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A Fast Multilayer General Area Router for
MCM Designs

Kei-Yong Khoo and Jason Cong

Abstract—In order to reduce interconnection delay and in-
crease packaging density, the multichip module (MCM) technel-
ogy is used in the design of high-performance VLSI systems. A
commonly used method for multilayer MCM designs is the

three-dimensional (3-D) maze routing, which suffers from a
number of problems: it is very sensitive to the net ordering, it
requires long computation time, and it often results in a large
number of vias in the routing solutions. The objective of this
research is to develop an efficient multilayer general area router
as an alternative to the 3-D maze router for solving /e multi-
layer MCM routing problem. Our router, named \SLICE,| is
independent of net ordering, requires mich shorter computation
time, and uses fewer vias. A key step in our router is to compute
a maximum noncrossing bipartite matching, which is solved
optimally in O(r log n) time where n_is the number of possible
connections. We tested our router on a number of examples,
including two MCM designs from MCC. The total wirelength
used by SLICE is only a few percent away from the optimal on
average. Compared with a 3-D maze router, SLICE is six times
faster and uses 29% fewer vias. Another feature of SLICE is that
it works on only a “thin slice” of a two-layer routing grid at a
time, while a 3-D maze router works on the entire 3-D routing
grid. Therefore, SLICE can successfully produce solutions for
large MCM routing examples where 3-D maze routers fail due to
insufficient memory.

1. INTRODUCTION

S VLSI fabrication technology advances, intercon-
ection and packaging (P/I) technologies have be-
come a bottleneck in system performance [1]-[3]. In the
traditional approach, each chip is first packed into single
chip packaging (SCP) and then mounted on a printed
circuit_board (PCB). The area of each SCP is usually
several times larger than the corresponding bare chip. As
a result, the packing density is severely limited. Moreover,
there exist two levels of inter-chip interconnections: the
connections on SCP’s and the connections on the PCB.
The wasted space and the addition level of interconnec-
tions limit the packing density and degrade the system
performance. .

The multichip module (MCM) technology reduces the
wasted space on a board and eliminates a level of inter-
connection by assembling and connecting bare chips on a
common substrate. The substrate consists of multiple
routing layers used for inter-chip interconnections. With-
out individual packaging for the chips, the bare chips can
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be placed much closer on the MCM substrate, which leads
to a significant increase in packing density and decrease in
interconnection delay.

Due to the high packing density in MCM designs, the
MCM routing problem is more difficult than the conven-

tional IC or PCB routing problems. First, MCM’s may
have far more interconnection layers than IC’s. For exam-
ple, the MCM developed for the IBM 3081 mainframe
has 33 layers of molybdenum conductors (including one
bonding layer, five distribution layers, 16 interconnection
layers, eight voltage reference layers, and three power
distribution layers [4], [5]). Fujitsu’s latest supercomputer,
the VP-2000, uses a ceramic substrate with more than 50
interconnection layers [6]. Moreover, unlike routing in
IC’s, where the entire routing region can be naturally
decomposed into channels and switchboxes, there is no
natural routing hierarchy in MCM routing. The MCM
routing problem is an immense three-dimensional (3-D)

general area routing problem where connection can be
carried out almost everywhere in the entire multilayer
substrate. Finally, the pitch spacing is much smaller and
the routing result is much denser in MCM routing as
compared to those in conventional PCB routing. Thus,
traditional PCB routing tools are often inadequate in
dealing with MCM designs.'

Few methods are available for MCM routing. A com-
monly used method for multilayer MCM designs is the
3-D maze routing [6], [7]. Although this method is concep-
tually simple to implement, it suffers from several prob-
lem$. First, the quality of the maze routing solution is very
sensitive to the ordering of the nets being routed, yet
there is no effective algorithm for determining a good net
ordering in general. Moreover, since each net is routed

independently, global optimization is difficult and the final

routing solution often uses a large number of vias despite

the fact that there are many interconnection layers. Fi-
nally, 3-D maze routing requires long computational time
and large memory space. For example, one industrial
example that we obtained from MCC has a 75-micron
routing pitch and a routing area of 174 X 174 mm?; this
results in a routing grid of 2032 X 2032 for a single layer!
It is certainly not a trivial task to store such a grid for
each layer and search in it efficiently.

