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This paper develops circuit simulated routing algorithms. We model the routing graph by an

RC network with terminals as inputs, and show that the faster an output reaches its peak, the

higher the possibility is for the corresponding Hanan or escape node to become a Steiner point.

This enables us to select Steiner points and then apply any minimum spanning tree algorithm

to obtain obstacle-free or obstacle-aware Steiner routing. Compared with the existing algorithms,

our algorithms have significant gain on either wirelength or runtime for obstacle-free routing, and

have significant gain on both wirelength and runtime for obstacle-aware routing.

Categories and Subject Descriptors: B.7.2 [Hardware]: Integrated Circuits—Design Aids

General Terms: Algorithms, Design, Performance
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1. INTRODUCTION

Rectilinear Steiner minimum tree (RSMT) construction is a fundamental research
problem in VLSI design. For a given set of terminals, the RSMT problem is to
find a set of additional points, i.e. Steiner points, such that the rectilinear minimal
spanning tree (RMST) connecting all terminals and Steiner points has the minimal
length. The RSMT problem is NP-complete [Garey and Johnson 1977]. Yet, a few
properties have been revealed to help solve this problem: An optimal RSMT can
be found in the Hanan grid, which is composed by horizontal and vertical lines
from each terminal. Also, at most n− 2 Steiner points are required to construct an
optimal RSMT [Hwang et al. 1992].

GeoSteiner [Warme and et al ] is an exact algorithm with a high complexity. The
following heuristics have been proposed to improve algorithm efficiency: 1-Steiner
[Kahng and Robins 1995] iteratively adds one Steiner point each time to reduce wire-
length. A primal-dual approach based on 1-Steiner is also proposed[Mandoiuand
et al. 2000]. Recent work to further reduce runtime complexity includes follows:
A spanning graph based O(nlogn) heuristic was proposed in [Zhou 2003]. It uses
spanning graph to help both generating the initial spanning tree as well as finding
good candidates for the edge substitution. A batched greedy triple based O(nlog2n)
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Fig. 1. (a) Hanan grid with three terminals. (b) Escape graph with the same three terminals and
one obstacle. (c) The corresponding routing graph. (d) The corresponding RC mesh

heuristic FastSteiner [Kahng et al. 2003] was also proposed, which is based on a
batched version of the greedy triple contraction algorithm of Zelikovsky [Zelikovsky
1993]. The look-up-table based heuristic FLUTE [Chu and Wong 2005] is another
fast and accurate technique to perform rectilinear Steiner minimal tree (RSMT)
construction. There is a user-defined parameter to control the tradeoff between
accuracy and runtime. FLUTE is optimal and extremely fast for nets up to degree
9. As it handles low degree nets particularly well, it is most suitable for VLSI
applications in which most nets have a degree 30 or less.

Aforementioned approaches all assume no obstacles for routing. In practice,
macro cells, IP blocks and pre-routed nets are considered as obstacles for rout-
ing. Therefore obstacle-avoiding RSMT (OARSMT) construction must be studied.
Escape graph [Ganley and Cohoon 1994] is often used to convert the OARSMT
problem to a RSMT problem on a graph. The distance between two points in
the presence of obstacles is calculated based on the obstacle-avoiding shortest path
algorithm [Zheng et al. 1996]. [Zachariasen and Winter 1999] presented an exact
algorithm for obstacle-avoiding Euclidean Steiner tree construction, but its high
complexity prohibits it from practical use. As opposed to the case for RSMT with
no obstacles, few heuristics have been proposed for OARSMT due to the difficulty
in handling obstacles. Line search heurisitic was introduced in [Hightower 1969]
and [Mikami and Tabuchi 1968], but the routing quality is not good for multiple
terminals. Most existing obstacle-avoiding RSMT algorithms (e.g., [Akers 1967;
Soukup 1978; Hadlock 1977; Rubin 1974]) use multi-terminal variants of the maze
algorithm, with a high space demand but a result far from optimal. An-OARSMan
was proposed recently [Hu et al. 2005] based on ant colony optimization. A greedy
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obstacle penalty distance (OP-distance) local heuristic was used in the algorithm
and performed on the track graph. It achieves short wirelength with reduced but
still long runtime.

