Fast Dual- $V_{d d}$ Buffering Based on Interconnect Prediction and Sampling

Yu Hu King Ho Tam Tom Tong Jing Lei He
Electrical Engineering Department
University of California at Los Angeles

System Level Interconnect Prediction (SLIP), 2007

Outline

(1) Introduction
(2) Preliminaries

3 Fast Buffering Techniques
4 Speedup Techniques for Buffered Tree Construction
(5) Conclusions and Future Work

Introduction
Preliminaries
Fast Buffering Techniques
Speedup Techniques for Buffered Tree Construction Conclusions and Future Work

Motivation

(1) Aggressive buffering increases interconnect power

- 35\% cells are buffers at 65nm technology [Saxena, TCAD'04]

Motivation

(1) Aggressive buffering increases interconnect power

- 35\% cells are buffers at 65nm technology [Saxena, TCAD'04]
(2) Previous work for singal- $V_{d d}$ buffering
- Power-optimal single- $V_{d d}$ buffer insertion [Lillis, JSSC'96]
- Delay-optimal buffered tree generation [Cong, DAC'00; Alpert, TCAD'02]

Motivation

(1) Aggressive buffering increases interconnect power

- 35\% cells are buffers at 65 nm technology [Saxena, TCAD'04]
(2) Previous work for singal- $V_{d d}$ buffering
- Power-optimal single- $V_{d d}$ buffer insertion [Lillis, JSSC'96]
- Delay-optimal buffered tree generation [Cong, DAC'00; Alpert, TCAD'02]
(3) Previous work for dual- $V_{d d}$ buffering
- Power-optimal dual- $V_{d d}$ buffer insertion and buffered tree construction [Tam, DAC'05]

Motivation

(1) Aggressive buffering increases interconnect power

- 35\% cells are buffers at 65 nm technology [Saxena, TCAD'04]
(2) Previous work for singal- $V_{d d}$ buffering
- Power-optimal single- $V_{d d}$ buffer insertion [Lillis, JSSC'96]
- Delay-optimal buffered tree generation [Cong, DAC'00; Alpert, TCAD'02]
(3) Previous work for dual- $V_{d d}$ buffering
- Power-optimal dual- $V_{d d}$ buffer insertion and buffered tree construction [Tam, DAC'05]
(4) Problem remains
- Power aware buffering suffers from the expensive computational cost
- Dual- $V_{d d}$ buffers dramatically increase computational complexity

Introduction
Preliminaries
Fast Buffering Techniques
Speedup Techniques for Buffered Tree Construction Conclusions and Future Work

Major Constributions

(1) Focus on speedup for power-aware dual- $V_{d d}$ buffer insertion and buffered tree construction

2 Propose three speedup techniques for power optimized dual- $V_{d d}$ buffer insertion based on interconnect prediction and sampling

3 Incorporate the fast buffer insertion and grid reduction in
noumer ontimized huffered tren ennctrintion alaorithm

Major Constributions

(1) Focus on speedup for power-aware dual- $V_{d d}$ buffer insertion and buffered tree construction
(2) Propose three speedup techniques for power optimized dual- $V_{d d}$ buffer insertion based on interconnect prediction and sampling

- Pre-buffer Slack Pruning (PSP) extended from the one presented in [Shi, DAC'03]
- Predictive Min-delay Pruning (PMP)
- 3D sampling
- Runtime grows linearly w.r.t. the tree-size and we achieve 50x speedup compared with [Tam, DAC'05]

power optimized buffered tree construction algorithm

Major Constributions

(1) Focus on speedup for power-aware dual- $V_{d d}$ buffer insertion and buffered tree construction
(2) Propose three speedup techniques for power optimized dual- $V_{d d}$ buffer insertion based on interconnect prediction and sampling

- Pre-buffer Slack Pruning (PSP) extended from the one presented in [Shi, DAC'03]
- Predictive Min-delay Pruning (PMP)
- 3D sampling
- Runtime grows linearly w.r.t. the tree-size and we achieve 50x speedup compared with [Tam, DAC'05]
(3) Incorporate the fast buffer insertion and grid reduction in power optimized buffered tree construction algorithm

Introduction

(2) Preliminaries

- Modeling
- Dual- $V_{d d}$ Buffering
- Problem Formulation
(3) Fast Buffering Techniques