!Beside the problem of efficient utilization of routing resource, there
are also several performance issues involved in MCM routing. For
example, for high-performance designs, the wires need to be modeled as
lossy transmission lines, where signal reflection and cross-talk need to be
taken into consideration.
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Another method for multilayer MCM routing is to
divide the routing layers into a number of x-y layer pairs.
Nets are first assigned to x-y layer pairs and then two-layer
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bonding, tape-automated bonding (TAB), or flip-chip
bonding with solder bump connections. The substrate
consists of multiple signal routing layers, with (possible)

routing is carried out for each x-y layer pair (the x-layer
runs horizontal wires and the y-layer runs vertical wires)
[8]. Although this approach is efficient, it faces a few
problems. First we have to predetermine the number of
the routing layers before we can carry out layer assign-
ment. Moreover, the approach does not take advantage of
the existence of the large number of routing layers. Thus
some nets may use many vias since they are forced to be
routed within two layers. For high-performance MCM
designs, vias not only increase the manufacture cost but
also degrade the system performance since they form
inductive and capacitive discontinuities and cause reflec-
tions when the interconnections have to be modeled as
transmission lines [2].

Several efficient routers have been proposed for silicon-
on-silicon based MCM technology {1], [9]-[11]. Since the
number of signal routing layers is usually small (2 to 4
layers) in this technology, some techniques for IC routing,
such as hierarchical routing and rubber-band routing, can
be applied to yield good solutions.

The objective of our research is to develop an efficient
multilayer general area router as an alternative to the
commonly used 3-D maze router for solving the multilayer
MCM routing problem. Our router, named SLICE, has a
number of advantages. First, it processes many nets simul-
taneously so that the routing solution is independent of
net ordering. Moreover, it requires much shorter compu-
tation time and much smaller memory storage. Finally, it
emphasizes planar routing so that most of the nets use
very few vias. A key step in our method is to compute a
maximum noncrossing bipartite matching, which is solved
optimally in O(n log n) time (where n is the number of
possible connections). We tested our router on a number
of examples, including two MCM designs from MCC, and
compared the results with those by a 3-D maze router. On
average, both routers use about the same total wirelength,
but the 3-D maze router is six times slower and uses 29%
more vias. Another important feature is that SLICE works
on only a “thin slice” of a two-layer routing grid at a time,
while a 3-D maze router works on the entire 3-D routing
grid. Therefore, SLICE can successfully produce solutions
for large MCM routing examples where 3-D maze routers
fail due to the memory requirement.

The remainder of this paper is organized as follows.
Section II formulates the multilayer MCM routing prob-
lem. In Section III, we give an overview of our algorithm
and we describe each step of the algorithm in detail.
Experimental results and a comparative study are pre-
sented in Section IV. Finally, we discuss the extension of
our work in Section V.

I1. PROBLEM FORMULATION

The MCM routing problem consists of a set of modules,
a set of nets, and a multilayer routing substrate. Modules

obstacles in some routing layers, such as power/ground
connections and thermal conducting vias. The I/O termi-
nals (pads) of the modules are connected to the substrate
either directly or through routing to the external pads that
surround the individual modules for engineering changes
[2]. The pads are brought to the first signal routing layer
either directly throughistribution vias)or through one or
more redistribution layers. The redistribution layers are
required when the pads are too dense to be connected
directly to the signal routing layers. A pin redistribution
algorithm was presented in {12]. The goal of our MCM
router is to complete the connections for the I/0 termi-
nals in each net using the signal routing layers in the
substrate.