The quality of an RSMT is measured by the so called Steiner ratio [Hwang et al.
1992], the ratio of the Steiner tree length over the MST length. The existing
heuristics for RSMT and OARSMT improves either runtime (e.g., [Chu and Wong
2005]) or quality (e.g., [Zhou 2003; Hu et al. 2005]), but not both for a large number
of terminals. Ideally, we need an algorithm to achieve the best quality and efficiency
of existing work simultaneously. To this end, we propose an algorithm, cktSteiner,
which simulates the routing problem by circuit behavior. In our algorithm, the
routing graph is modeled as an RC mesh. When impulse currents are applied at
the terminals, we use dominant voltage responses at Hanan nodes to decide Steiner
points. The faster a node reaches its peak voltage, the higher the possibility is
for the node to become a Steiner point. Therefore, we can easily select Steiner
points from Hanan nodes and build high-quality RSMT and OARSMT efficiently.
We call the resulting algorithms cktSteiner. Similar to 1-Steiner, we develop both
1-cktSteiner and B-cktSteiner algorithms, depending on whether one or multiple
Steiner points are iteratively added to build or improve the routing.

cktSteiner has a few advantageous algorithmic features. It uses numerical circuit
simulation to determine Steiner points, while virtually all existing approaches use
combinatorial algorithms. cktSteiner applies to both RSMT and OARSMT with a
small runtime difference, but existing RSMT algorithms either can not be extended
to the OARSMT problem or suffer a big runtime increase. Because cktSteiner
simulates routing by circuit behavior, it is a new addition to the existing simulation-
based algorithms such as simulated annealing, genetic algorithm, and force-based
(placement) algorithm that have been successfully used in VLSI design.

We have also observed exciting experimental results. When there are no routing
obstacles, 1-cktSteiner obtains similar wirelength compared with the best existing
heuristic FastSteiner [Kahng et al. 2003]. Both are less than 1% worse than the
exact solution, but 1-cktSteiner is up to 11.3X faster than FastSteiner. Compared
with the fastest existing heuristic FLUTE, B-cktSteiner has a similar runtime but up
to 1.9% shorter wirelength. Without modifications, 1-cktSteiner and B-cktSteiner
can directly be applied to routing with obstacles and the runtime increase is mini-
mal. Compared with the best existing obstacle-avoiding An-OARSMAN algorithm,
1-cktSteiner has similar runtimes and reduces wirelength by 6.12% and B-cktSteiner
has an average speedup of 357X with similar wirelength. Compared with Magma
routing package [mag ] containing eight routing algorithms, 1-cktSteiner reduces
the chip level total wirelength by up to 1.23% and reduces net-based wirelength by
up to 8.15%.

The remainder of the paper is organized as follows: Section 2 describes the
problem modeling and validates the key observation upon which our cktSteiner
algorithm is proposed. Section 3 introduces the cktSteiner algorithm and speedup
techniques. Section 4 presents experimental results. Section 5 concludes the paper.
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2. CIRCUIT MODEL FOR ROUTING

In this section, we first show how a routing graph can be mapped into an RC circuit.
Then the relationship between the Steiner points and the time domain responses
for the RC circuit is revealed, which is the basis of the cktSteiner algorithm.

2.1 Problem Formulation

In this paper we start with the routing model as in [Albrecht 2000] and tessellate
the routing area into rectangular partitions as global tiles, and pins within the
same global tile are mapped into the center of the tile. The routing plane can be
formally modeled by an undirected graph Gh(V, E), namely the Hanan grid, where
each vertex v ∈ V represents a global tile, and each edge e ∈ E represents the
routing area between two adjacent tiles. An example of the Hanan grid is shown in
Figure 1 (a). To consider the impact of obstacles such as hard macros or pre-routed
nets on routing, the routing graph Ge should be constructed by intersecting lines
from vertices as well as the edges of the obstacles. We call the routing graph an
escape graph [Ganley and Cohoon 1994]. An example of an escape graph is shown
in Figure 1 (b).