4 Speedup Techniques for Buffered Tree ConstructionConclusions and Future Work

Introduction
Preliminaries
Fast Buffering Techniques
Speedup Techniques for Buffered Tree Construction Conclusions and Future Work

Delay, Slew and Power Modeling

(1) Elmore Delay Model

- The delay of wire with length / is

$$
\begin{equation*}
d(I)=\left(\frac{1}{2} \cdot c_{w} \cdot I+c_{\text {load }}\right) \cdot r_{w} \cdot I \tag{1}
\end{equation*}
$$

- The delay of a buffer $d_{\text {buf }}$ is

$$
\begin{equation*}
d_{\text {buf }}=d_{\text {int }}+r_{0} \cdot c_{\text {load }} \tag{2}
\end{equation*}
$$

- Bakoglus slew metric (Elmore delay times $\ln 9$)
(2) Power Model
- Wire power dissipation

$$
\begin{equation*}
E_{w}=0.5 \cdot c_{w} \cdot l \cdot V_{d d}^{2} \tag{3}
\end{equation*}
$$

- Lumped buffer dynamic/short-circuit power
- Can be easily extended to leakage power

Introduction
Preliminaries
Fast Buffering Techniques
Speedup Techniques for Buffered Tree Construction Conclusions and Future Work

Dual- $V_{d d}$ Buffering

Intuitions for power aware dual- $V_{d d}$ buffering
(1) High $V_{d d}$ buffers drive critical interconnect edges for timing optimization
(2) Low $V_{d d}$ buffers drive non-critical interconnect edges for power
(3) Achieves power saving since power is proportional to $\alpha \cdot V_{d d}^{2}$
(4) Suffer no loss of delay optimality

Constraints in dual- $V_{d d}$ buffering
(1) Disallowing low $V_{d d}$ drives high $V_{d d}$

- Not affect optimality [Tam, DAC'05]
- Exclude power and delay overhead of level converters

Introduction
Preliminaries
Fast Buffering Techniques
Speedup Techniques for Buffered Tree Construction Conclusions and Future Work

Problem Formulation

Dual－$V_{\text {dd }}$ buffer insertion and sizing（dBIS）
（1）Given
－An interconnect fanout tree with source $n_{\text {src }}$ ，sink nodes n_{s} and Steiner points n_{p}
－Buffer stations n_{b}
（2）Find
－A buffer size and $V_{d d}$ level assignment
（3）Such that（objective）
－The RAT $q_{n}^{\text {src }}$ at the source $n_{\text {src }}$ is met
－The power consumed by the interconnect tree is minimized
－Slew rate at every input of the buffers and the sinks n_{s} is upper bounded by the slew rate bound \bar{s}

Problem Formulation

Dual $V_{d d}$ Buffered Tree Construction (dTree)

(1) Given

- An un-routed net with source $n_{s r c}$ and sink nodes n_{s}
- Buffer stations n_{b}
(2) Find
- A routing for the buffered tree
- A buffer size and $V_{d d}$ level assignment
(3) Such that (objective)
- The RAT $q_{n}^{\text {src }}$ at the source $n_{\text {src }}$ is met
- The power consumed by the interconnect tree is minimized
- Slew rate at every input of the buffers and the sinks n_{s} is upper bounded by the slew rate bound \bar{s}

Introduction

Preliminaries

3 Fast Buffering Techniques

- Baseline Algorithm
- Data Structure for Pruning
- 3D Sampling
- Pre-buffer Slack Pruning
- Predictive Min-delay Pruning
- Experimental Results for Fast Dual- $V_{d d}$ Buffering
(4) Speedup Techniques for Buffered Tree Construction

Introduction
Preliminaries
Fast Buffering Techniques
Speedup Techniques for Buffered Tree Construction Conclusions and Future Work

Baseline Algorithm
Data Structure for Pruning
3D Sampling
Pre-buffer Slack Pruning
Predictive Min-delay Pruning
Experimental Results for Fast Dual- $V_{d d}$ Buffering

Baseline Algorithm Flow

(1) Based on [Lillis, JSSC'96]
(2) Dynamic programming with partial solution (option) pruning
(3) Options must now record downstream $V_{d d}$ levels for buffering to prevent $V_{d d} L \Rightarrow V_{d d} H$, which removes unnecessary search in solution space
4 Still quite slow for large nets

