).

If the IPC speedup of SMT at CminCMP is not high enough,
then it is still possible to see a lower EPI for SMT by changing
its core complexity. By increasing the core complexity, SMT can
increase its IPC and reduce V 2f .5 However, this increases C ,
offsetting some of the benefit of reduced V 2f . C will increase by
a larger amount as the slope of the C vs. complexity curve gets
steeper. Increasing complexity could also increase α, depending
on the amount of clock gating and the relative change in IPC to
C . Depending on how much the IPC of SMT rises with respect to
a rise in αC , the increase in IPC (i.e., reduced V 2f ) may or may
not be able to beat the EPI of CMP. Since the minimum EPI point
for CMP is also the minimum for the superscalar, the superscalar
IPC does not rise fast enough with increasing core complexity at
this point. The rise in IPC for SMT must therefore come from a
high speedup of SMT over the superscalar from running multiple
threads together, not just from the inherent ILP of each thread.
Thus, whether SMT or CMP will have lower EPI depends on a
number of factors, as summarized below.
In summary, the following factors will hinder SMT from achiev-
ing a higher energy efficiency than CMP:

5The analysis also applies to reducing complexity, but this is not likely
to improve efficiency since we start from a point that is also most energy
efficient for the superscalar.

1. High level of clock gating (or other power management).

2. Steep capacitance vs. core complexity curve, requiring more
IPC speedup from SMT to be more efficient.

3. Workload characteristics that make it harder for SMT to ob-
tain IPC speedup over the corresponding superscalar; e.g.,
high superscalar IPC or negative resource sharing interac-
tions among constituent applications.

4. Workload characteristics that give CMP a high IPC speedup
over the corresponding superscalar (e.g., compute-bound
workloads).

For the systems we study, all of the above factors are present,
hindering the energy efficiency of SMT relative to CMP. The first
factor is not likely to change towards favoring SMT in the near fu-
ture. Nevertheless, we ran experiments increasing the non-clock-
gated circuitry to 20% from 10%. This made SMT slightly better
than reported here, but CMP is still better for most workloads. Al-
though unrealistic, we also experimented with eliminating clock
gating altogether. This made SMT significantly better for most 2-
thread workloads and for the lower performance region of 4-thread
workloads but CMP was still far better for most of the 4-thread
workloads in the high and medium performance regions. The sec-
ond factor above is also likely to hold for out-of-order cores. The
third and fourth are workload dependent, and could possibly lead
to different results with different workloads.

4.3.2 Mathematical Model and Validation
We further formalize the above qualitative analysis with a

mathematical model, and use the model to derive quantitative
bounds on the IPC speedups that are required from SMT for it
to be more energy efficient. Since it is impractical to simulate all
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hardware configurations and workloads, our mathematical model
plays an important role in increasing the applicability of our re-
sults to systems and workloads that we do not simulate. For sim-
plicity, our model below assumes that V ∝ f , but it can be mod-
ified for other relationships between V and f . The approxima-
tion gives EPI = αCf3 × TPI . Substituting f =

1

TPI×IPC
,

we get EPI =
αC

IPC3

1

TPI2 . This expression is independent of
frequency. It indicates that for a given system (i.e., superscalar,
CMPN, or SMTN, where N is the number of threads) and a given
TPI, there is one core architecture that provides the highest energy
efficiency. This is the architecture that provides the lowest αC

IPC3

for that system, and we refer to that architecture as Amin.6 We
call the reciprocal of αC

IPC3 as the energy efficiency, or simply ef-
ficiency (Eff), of a core architecture. Note that in Section 4.3.1,
we defined efficiency for a system configuration, which depends
on frequency. The above efficiency is for the core architecture and
is independent of frequency.

Denote the IPC speedup given by CMPN (SMTN) over the
corresponding superscalar as IPCSpeedCMPN (IPCSpeedSMTN).
Note that the following assumes a given TPI for all cases. When
not clear from the context, we will use subscripts or postfixes to
indicate the system and core architecture that a specific quantity
applies to. Thus, αCMP2,AminCMP2 refers to α of a CMP2 sys-
tem using the core that is the most efficient for CMP2 for the given
TPI. We know that CSMTN,AminSMTN ≈

CCMPN,AminSMT N

N
.