Without loss of generality, in this paper, we use a uniform G, or global routing
graph (GRG), which is fine enough so that all the Hanan nodes or the nodes of the
escape graph are located on the nodes of it, i.e., the Hanan grid Gh or the escape
graph Ge are the subgraphs of G. It is obvious that any Steiner tree constructed
in the Hanan grid or in the escape graph can also be found in our routing graph.
Such a routing graph is shown in Figure 1 (c), which applies to both (a) and (b).
By introducing this routing graph, routing with or without obstacles are indistin-
guishable from each other except that the distance between two nodes should be
the obstacle-avoiding distance in the cases of obstacle-avoiding routing.

With respect to the above discussions, we formulate the following problem:

Formulation 1. Given a routing graph G as constructed above with an embed-
ded multi-terminal net, find a set of Steiner points in G such that the resulting
Steiner routing of the multi-terminal net has minimum routing wirelength.

2.2 Circuit Model and Its Implication

To map the GRG to an RC mesh circuit model, we model each edge of the GRG
with a unit resistor, and connect each vertex of the GRG to ground via a unit
capacitor and a unit resistor in parallel. Terminals are modeled as input ports,
each with a unit impulse current source. The Hanan nodes or the nodes of the
escape graph are modeled as output ports. Such a circuit model is illustrated in
Figure 1 (d). Note that when there are obstacles, we still keep the resistors and
capacitors in the obstacle area. 1

With a unit impulse current source at each terminal at time t = 0, the signals
start to propagate until the steady state is reached. It takes a finite time for the
signal to propagate throughout the mesh and to charge the capacitors. Then the
signal at one node starts to decay through the DC path of the grounded resistors.

1Therefore, the circuit model is independent of obstacles. This enables us to pre-calculate circuit
behavior and apply it to nets with different obstacles, as described in Section 3.2.
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(a) (b)

Fig. 2. (a) Illustration of a routing graph with a three-terminal net (circle) and
its corresponding Hanan nodes (triangle). (b) Time domain responses at the nodes
#39, #61, and #63 in (a). Note that for y-axis, a logarithm scale is used. For node
#61 a different x-axis range is used. It reaches voltage peak quicker than others
and is the Steiner point.

We define peak time as the time for the voltage response to reach its last peak value.

Take Figure 2 as an example. Shown in (a) is a net with three terminals (labeled
with circles) embedded within a routing graph G, where the corresponding Hanan
nodes are also marked (with triangles). For the ease of presentation, we assign a
label to each node in G. The voltage responses at the Hanan nodes (vertices #39,
#61 and #63) are shown in Figure 2 (b). The peak time at vertex #61 is smaller
than those at the other two nodes, and vertex #61 is the Steiner point for the
3-terminal set.

In the above example, the fastest voltage response indicates the Steiner point.
Similar phenomenons can be observed in other cases, too. We randomly generate
20 testcases with 100 terminals, and construct the optimal RSMT by GeoSteiner
[Warme and et al ] to get all the Steiner points. We sort all the Hanan nodes
in sequence with increasing peak times and calculate the probability for Hanan
node with a given order in the sequence to become a Steiner point in one of these
optimal solutions. The results are shown in Figure 3. The x-axis is the order in the
sequence, and the y-axis is the normalized probability. The probability decreases
when the order of the Hanan node in the sequence decreases and the peak time
increases. One can conclude:

Observation 1. A Hanan node is more likely to become a Steiner point when the
voltage response of the corresponding node in the RC mesh reaches its peak earlier.

Note that RSMT is not necessarily unique for a multi-pin net. For example, we
might find that in fact nodes 1, 3 and 7 form an optimal RSMT; while nodes 2,
4, 6 form another optimal one. We consider multiple optimal solutions in our tree
construction and the probability calculation.
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Fig. 3. The probability for the Hanan nodes to become a Steiner point with respect to the order
in the sequence for twenty 100-terminal test cases.

2.3 Theoretical Justification

In this section, we theoretically justify Observation 1 by giving an exact proof for
3-terminal cases followed by a qualitative extension to cases with more terminals.