Definition (Domination)

In node n, option $\Phi_{1}=\left(r a t_{1}, c a p_{1}, p w r_{1}, \theta\right)$ dominates
$\Phi_{2}=\left(r a t_{2}\right.$, cap $\left._{2}, p w r_{2}, \theta\right)$, if rat ${ }_{1} \geq r a t_{2}$, cap $_{1} \leq$ cap $_{2}$, and $p w r_{1} \leq p w r_{2}$

Baseline Algorithm
Data Structure for Pruning
3D Sampling
Pre-buffer Slack Pruning
Predictive Min-delay Pruning
Experimental Results for Fast Dual- $V_{d d}$ Buffering
(1) Options are indexed by capacitive values

> (3) Few options left after power-delay sampling [Tam, DAC'05] under the same capacitive index
> (3) A linear list is used to store options under the same capacitive value
> (1) Capacitive values are organized by a binary search tree
(1) Options are indexed by capacitive values
(2) Few options left after power-delay sampling [Tam, DAC'05] under the same capacitive index
(3) A linear list is used to store options under the same capacitive value

1. Canaritive valıoc: re organized by a binary search tree

(1) Options are indexed by capacitive values
(2) Few options left after power-delay sampling [Tam, DAC'05] under the same capacitive index
(3) A linear list is used to store options under the same capacitive value
(9) Capacitive values are organized by a binary search tree

Introduction
Preliminaries
Fast Buffering Techniques
Speedup Techniques for Buffered Tree Construction Conclusions and Future Work

Baseline Algorithm
Data Structure for Pruning
3D Sampling
Pre-buffer Slack Pruning
Predictive Min-delay Pruning
Experimental Results for Fast Dual- $V_{d d}$ Buffering

Motivation for 3D Sampling

(1) Power-delay sampling has shown effectiveness [Tam, DAC'05]
The size of the third dimenstion (capacitive values) increases significantly for large testcases

3 Sampling on all dimensions in power-delay-capacitance
solution space is necessary

Introduction
Preliminaries
Fast Buffering Techniques
Speedup Techniques for Buffered Tree Construction Conclusions and Future Work

Baseline Algorithm
Data Structure for Pruning
3D Sampling
Pre-buffer Slack Pruning
Predictive Min-delay Pruning
Experimental Results for Fast Dual- $V_{d d}$ Buffering

Motivation for 3D Sampling

(1) Power-delay sampling has shown effectiveness [Tam, DAC'05]
(2) The size of the third dimenstion (capacitive values) increases significantly for large testcases

node\#	sink	>100	>50
515	299	14%	62%
784	499	17%	64%
1054	699	28%	65%
1188	799	33%	71%

(3) Sampling on all dimensions in power-delay-capacitance
solution space is necessary

Introduction
Preliminaries
Fast Buffering Techniques
Speedup Techniques for Buffered Tree Construction Conclusions and Future Work

Baseline Algorithm
Data Structure for Pruning
3D Sampling
Pre-buffer Slack Pruning
Predictive Min-delay Pruning
Experimental Results for Fast Dual- $V_{d d}$ Buffering

Motivation for 3D Sampling

(1) Power-delay sampling has shown effectiveness [Tam, DAC'05]
(2) The size of the third dimenstion (capacitive values) increases significantly for large testcases

node\#	sink	>100	>50
515	299	14%	62%
784	499	17%	64%
1054	699	28%	65%
1188	799	33%	71%

(3) Sampling on all dimensions in power-delay-capacitance solution space is necessary

The idea of 3D sampling is to pick only a certain number of options among all options uniformly over the power-delay-capacitance space for upstream propagation

(a) 2D sampling

(b) 3D sampling

Introduction
Preliminaries
Fast Buffering Techniques
Speedup Techniques for Buffered Tree Construction Conclusions and Future Work

Baseline Algorithm
Data Structure for Pruning
3D Sampling
Pre-buffer Slack Pruning
Predictive Min-delay Pruning
Experimental Results for Fast Dual- $V_{d d}$ Buffering

Pre-buffer Slack Pruning (PSP) [Shi, ASPDAC’05]