Let αSMTN,AminSMTN = G × αCMPN,AminSMTN (note that
α for CMP is the same as that for the corresponding superscalar).
Then SMTN EPI is better than CMPN EPI if

Eff CMPN,AminCMPN < Eff SMTN,AminSMTN

i.e., if Eff CMPN,AminCMPN <

IPCSpeedSMTNAminSMTN
3
×

IPCCMPN,AminSMT N
3

IPCSpeedCMPNAminSMT N
3

G × αCMPN,AminSMTN × CCMPN,AminSMTN ×
1

N

i.e., if IPCSpeedSMTNAminSMTN
3 >

Eff CMPN,AminCMPN

Eff CMPN,AminSMTN

×

G × IPCSpeedCMPNAminSMTN
3

N
(1)

Since for our workloads, CMPN sees an IPC speedup of N, it
follows that SMT is more energy efficient if

IPCSpeedSMTNAminSMTN
3 >

Eff CMPN,AminCMPN

Eff CMPN,AminSMTN

× G × N2 (2)

Equations (1) and (2) clearly quantify the impact of all the four
factors identified in the previous section as hindrances for SMT.
Higher clock gating is represented by a higher G. The impact of the
steepness of the C vs. core complexity curve is quantified by the
ratio of the efficiency of CMP (and equivalently the superscalar)
at AminCMP and at AminSMT. A steep C vs. core complexity
curve will yield a higher ratio (recall that in the earlier discussion,
“steepness” was considered relative to the increase in IPC, which
is quantified by the efficiency). Finally, the workload characteris-
tics are represented by the SMT and CMP IPC speedup terms.

We can also use the above equation to yield a lower bound on
the SMT IPC speedup for SMT to be more efficient. We know that
the efficiency ratio in the above equation is≥ 1, since CMP is most
efficient at AminCMP. Similarly, G ≥ 1 . Then for our workloads,
equation (2) implies that at the maximum SMT efficiency point,
6Choosing a core architecture fixes a frequency for a given TPI. If this fre-
quency is not supported by the system for the architecture with the highest
efficiency, then for Amin, we must choose the core architecture with the
next highest efficiency for which the corresponding frequency is supported.

the speedup in IPC of SMTN must be > N2/3. For N=2, this is
1.59 and for N=4, this is 2.52. More generally, from equation (1),
SMT must see an IPC speedup of at least 80% of the CMP speedup
for two threads and 63% for four-threads.

Validation: To increase our confidence in our analysis and exper-
iments, we attempted to fit our results within the above equation.
In particular, we determined the lowest value of G from our exper-
iments for a given performance point and plugged it into equation
(2) to get a tighter bound on the SMT speedup. All our results
were within this bound. Specifically, for the highest performance
region, the IPCSpeedSMTAminSMT averaged 1.6 to 1.8 for 2-
thread workloads and 2.1 to 3.0 for 4-thread workloads. These
speedups are high and were sufficient for SMT to be comparable
with CMP for many 2-thread workloads, but still lower than the
predicted bound for 4-thread workloads.

4.4 Implications of Results

4.4.1 A Case for a Hybrid CMP/SMT Architecture
Our results show that HYB is significantly more energy effi-

cient than pure SMT and close to CMP. Moreover, HYB uses only
slightly more complex cores than CMP at the least energy configu-
ration. Consequently, the hybrid architecture with two SMT cores
generally needs less silicon area than a 4-core CMP, for equal per-
formance. Moreover, such an architecture will also provide better
energy for workloads that would not scale well in performance
across a four core CMP. Consequently, HYB appears to be an at-
tractive “best-of-all-worlds” solution for four-threads.