Given a three-terminal net, we label the rectilinear distance between node A and
terminal #1 as r1, and similar similarly define r2 and r3. Then the RSMT problem
becomes

min
p

r1 + r2 + r3 (1)

s.t. p ∈ the set of Hanan nodes

If the vertex p that minimizes (1) is one of the three terminals, then no Steiner
points need to be added and an example for such case is shown in Figure 4(a).
Otherwise, the Steiner point p is added to achieve the minimum wirelength, as
shown in Figure 4 (b).

Now we prove that the vertex p that minimizes (1) is exactly the vertex that has
the minimum peak time tpeak. This is done by demonstrating that the objective

min
p

tpeak (2)

is a good approximation of (1),
The effective resistance Rx,y between two vertices (0, 0) and (x, y) in a uniform

resistor mesh can be calculated from the following formula [Atkinson and van Steen-
wijk 1999]:

Rx,y =
1

π

∫ π

0

dβ

sinh|α| [1 − e−|nα|cos(pβ)], (3)
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Fig. 4. Two different cases for three-terminal nets: (a) no Steiner points need to be added and
(b) one Steiner point is added.
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Fig. 5. The relationship between effective resistance and the rectilinear distance of two vertices,
and its square-root approximation.

where α and β are complex numbers satisfying

cosα + cosβ = 2. (4)

(3) can be well approximated by

Rx,y =
1

2

√
r, (5)

where r is the rectilinear distance between the two vertices. This is demonstrated
by Figure 5.
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Fig. 6. The peak time w.r.t. to the delay to each of the three terminals in three different cases.

A similar result can be derived for the effective capacitance. Therefore, we can
compute the time constant between any two vertices from the lumped RC model:

tpeak ∝ RC ∝
√

r ×
√

r = r, (6)

which indicates that the delay is linearly proportional to the rectilinear distance.
We denote the constant coefficient as k, i.e., tpeak = kr.

With this important result, we proceed to show that (3) approximates (1) well
in different cases. Without loss of generality, we assume r1 ≤ r2 ≤ r3. We plot the
waveforms for the three terminals separately in Figure 6: V1 is generated by keeping
the current source at the first terminal and removing the sources at the second and
the third terminals. V2 is computed by only keeping the source at the second
terminal and V3 is computed by only keeping the source at the third terminal. The
real waveform at this node is the superposition of the three waveforms plotted. We
discuss the following three cases:

Case 1: r2 � r3 (Figure 6(a))
As the figure clearly states, the peak time for the waveform, after superposing

the waveforms from three terminals, is mainly decided by t3 = kr3. Therefore, (3)
becomes

min
p

kr3. (7)
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Since r2 � r3, (1) becomes

min
p

r3. (8)

Case 2: r1 � r2 ≤ r3; r2 and r3 are close. (Figure 6(b))
As the figure clearly states, the peak time for the superposed waveform is ap-

proximately (t2 + t3)/2 = k(r2 + r3)/2. Therefore, (3) becomes

min
p

k(r2 + r3)/2. (9)

Since r2 � r3, (1) becomes

min
p

r2 + r3. (10)

Case 3: r1 ≤ r2 ≤ r3; r1, r2 and r3 are close. (Figure 6 (c))
As the figure clearly states, the peak time for the superposed waveform is ap-

proximately (t1 + t2 + t3)/3 = k(r1 + r2 + r3)/2. Therefore, (3) becomes

min
p

k(r1 + r2 + r3)/3. (11)

Obviously, (1) and (11) are the same.
In conclusion, (3) approximates (1) well for all 3-terminal nets. Accordingly, our

observation 1 is valid for all 3-terminal nets.
In general, for nets with more terminals, Observation 1 can be explained as fol-

lows: Steiner points tend to have small distances to all nearby terminals. Similarly,
in the mesh, the time constant between two points is nearly proportional to their
distance. Therefore, the more likely a node is a Steiner point, the smaller the
weighted distance is from this node to the terminals, in turn the smaller the RC
time constant is for the node, and finally the smaller its peak time is.