Suppose $R_{\text {min }}$ is the minimal resistance in the buffer library. For two non-redundant options $\Phi_{1}=\left(\right.$ rat $_{1}$, cap $_{1}$, pwr $\left._{1}, \theta_{1}\right)$ and $\Phi_{2}=$ (rat ${ }_{2}$, cap $_{2}, p w r_{2}, \theta_{2}$), where rat $<r a t_{2}$ and $c a p_{1}<c a p_{2}$, then Φ_{2} is pruned, if $\left(r a t_{2}-r a t_{1}\right) /\left(c a p_{2}-c a p_{1}\right) \geq R_{\text {min }}$

Extension for Dual- $V_{d d}$ PSP

(1) Choose a proper high / low $V_{d d}$ buffer resistance R_{H} / R_{L} for PSP to avoid overly aggressive pruning
(2) If $\theta=$ true, $R_{\text {min }}=R_{H}$. Otherwise, $R_{\text {min }}=R_{L}$.
(1) Assume a continuous number of buffers and buffer sizes
(2) The optimum unit length delay, delay opt, is given by [Bakoglou, book, 1990]

$$
\begin{equation*}
\text { delay }_{o p t}=2 \sqrt{r_{s} c_{o} r c}\left(1+\sqrt{\frac{1}{2}\left(1+\frac{c_{p}}{c_{o}}\right)}\right) \tag{4}
\end{equation*}
$$

(3) (4) calculates the lower bound of delay from any node to the source

Predictive min-delay pruning (PMP)

A newly generated option $\Phi=(r a t, c a p, p w r, \theta)$ is pruned if rat - delay ${ }_{\text {opt }} \cdot \operatorname{dis}(v)<R A T_{0}$, where $R A T_{0}$ is the target RAT at the source, $\operatorname{dis}(v)$ is the distance of the node-to-source path

Introduction
Preliminaries
Fast Buffering Techniques
Speedup Techniques for Buffered Tree Construction Conclusions and Future Work

Experimental Settings

(1) Extract technical parameters by BSIM4 and SPICE under 65nm

Table: Settings for the 65 nm global interconnect.

Settings	Values
Interconnect	$r_{w}=0.186 \Omega / \mu m, c_{w}=0.0519 f F / \mu \mathrm{m}$
$V_{d d} H$ Buffer (min size)	$r_{o}^{H}=4.7 \mathrm{k} \Omega, d_{b}^{H}=72 \mathrm{fF}, V_{d d}^{H}=1.2 \mathrm{Vs}, E_{b}^{H}=84 \mathrm{fJ}$
$V_{d d} L$ Buffer (min size)	$c_{\text {in }}=0.47 f F, V_{d d}^{L}=0.9 \mathrm{~V}$
$r_{o}^{L}=5.4 \mathrm{k} \Omega, d_{b}^{L}=98 p s, E_{b}^{L}=34 \mathrm{fJ}$	
Level converter (min size)	$c_{i n}=0.47 f F, E_{L C}=5.7 f \mathrm{fJ}$
$d_{L C}=220 p s$	

(2) Randomly generate and route 10 nets by GeoSteiner

Introduction
Preliminaries
Fast Buffering Techniques
Speedup Techniques for Buffered Tree Construction Conclusions and Future Work

Experimental Settings

(1) Extract technical parameters by BSIM4 and SPICE under 65nm

Table: Settings for the 65 nm global interconnect.

Settings	Values
Interconnect	$r_{w}=0.186 \Omega / \mu m, c_{w}=0.0519 \mathrm{fF} / \mu \mathrm{m}$
$\begin{gathered} \hline V_{d d} H \text { Buffer } \\ \text { (min size) } \\ \hline \end{gathered}$	$\begin{gathered} c_{i n}=0.47 \mathrm{fF}, V_{d d}^{H}=1.2 \mathrm{~V} \\ r_{o}^{H}=4.7 \mathrm{k} \Omega, d_{b}^{H}=72 p \mathrm{~s}, E_{b}^{H}=84 \mathrm{fJ} \end{gathered}$
$V_{d d}$ L Buffer (min size)	$\begin{gathered} c_{i n}=0.47 \mathrm{fF}, V_{d d}^{L}=0.9 \mathrm{~V} \\ r_{o}^{L}=5.4 \mathrm{k} \Omega, d_{b}^{L}=98 \mathrm{ps}, E_{b}^{L}=34 \mathrm{fJ} \end{gathered}$
$\begin{array}{\|c\|} \hline \text { Level converter } \\ (\text { min size }) \\ \hline \end{array}$	$\begin{gathered} c_{i n}=0.47 \mathrm{fF}, E_{L C}=5.7 \mathrm{fJ} \\ d_{L C}=220 \mathrm{ps} \end{gathered}$