4.4.2 A Case for Adaptive Architectures and DVS
Our data shows that it is possible to pick one “overall best” core

architecture for CMP and one for SMT to obtain close to optimal
EPI for many cases. However, this core architecture is insufficient
in the regions of maximum or minimum performance for many
workloads, and in the middle performance regions for some work-
loads [15]. If these cases are important, then the best design would
involve an adaptive processor that can change the active resources
and fetch/retire width depending on the workload and desired per-
formance/energy target (e.g., [2]). Previous control algorithms for
such adaptations (e.g., [16]) could be applied in a straightforward
way to CMP, but need further investigation for SMT. Further, CMP
shows better potential for such techniques due to its lower utiliza-
tion of resources.

Similarly, our data also shows that the lowest EPIs are obtained
across a range of frequencies for CMP and SMT, supporting the
use of DVS for these systems.

Finally, we note that CMP provides unique methods of adap-
tation that are not readily available to SMT architectures. Specifi-
cally, CMP can apply DVS and architectural adaptations indepen-
dently to each core, depending on the type and amount of work to
be done in each co-scheduled thread. We find that 10 out of the
14 two-thread workloads can obtain 9%-15% energy savings over
the currently optimal CMP configuration, in the High and Medim
performance regions, if independent DVS is available to each core.

5. Conclusions

This paper provides the first comprehensive comparison of the
energy efficiency of CMP and SMT for multimedia applications
on modern out-of-order general-purpose processors. SMT proces-
sors increase throughput by using resources more efficiently while
CMP processors duplicate resources at the expense of low utiliza-
tion. For the fairest comparison, it is important to compare energy
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at the same performance. Further, since different combinations of
core architecture and frequency can provide a given performance
but with different energy, it is important to explore a large design
space and carefully pick the system pairs for comparison. We con-
sider a wide range of architectures and frequencies to provide a
large range of performance points. For each performance point,
we compare the lowest energy SMT and CMP. We evaluate two-
thread and four-thread multimedia workloads, derived from eight
(sequential) multimedia benchmarks.

We find that across the performance spectrum, a CMP con-
figuration is the most energy efficient for our systems, for all of
our workloads. For two-threads, the difference between CMP and
SMT is low, but for four-threads, it is significant. Our detailed
analysis finds that several factors influence this outcome, includ-
ing (1) aggressive clock gating, (2) high CMP speedup, (3) the
relatively steep slope of the power vs. complexity curve in modern
out-of-order processors, and (4) the inability of SMT to achieve the
extremely high speedups required for it to be more efficient than
CMP. It is unlikely that a modest change of several processor or
technology parameters would bring significantly different results.
Our analysis shows that it is necessary for SMT to obtain very high
speedups (80% of the CMP speedup for two-thread workloads and
63% of the CMP speedup for four-thread workloads), or reduce
clock gating significantly for SMT to become considerably better.
Since it is impractical to simulate all hardware configurations and
workloads, we develop a mathematical model that can encompass
all the above factors. This model plays an important role in in-
creasing the applicability of our results to systems and workloads
that we do not simulate, including explicitly parallel applications.

Although our results clearly underscore the advantage of CMP
for four-thread workloads, this advantage comes at the cost of sil-
icon area. A hybrid architecture consisting of two cores with each
core supporting a two thread SMT is much more energy efficient
than SMT and has a lower area than CMP for equal performance.
This architecture is also likely to perform better for workloads that
do not scale across four CMP cores. Thus, such a hybrid architec-
ture appears to be an attractive middle ground solution.

Finally, we find that at most performance points, one core ar-
chitecture provides the best overall energy efficiency. There are,
however, other performance points where other core architectures
are optimal (for CMP and SMT). This motivates adaptive architec-
tures that can deactivate parts of the core that lead to energy inef-
ficiencies. Similar observations also motivate DVS. We also find
that exploiting heterogeneity in CMP cores could further improve
the CMP energy efficiency. SMT processors are not currently eas-
ily amenable to such adaptations.

There are several directions for future work. We would like
to study the effect of various real-time scheduling algorithms on
these systems and also explore how adaptive cores can bring more
energy savings. We are also studying general-purpose architec-
tures that are different from out-of-order superscalar processors to
support multimedia applications with higher energy efficiency.
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