/Thﬁl,qTa'm layers in the substrate are numbered
from top to bottom) We assume that there is a routing
grid superimposed on each routing layer where the spac-
ing between grid lines is determined by the routing pitch
for the given P/I technology. We assume that the routing
grid is a Manhattan grid. However, our algorithm can

handle 45° routing as well. Two wires in adjacent signal
routing layers can be connected by a via. Vias may be
stacked on top of each other to connect wires in nonadja-
cent layers. Stacked vias can be formed in several ways,
e.g., by filling the etched via with nickel in the AT&T
AVP process or by plating copper posts as in the MCC
process [13]. Fig. 1 shows a cross-section of a sample
four-layer routing region.

The output of the routing problem is a set of routing
segments and vias that connect each net. The quality of
the routing can be measured by the total wirelength, the
number of vias, the number of wire bends (jogs), and the
number of layers required to complete the routing. Long
wire paths increase propagation time and should be
avoided. Vias and wire bends degrade the signal’s fidelity
by introducing impedance discontinuity in signal paths
thus should also be minimized. Vias usually cause more
serious problems than jogs, so that our router gives via
minimization a higher priority. Each additional routing
layer increases the manufacturing cost, and thus the num-
ber of layers should also be minimized.

I11. DESCRIPTION OF THE ALGORITHM

In this section, we present our fast multilayer general
area router, called SLICE, for MCM and single-sided
PCB designs. We first give an overview of the entire
algorithm, and then we describe each step in detail.

3.1. Overview of the Algorithm

The basic idea behind our algorithm is to perform
planar routing on a layer by layer basis. After routing on
one layer, we propagate the terminals of the uncompleted
nets to the next layer. Then we_continue routing on the

next layer and perform the single layer routing again. We

(dies) are mounted on th¢ top)of the substrate by wire
~—

repeat the process until all the nets are routed.
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KHOO AND CONG: A FAST MULTILAYER GENERAL AREA

Pin Die
Top surface
Distribution via Wi
ng
Layer 1
1 Layer 2
Stacked via Layer3
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Fig. 1. Cross-section of a multilayer (4-layer) routing region.

A crucial part of our algorithm is to compute a planar

Algorithm SLICE

N = {list of nets);

1= 1; /* Start at layer 1%/

while NV # @) do
Compute planar routing on layer /;
Redistribute the uncompleted terminals on layer /;
Perform restricted maze routing on layer /;
Remove unnecessary jogs:
Propagate the terminals of the uncompleted nets to layer ! + 1;
Rotate the routing area by 90 degrees:
I=1+1

end end

Fig.2. Overview of the SLICE router.

routing solution for each layer and try to connect as man

nets as possible in that layer. For nets that cannot be
completed in the layer, we try to perform a partial routing
so that these nets can be completed in the next layer with
shorter wires. We scan the routing region from left to
right and process each pair of columns that has terminals
at a time. For each adjacent column-pair, we compute a
maximum weighted noncrossing matching (MWNCM)
which consists of a set of noncrossing edges that extend
from the left column to the right column. This gives us a

topological planar routing solution between the column-

forms a channel and we define the’channel capaciB'.to_be

C..p = x, — x;. During planar routing in the current layer,
the terminals of the uncompleted nets are put in the list
P,.op- These terminals will be propagated to the next
routing layer.

For each column-pair, the occupied grid points on the
left column are called start-points. Clearly, each start-point
is either a terminal propagated from the previous layer, or

the endpoint of a partial routing solution computed in the

pair. Next, we generate the physical routing between the
current column-pair based on the selected edges in the
noncrossing matching. Then, we move on to the next

column-pair and compute the noncrossing matching and
physical routing again for that column-pair. The planar
routing process is completed when the right end of the
current layer is reached. Then, we distribute the terminals
of the uncompleted nets so that they can be propagated to
the next layer without causing local congestions. Since the
left-to-right scanping-eperation in the planar routing re-
sults in_mainly ‘horizontal) wires in_the planar touting-
solution, in order o complete the routing in the gertical
direction, we use a restricted two-layer maze router which
is much faster than a general maze router to route within
a thin vertical slice of the substrate one at a time from left
to right.> We clean up the routing solution by removing
unnecessary jogs and wires in the current layer. For nets
that are not completed, their terminals are propagated to
the next layer. Finally, we rotate the routing region by 90°
so that the scanning direction in the next layer is orthogo-
nal to the one used in the current layer. The entire
process is iterated until all the nets are routed. This top
level algorithm is summarized in Fig. 2. We shall describe
each step in detail in the remaining subsections.