(2) Randomly generate and route 10 nets by GeoSteiner

Introduction Preliminaries
Fast Buffering Techniques Speedup Techniques for Buffered Tree Construction Conclusions and Future Work

Baseline Algorithm
Data Structure for Pruning
3D Sampling
Pre-buffer Slack Pruning
Predictive Min-delay Pruning
Experimental Results for Fast Dual- $V_{d d}$ Buffering

	runtime (s)											delay				power		
net	DVB	sam	pmp+sam	psp+sam	all	sam	pmp+sam	psp+sam	all	sam	pmp+sam	psp+sam	all					
s1	36	15	2	4	1	1.01	1.01	1.01	1.01	1.06	1.00	1.06	0.99					
s2	62	19	4	5	2	1.01	1.00	1.01	1.00	0.98	1.01	0.97	1.00					
s3	96	36	10	7	4	1.02	1.00	1.01	1.00	0.94	0.98	0.96	0.98					
s4	264	50	16	14	6	1.02	1.00	1.01	1.00	1.00	0.99	1.01	1.04					
s5	640	71	46	32	20	1.05	1.00	1.03	1.01	0.99	0.99	0.95	0.98					
s6	987	101	77	42	34	1.06	1.01	1.03	1.01	1.04	1.00	1.05	1.01					
s7	2232	209	135	80	59	1.08	1.00	1.06	0.99	0.98	0.95	1.00	0.99					
s8	3427	309	219	127	89	1.08	1.00	1.07	1.00	0.99	1.00	0.95	0.97					
s9	5625	327	256	133	95	1.08	1.01	1.08	1.01	1.04	1.03	1.02	1.03					
ave	1485	128	85	49	34	1.06	1.00	1.04	1.00	1.00	0.99	1.00	1.00					
	1	$\frac{1}{10}$	$\frac{1}{15}$	$\frac{1}{30}$	$\frac{1}{50}$													

(1) Sampling grid size is $20 \times 20 \times 20$ for 3D sampling and 20×20 for DVB

Introduction Preliminaries
Fast Buffering Techniques Speedup Techniques for Buffered Tree Construction Conclusions and Future Work

Baseline Algorithm
Data Structure for Pruning
3D Sampling
Pre-buffer Slack Pruning
Predictive Min-delay Pruning
Experimental Results for Fast Dual- $V_{d d}$ Buffering

	runtime (s)						delay				power		
net	DVB	sam	pmp+sam	psp+sam	all	sam	pmp+sam	psp+sam	all	sam	pmp+sam	psp+sam	all
s1	36	15	2	4	5	1	1.01	1.01	1.01	1.01	1.06	1.00	1.06
s2	62	19	4	5	1.01	1.00	1.01	1.00	0.98	1.01	0.97	1.00	
s3	96	36	10	7	4	1.02	1.00	1.01	1.00	0.94	0.98	0.96	0.98
s4	264	50	16	14	6	1.02	1.00	1.01	1.00	1.00	0.99	1.01	1.04
s5	640	71	46	32	20	1.05	1.00	1.03	1.01	0.99	0.99	0.95	0.98
s6	987	101	77	42	34	1.06	1.01	1.03	1.01	1.04	1.00	1.05	1.01
s7	2232	209	135	80	59	1.08	1.00	1.06	0.99	0.98	0.95	1.00	0.99
s8	3427	309	219	127	89	1.08	1.00	1.07	1.00	0.99	1.00	0.95	0.97
s9	5625	327	256	133	95	1.08	1.01	1.08	1.01	1.04	1.03	1.02	1.03
ave	1485	128	85	49	34	1.06	1.00	1.04	1.00	1.00	0.99	1.00	1.00
	1	$\frac{1}{10}$	$\frac{1}{15}$	$\frac{1}{30}$	$\frac{1}{50}$								

(1) Sampling grid size is $20 \times 20 \times 20$ for 3D sampling and 20×20 for DVB
(2) Accompanied with substantial speedup, 3D sampling brings significant error for large testcases

Introduction Preliminaries
Fast Buffering Techniques Speedup Techniques for Buffered Tree Construction Conclusions and Future Work