Due to the above-explained nature of our algorithm, it can work well for most
nets. However, for those nets where the pins are extremely unevenly distributed
(some terminals of the nets are far awary), the accuracy of our algorithm will be
impacted. This is because the impacts of those terminals are too weak to influence
the location of the Steiner points. As a remedy, for those cases we scale the mag-
nitude of the input current soruce proportional to the sum of its distances to all
the other terminals. To further improve our algorithm by scaling the magnitudes
of the input sources in general cases is still under research.

3. CKTSTEINER ALGORITHMS

In this section, we propose our circuit simulation based algorithm to construct the
RSMT for the given set of terminals. We map the global routing graph (GRG)
to an uniform RC mesh and add impulse current sources at the terminals. Then
Observation 1 is used to select the potential Steiner points. We want to empha-
size that once the potential Steiner points are known, any minimum spanning tree
(MST) algorithm can be used to construct the RSMT.

3.1 Steiner Tree Construction Algorithm

We first build the circuit model for the routing graph, which has been discussed
in detail in Section 2: Each edge of the routing graph is replaced with a uniform

ACM Transactions on Design Automation of Electronic Systems, Vol. X, No. X, XX 20XX.
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Fig. 7. A Hanan node must reside inside the convex boundary defined by all terminals to become
a possible Steiner point and an output port.

resistor, and each node is connected to the ground via a parallel resistor and ca-
pacitor. Then an impulse current source is added at each terminal. Note that not
all but only these Hanan nodes satisfying the following constraint are considered
as output ports and potential Steiner points:

For obstacle-free routing, only Hanan nodes inside the convex boundary defined
by all terminals can become Steiner points, as shown in 7.

After the circuit is constructed, we can simulate it and build a sorted Hanan
nodes sequence in the ascending order according to their peak times (i.e.,in the
descending order of the likelihood to be a Steiner point). Because at most n − 2
points need to be added into an RSMT [Hwang et al. 1992], we can use our ordered
Hanan nodes sequence to construct the RSMT based on the 1-Steiner heuristic.
Our algorithm is faster than other 1-Steiner based heuristics in the sense that it
does not need to employ a special algorithm to select the Steiner points during tree
construction.

In detail, we first calculate the wirelength of the MST given the set of input
terminals. Then iterated 1-Steiner idea can be employed. We iteratively add one
Hanan node according to its order in the sequence. If one Hanan node is already
in the tree we construct, we skip it. Then we compare the wirelength of the new
MST with the previous MST. If the new wirelength is shorter, then the node is
selected. Note that the MST can be constructed incrementally [Kahng and Robins
1992]. We continue this step until we have added n− 2 Steiner points (which is the
maximum possible value) or we have examined a user-defined consecutive number
(which is n/8 in this paper) of Hanan nodes that fail to decrease the wirelength.
The 1-cktSteiner algorithm is summarized in Figure 8.

We use a testcase with four terminals {W, X, Y, Z} as shown in Figure 9 to
demonstrate the procedure of our algorithm. According to the constraint for the
Steiner points, only the node labeled with a, b and c can become Steiner points. We
simulate the corresponding circuits and find the peak time for those three points are
13.5ns, 21.5ns and 13.7ns, respectively. Therefore, we sort them as {a, c, b}. We

ACM Transactions on Design Automation of Electronic Systems, Vol. X, No. X, XX 20XX.
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INPUT: Routing graph and terminal locations ;
OUTPUT: Steiner point set S, RSMT = MST{S ∪ T};
Initialization: Steiner point set S = Φ;
Initialization: l0 = MST (T ), flag = 0;
Build the circuit model according to the routing graph and the terminal locations;
Simulate the circuit;
Sort the Hanan node into a sequence E according to their peak time;
WHILE {There are less than n − 2 nodes in S and E 6= Φ and flag < n/8}

WHILE the 1st node A in E is in the current tree
Remove A from E;

END

Select the first node A in E;
l1 = MST{S ∪ T ∪ A};
IF {l1 < l0}

S = S ∪ A;
l0 = l1;
flag = 0;

ELSE
flag = flag + 1;

END
Remove A from E;

END

Fig. 8. 1-cktSteiner Algorithm.