3.2 @anar Routing )
@rid line

The terminals that lie on the same

form a &olumn™In our_pl i rithm. we scan
the routing region acros m left to righg and perform

routing between each (olumn-pal Let x; and x, be the
x-coordinates of the left-and right column of the current
column-pair, respectively. Conceptually, a column-pair

2Note that the scanning direction in the next layer will be orthogonal
to the scanning direction in the current layer, which will also help to
complete nets that require mainly vertical wires.

previous channel. We denote a start-point #; in the cur-
rent layer by a triple n; = (x;, y;, net;), where (x;, y;) is the
coordinates of the point, and net; is the net number of the
point. For a start-point n;, the terminal that it is to be
connected to is called the target of n;, denoted by
target(n;).} -

We shall concentrate our discussion on routing between
a single column-pair. We begin with a list P, that contains
all the start-points on the left column and go through the
following three steps to complete the planar routing. 1)
For all start-points on the left column of the current
column-pair, we generate a set S of weighted edges that
connect these start-points to the right column. The weight
for each edge represents the gain if we include this
connection in the planar routing solution. 2) We compute
the maximum weighted noncrossing matching S, nca Of
S, which corresponds to the best topological planar rout-
ing solution between the current column-pair. We shall
show that this step can be carried out optimally in O(n
log n) time, where n is the number of edges in S. 3)
Finally, we compute the physical routing solution based
on the edges in S,y ncy- The steps in the planar routing
algorithm are illustrated in Fig. 3, where the net number
for each terminal is given besides the terminal, and there
are three column-pairs. Routing in the first column-pair
has been completed, and we are processing the second
column-pair. Fig. 3(a) shows the weighted edges extending
from the start-points on the left column to the right
column, Fig. 3(b) shows the edges selected in the maxi-

*As a preprocessing step of SLICE, we decompose each multiterminal
net into a set of two-terminal subnets based on the Prim’s minimum
spanning tree algorithm. Therefore, each start-point always has a well-
defined target. The prior decomposition does not affect the routing
quality very much since 1) most nets are two-terminal nets in MCM
routing; 2) we allow the routes of two subnets of the same net to meet
and form a Steiner point in our planar routing procedure.
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Fig. 3. Steps in planar routing for a column-pair. (a) Generate possible
(topological) connections. (b) Compute a maximum weighted noncross-
ing matching. (c) Generate physical routing.

mum weighted noncrossing matching, and Fig. 3(c) shows
the physical routing based on the selected edges. We now
describe these steps in detail.

3.2.1. Generating the Weighted Edges: Given a list of
start-points P, on the left column, we want to generate
the set S of weighted edges that connects the start-points
in P, to the grid points on the right column. Conceptually,
for a start-point n; = (x;, y;, net;) in P,, we can generate
an edge from (x;,y;) to every grid point on the right
column which is free or occupied by a terminal of net n;.
However, this may result in too many edges, and most of
them will have very little chance of being selected in the
maximum noncrossing matching in the next step. To con-
serve both memory and time, we use a simple heuristic,
called_range reduction, to reduce the number of edges that
are generated. Clearly, the channel capacity C.,. bounds
the density of the vertical segments that can be routed
between a column-pair. Let y;,, and y;_, be the y-coor-
dinates of the nth start-point (not grid point) above and
below n; on the left column, respectively. Now if we
assume that all the start-points on the left column will be
routed, then the connection for each start-point above or
below n; will increase the channel density by one. There-
fore, it is sufficient to generate edges whose right end-
points are within the y-interval [y;_c ., +C“p}./?'nis is
the reduced range where the edges fomn end®n the
right column. \ -~