Baseline Algorithm
Data Structure for Pruning
3D Sampling
Pre-buffer Slack Pruning
Predictive Min-delay Pruning
Experimental Results for Fast Dual- $V_{d d}$ Buffering

	runtime (s)						delay				power		
net	DVB	sam	pmp+sam	psp+sam	all	sam	pmp+sam	psp+sam	all	sam	pmp+sam	psp+sam	all
s1	36	15	2	4	5	1	1.01	1.01	1.01	1.01	1.06	1.00	1.06
s2	62	19	4	5	1.01	1.00	1.01	1.00	0.98	1.01	0.97	1.00	
s3	96	36	10	7	4	1.02	1.00	1.01	1.00	0.94	0.98	0.96	0.98
s4	264	50	16	14	6	1.02	1.00	1.01	1.00	1.00	0.99	1.01	1.04
s5	640	71	46	32	20	1.05	1.00	1.03	1.01	0.99	0.99	0.95	0.98
s6	987	101	77	42	34	1.06	1.01	1.03	1.01	1.04	1.00	1.05	1.01
s7	2232	209	135	80	59	1.08	1.00	1.06	0.99	0.98	0.95	1.00	0.99
s8	3427	309	219	127	89	1.08	1.00	1.07	1.00	0.99	1.00	0.95	0.97
s9	5625	327	256	133	95	1.08	1.01	1.08	1.01	1.04	1.03	1.02	1.03
ave	1485	128	85	49	34	1.06	1.00	1.04	1.00	1.00	0.99	1.00	1.00
	1	$\frac{1}{10}$	$\frac{1}{15}$	$\frac{1}{30}$	$\frac{1}{50}$								

(1) Sampling grid size is $20 \times 20 \times 20$ for 3D sampling and 20×20 for DVB
(2) Accompanied with substantial speedup, 3D sampling brings significant error for large testcases
3 Combining PSP/PMP with 3D sampling improves runtime and solution quality

Introduction Preliminaries
Fast Buffering Techniques Speedup Techniques for Buffered Tree Construction Conclusions and Future Work

Baseline Algorithm
Data Structure for Pruning
3D Sampling
Pre-buffer Slack Pruning
Predictive Min-delay Pruning
Experimental Results for Fast Dual- $V_{d d}$ Buffering

	runtime (s)						delay				power			
net	DVB	sam	pmp+sam	psp+sam	all	sam	pmp+sam	psp+sam	all	sam	pmp+sam	psp+sam	all	
s1	36	15	2	4	3	1	1.01	1.01	1.01	1.01	1.06	1.00	1.06	0.99
s2	62	19	4	5	2	1.01	1.00	1.01	1.00	0.98	1.01	0.97	1.00	
s3	96	36	10	7	4	1.02	1.00	1.01	1.00	0.94	0.98	0.96	0.98	
s4	264	50	16	14	6	1.02	1.00	1.01	1.00	1.00	0.99	1.01	1.04	
s5	640	71	46	32	20	1.05	1.00	1.03	1.01	0.99	0.99	0.95	0.98	
s6	987	101	77	42	34	1.06	1.01	1.03	1.01	1.04	1.00	1.05	1.01	
s7	2232	209	135	80	59	1.08	1.00	1.06	0.99	0.98	0.95	1.00	0.99	
s8	3427	309	219	127	89	1.08	1.00	1.07	1.00	0.99	1.00	0.95	0.97	
s9	5625	327	256	133	95	1.08	1.01	1.08	1.01	1.04	1.03	1.02	1.03	
ave	1485	128	85	49	34	1.06	1.00	1.04	1.00	1.00	0.99	1.00	1.00	
	1	$\frac{1}{10}$	$\frac{1}{15}$	$\frac{1}{30}$	$\frac{1}{50}$									

(1) Sampling grid size is $20 \times 20 \times 20$ for 3D sampling and 20×20 for DVB
(2) Accompanied with substantial speedup, 3D sampling brings significant error for large testcases
3 Combining PSP/PMP with 3D sampling improves runtime and solution quality
4 PSP / PMP prunes many redundant options and 3D sampling can always select option samples from a good candidate pool

IntroductionPreliminariesFast Buffering Techniques
4. Speedup Techniques for Buffered Tree Construction