WX

Y

Z

a

b c

Fig. 9. A four-terminal testcase to illustrate the steps for 1-cktSteiner algorithm.

then add a and construct the MST on node set{W, X, Y, Z, a}. The total wirelength
for the tree is 6, which is smaller than 7, the wirelength of the MST for the node
set {W, X, Y, Z}. So we keep node a as the Steiner point. Then we construct MST
on node set {W, X, Y, Z, a, c} and the wirelength is still 6. So we discard c, and
compute the wirelength of the MST on the node set {W, X, Y, Z, a, b}, which is still
6. Therefore, we return with Steiner point a, and the optimal wirelength 6.

In general, more than one Steiner node can be added each time for the algorithm
in Figure 8. We call the nodes to be added simultaneously as a block of nodes.
If the total wirelength using a block is reduced, then we take all the nodes in the
block as Steiner points; otherwise, we check the vertices in the block one-by-one. In
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Fig. 10. Tradeoff between wirelength and runtime in (a) 20 terminal case and (b) 100 terminal
case. The wirelength and runtime are normalized.

this case, 1-cktSteiner algorithm becomes a block based algorithm, and the number
of points in a block is called block size. In Figure 10, we study the interaction
between wirelength, runtime and block size. When the block size increases from 1
to 10, clearly the runtime decreases but the wirelength increases. It is easy to see
that block size is an effective knob for trade-off between wirelength and runtime.
To accommodate different numbers of terminals, we can use a self-adjustable block
size. In experiments we find that given the total terminal number n, setting block
size B ∈ (n−2

16
, n−2

4
) can result in a good balance between wirelength and runtime,

which leads to the B-cktSteiner algorithm.

3.2 Practical Implementation Issues

It might take a long time to simulate the circuits, especially when the net has a
large number of terminals. To reduce circuit simulation time, we present a lookup
table approach. The table is built for each routing plane with given routing grid
and can be used for any net in this routing plane.

To build the table, we compute the output waveforms at all nodes with an impulse
current source at only one node. This results in N 3 waveforms for an N×N routing
grid. All those waveforms are stored as a table. To more efficiently simulate the
circuits, techniques such as model order reduction [Odabasioglu et al. 1998]and
random walk [Qian et al. 2003] can be applied.

When the table is set up, we can directly get the simulation results for any net
by superposition, i.e., we sum the waveforms generated by the current source at
each terminal to obtain the waveform. Take a three-terminal case for example.
The terminals are located at node #1, #6 and #10. We have pre-computed the
waveform for the case when there is an impulse current source at node #1 as
well as the waveforms when the single current source is added at node #6(#10).
By superposing those three waveforms, we can get the final waveform, which is
equivalent to imposing three current sources simultaneously at the three terminals
as required by our algorithm. Then we look for the peak time for the superposed
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Fig. 11. Compute the waveforms for the circuit model corresponding to a 3-terminal net by table
look-up.

waveform. An example of such waveform superposition is already shown in Figure
6. The procedure is illustrated in Figure 11. As discussed in Footnote 1, the
circuit model and therefore this table-based waveform calculation is independent of
obstacles.

Finally, numerical error and instability usually prevent us from accurately finding
the peak time for a particular waveform. Therefore, in practical implementation,
rather than seeking for the exact peak time, we seek at the rising edge for the
time where the voltage response reaches αVmax (0 < α < 1), which allows us more
flexibility.

4. EXPERIMENTS AND DISCUSSIONS

We implement the circuit construction and simulation in MATLAB and the tree
construction part in C. We run experiments on a few groups of testcases, each
group for a selected number of terminals. We generate twenty testcases for each
group, with terminals randomly placed in a routing plane with 1000 × 1000 grid.
The circuit models (RC mesh of different granularities) are pre-built before routing
for different nets, as have been discussed in Section 3.2. We report the average
wirelength and runtime for each group. All experiments are conducted on a UNIX
workstation with 1.9GHz P4 processor and 2GB RAM. In addition, we compare our
algrotihm with a commercial tool Talus PX [mag ] and test them on real industrial
circuits. The wirelength and runtime are reported as well. For all the experiments
below, we always use B = n−2

8
for B-cktSteiner.
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Fig. 12. Normalized runtime and wirelength with respect to RC mesh granularity. The testcase
has 20 terminals and is routed by 1-cktSteiner.