- Buffered Tree Construction Baseline Algorithm
- Routing Grid Reduction
- Experimental Results
(5) Conclusions and Future Work

Baseline Algorithm

（1）Extend the delay optimization buffered tree construction algorithm［Cong，DAC＇00］
－Build Hanan Graph w／buffer insertion nodes according to locations of buffer stations
－Path search on the grid by option propagation
（2）Option growth is exponential
（3）Power and dual－$V_{d d}$ buffers further accelerate option growth

Definition（Domination）

In node n ，option $\Phi_{1}=\left(\mathcal{S}_{1}, \mathcal{R}_{1}\right.$, rat $_{1}$ ， cap $\left._{1}, p w r_{1}, \theta_{1}\right)$ dominates $\Phi_{2}=\left(\mathcal{S}_{2}, \mathcal{R}_{2}, r a t_{2}\right.$, cap $\left._{2}, p w r_{2}, \theta_{2}\right)$ ，if $\mathcal{S}_{1} \supseteq \mathcal{S}_{2}, r a t_{1} \geq r a t_{2}$, cap $_{1} \leq$ cap $_{2}$ ，and $p w r_{1} \leq p w r_{2}$

Introduction
Preliminaries
Fast Buffering Techniques
Speedup Techniques for Buffered Tree Construction
Conclusions and Future Work

Routing Grid Reduction

(1) Option growth is exponential w.r.t. routing grid size
(2) Restrict the progation direction always towards the source

(c) Before reduction

(d) After reduction

Introduction Preliminaries Fast Buffering Techniques Speedup Techniques for Buffered Tree Construction Conclusions and Future Work

Experimental Results

(1) Our Fast sTree / dTree algorithm runs over 100x faster than S-Tree/D-Tree [Tam, DAC'05] within 1\% power overhead
(2) Be able to solve the buffered tree construction problem on 10 sinks with $400+$ buffer stations

| test cases | | | | RAT $^{*}(\mathrm{ps})$ | | | | power(fJ) | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| name | n\# | s\# | nl\# | S-Tree | sTree | D-Tree | dTree | S-Tree | sTree | S-Tree | sTree | D-Tree | dTree |
| grid.2 | 97 | 2 | 36 | 0 | 0 | 0 | 0 | -223 | -224 | 1492 | 1492 | 1430 | 1430 |
| grid.3 | 165 | 3 | 142 | 19 | 1 | 102 | 5 | -604 | -608 | 3908 | 3456 | 3907 | 3456 |
| grid.4 | 137 | 4 | 82 | 44 | 2 | 297 | 8 | -582 | -583 | 3426 | 3426 | 3131 | 3131 |
| grid.5 | 261 | 5 | 162 | 2849 | 8 | 5088 | 37 | -532 | -533 | 4445 | 4355 | 3979 | 3989 |
| grid.6 | 235 | 6 | 143 | 5200 | 25 | 13745 | 115 | 397 | -399 | 4919 | 4718 | 4860 | 3718 |
| grid.10 | 426 | 10 | 267 | - | 2346 | - | 3605 | - | -625 | - | 7338 | - | 5915 |
| | | | | 1 | $<\frac{1}{100}$ | 1 | $<\frac{1}{100}$ | 1 | $>99 \%$ | 1 | $<101 \%$ | 1 | $<101 \%$ |

IntroductionPreliminariesFast Buffering Techniques
(4) Speedup Techniques for Buffered Tree Construction
(5) Conclusions and Future Work

- Conclusions
- Future Work

Conclusions

- Presented efficient algorithms to dual- $V_{d d}$ buffering for power optimization
- Studied three pruning techniques including PSP, PMP and 3D sampling
- Proposed grid reduction for buffered tree construction speedup
- Experimental results show that we obtain over 50x and 100x speedup compared with the most efficient existing algorithms [Tam, DAC'05] for dual- $V_{d d}$ buffer insertion and buffered tree construction, respectively

Future Work

(1) Further improve the efficiency of buffered tree construction by adapting hierarchical tree generation algorithm
(2) Slack allocation for more power reduction

- Chip level FPGA dual- $V_{d d}$ assignment [Lin, DAC'05]
- Fix buffer location, assign $V_{d d}$ levels
- Consider multiple critical path
- Solve as a linear programming problem
- More freedom of ASIC buffering introduces more challenge to algorithms