4.1 Impact of Granularity of the RC Mesh

Intuitively, if we divide GRG (general routing graph) into a finer grid, we may
simulate the routing plane more accurately and obtain shorter wirelength but longer
runtime. Figure 12 illustrates how the grid granularity influences wirelength and
runtime. We use a testcase with 20 terminals routed by 1-cktSteiner. When the grid
becomes finer, runtime increases and wirelength reduces. A nice tradeoff between
runtime and wirelength is achieved by a 4X finer grid, where wirelength is reduced
by 6% and runtime increases by 3X compared to using the original grid (equivalent
to GRG). A similar tradeoff has been observed for other testcases as well. Therefore,
we use a 4X finer grid in all experiments below.

4.2 Obstacle-free Routing

Table I presents experiments for obstacle-free routing. We first compare 1-cktSteiner
with the exact solution of GeoSteiner [Warme and et al ], and FastSteiner which
generates the shortest wirelength among existing heuristics. Both 1-cktSteiner and
FastSteiner [Kahng et al. 2003] are about less than 1% worse than GeoSteiner.
1-cktSteiner is on average 5.2X faster (11.3X faster for the largest example) than
FastSteiner, which in turn is on average 208X faster than GeoSteiner. Table I
also compares B-cktSteiner with FLUTE [Chu and Wong 2005], the fastest algo-
rithm among existing heuristics. B-cktSteiner reduces up to 1.9% wirelength with
a similar runtime when compared to FLUTE. On average, B-cktSteiner is 3.4%
worse than the exact solution in terms of wirelength, and FLUTE is 3.7% worse.
Compared to 1-cktSteiner, B-cktSteiner obtains similar wirelength for up to 20 ter-
minals but 2.7% longer wirelength for larger numbers of terminals. The runtime of
B-cktSteiner is 24X smaller.

We also compare our algorithm with the Magma routing package [mag ] on real
industrial circuits. Both packages are implemented inside the Magma tool flow,
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Terminal # Wirelength Runtime (ms)
Geo FastSteiner 1-ckt Flute B-ckt Geo FastSteiner 1-ckt Flute B-ckt

5 9 9 9 9 9 3.05 0.23 0.06 0.0007 0.0006

10 27 27 27 27 27 3.63 0.32 0.09 0.008 0.009

20 77 78 78 79 80 14.4 1.8 0.80 0.043 0.038

50 290 291 292 303 305 38.6 8.1 1.53 0.18 0.23

100 811 821 819 862 848 298 15 3.12 0.47 0.62

500 8305 8377 8395 9032 8861 12600 140 12.4 3.97 5.31

Average 1.000 1.006 1.007 1.037 1.034 1.000 0.093 0.025 0.002 0.002

Table I. Comparison between Geo-Steiner, FastSteiner, 1-cktSteiner, FLUTE and B-cktSteiner.

ckt # of nets pin # # of nets wirelength imp total runtime ratio
min max aver gained tied max total ckt/[1]

#1 990 2 16 12 180 (18.2%) 550 (55.6%) 3.20% -0.11% 0.99

#2 1840 2 49 16 610 (33.1%) 960 (52.2%) 3.29% 0.25% 0.99

#3 2400 2 20 10 1000 (41.7%) 1200 (50.0%) 6.25% 1.12% 0.99

#4 1500 2 811 135 400 (26.7%) 1100 (73.3%) 0.53% 0.12% 1.23

#5 5190 2 30 14 990 (19.1%) 3390 (65.3%) 3.39% 0.01% 1.00

#6 7900 2 21 13 1300 (16.5%) 6000 (76.0%) 6.67% 1.11% 0.99

#7 6320 2 58 19 1930 (30.5%) 2620 (41.5%) 8.15% 1.02% 1.31

#8 5720 2 39 16 2060 (36.0%) 2240 (39.2%) 0.22% 0.05% 1.05

#9 8600 2 30 19 2322 (27.0%) 4610 (53.6%) 2.44% 0.74% 1.00

#10 3420 2 1927 30 1010 (29.5%) 2200 (64.3%) 3.55% 1.65% 1.21

Aver 4388 2 300 28 1180 (26.9%) 2487 (56.7%) 3.77% 0.60% 1.07

Table II. Chip-level comparison between 1-cktSteiner and an industrial routing package.

T # O # Wirelength Runtime (s)

A-O 1-ckt B-ckt A-O 1-ckt B-ckt

5 3 4380 4380 4620 0.02 0.06 0.00001

10 9 26990 26980 27450 0.07 0.24 0.0009

20 10 43630 41270 45820 0.24 0.49 0.03

50 10 53260 50710 53770 2.58 4.17 0.98

100 10 80040 76380 81340 26.9 32.5 2.37

500 20 200360 188090 203240 1660 1082 109

Average 1.000 0.965 1.027 1.000 1.651 0.089

Table III. Comparison between An-OARSMan (A-O), 1-cktSteiner and B-cktSteiner for various
terminal (T) and obstacle number (O).

and the experiments are run on AMD Opteron double-CPU servers (2.6G CPUs,
4-8G RAM). The results are reported in Table II. As we can see from the table,
compared with Magma routing package containing eight routing algorithms, 1-
cktSteiner reduces the chip level total wirelength by up to 1.23% and reduces net-
based wirelength by up to 8.15%.

4.3 Obstacle-avoiding Routing

Table III presents experiments for routing with obstacles. Compared to An-OARSMan
[8], the best existing heuristic for obstacle-avoiding routing, 1-cktSteiner reduces
wirelength by up to 6.12% for large testcases at a similar runtime, and B-cktSteiner
has an average speedup of 352X with wirelength similar to that produced by An-
OARSMan. Because the global router in Magma tool Talux PX is not able to
consider obstacles, we are not able to compare in an industrial setting.

4.4 The Number of Steiner Points Required for the Optimal Solution

We also illustrate the relationship between the number of terminals (n) and the
number of Steiner points (q) used by 1-cktSteiner. For each terminal number, we
use 10 randomly generated testcases for both obstacle-free and obstacle-avoiding
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Fig. 13. The number of terminals n versus the number of Steiner points q used by 1-cktSteiner:
(a) obstacle-free routing and (b) obstacle-avoiding routing

routings. The result is shown in Figure 13. Clearly, the maximum number of Steiner
points required is less than n − 2, and in most cases, about n

2
Steiner points are

required for both RSMT and OARSMT. This observation may be used to develop
more efficient algorithms in the future.

5. CONCLUSIONS AND DISCUSSIONS

Using an RC network to simulate routing, we show in this paper that Steiner
points can be selected based on circuit behavior. Then, any routing algorithm can
apply the selected Steiner points to construct (rectilinear) Steiner minimum tree
(RSMT). In this paper, we apply selected Steiner points to 1-Steiner algorithms
and develop 1-cktSteiner algorithm and a faster version b-cktSteiner algorithm.
When constructing RSMT without obstacles, 1-cktSteiner obtains similar length
but runs 11.3X faster compared to FastSteiner, the existing algorithm with the
minimum wirelength. B-cktSteiner reduces wirelength by up to 1.9% at similar
runtime compared with FLUTE, the existing most efficient algorithm. In addition,
our algorithms can deal with obstacle-avoiding cases at similar runtimes compared
with obstacle-free cases. 1-cktSteiner reduces up to 6.12% wirelength and runs
352X faster compared with An-OARSMan, the existing best algorithm for obstacle-
avoiding routing.

The package of cktSteiner can be downloaded at http://eda.ee.ucla.edu/tools.html.
In the future, we will extend circuit simulated routing to routing congestion esti-
mation, and routing for performance and other routing objectives and constraints.
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