The weight of each edge represents the gain if we
include the edge in our planar routing solution. For each
start-point n;, let n; = target(n;). We define the preferred
region to be the y-interval on the right column defined by
the y-coordinates of n; and n;. Clearly, if an edge from #;
ends within the preferred region, it does not increase the
wirelength of net;. So we assign a high weight, weight_pre-
ferred, to the edges ending in the preferred region. More-
over, if an edge from n; ends exactly on n; (when »; is on
the right column), we assign an even higher weight,
weight_completed, to the edge in favor of completion of
the net. For the edges that end outside the preferred
region, we assign them a small weight weight_outside. In
general, weight_completed > weight_preferred >

weight_outside. We experimented with several weighting
functions and the best choice is the following. We set
weight_completed and weight_preferred to be two con-

stants, and let weight_outside decrease linearly as the
right end of the edge moves away from the preferred

region.
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3.2.2. Computing the Maximum Weighted Noncrossing
Matching: The most important part of our planar routing
algorithm is computing a topological planar routing solu-

tion between each column-pair. We begin with a set of
weighted edges S = {s,, 5,,"*, 5,}. Each edge in S repre-
sents a possible topological route that extends from a
start-point to the right column. The weight for each edge
represents the gain if we include this route in the planar
routing solutionz E: f: edge s; is a four-tuple (/, r,w, net)
where [ is the -coordina?) of the left end of the edge, r
is the y-coordinafe of the right end of the edge, w is the
weight of the edge, and net is the net number of the edge.

Since we want to choose a set of best edges that can be ]
roummymr,w/me_d to select a set of
edges from S that are non-crossing and have the maxi-
mum total weight. This is the maximum weighted noncross-

ing bipartite matching (MWNCM) problem. However, in
our formulation, we permit two edges in a noncrossing

matching to share a common endpoint at the right column

if they belong to the same net.

In order to compute a MWNCM, we(map) each edge

(I,r,w, net) to a point in the x-y plane using the one-to-
one mapping (x, y) = (I, r), where (x, y) is the position of
the point in the x-y plane. Given two points p; = (x;, y,)
and p; = (x;,y;) in the xy plane, p;, dominates p; if i)
x; 2 x;and y; >y, orii) x; > x; and y, = y; and net; = net;
(note that net; is the net that the corresponding edge of
p; belongs to). If condition 1) is satisfied, we say that p,
strictly dominates p;; otherwise, when condition ii) is satis-
fied, we say that p; laterally dominates p;. The dominance

relations are illustrated in Fig. 4, where edge ¢ @
dominates edges a and b, and edge bdomina S

edge a (assuming that @ and b are of the same net).
Clearly, if p; dominates p;, the two edges that are mapped
to p; and p; are either strictly noncrossing or sharing the
same endpoint on the right column when they are of the
same net.* We define a chain among a set of points P in
the x-y plane, to be an ordered list of points C =
{p1» P2r > P} Where each p, € P, and p,,, dominates
pi for k=1,2,--;m — 1. We call p,, the head-node of
the chain. We define the weight of a chain C, denoted by
weight(C), to be the sum of the weights of the points in C.
We define the maximum-chain C_,, to be the chain that
has the maximum weight among a given set of points. We
then have the following results.
Lemma 1: The dominance relation is transitive.

Proof: Suppose that p; dominates p; and that p;
dominates p,. There are four possibilities: i) p; strictly
dominates p; and p; strictly dominates p,; ii) p; strictly
dominates p; and p; laterally dominates p,; iii) p; later-
ally dominates p; and p; strictly dominates p,; and iv) p;
laterally dominates p; and p; laterally dominates p;. It is
straightforward to verify that in cases i)-iii), p; strictly

*Note that when two edges of the same net share a right endpoint, a
Steiner point is formed. So our method can generate Steiner routing
trees automatically.
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Fig. 4. Mapping the edges to points in the plane. Edges in P(S)
indicate the dominance relations (assuming the start-points 1 and 2 are
of the same net).

dominates p,, and in case iv) p; laterally dominates p,.
Therefore, the dominance relation is transitive. O

Theorem 1: Let S be the set of edges between a column
pair and P(S) be the set of corresponding points on the
x-y plane. Then, P(S) forms a partially ordered set. More-
over, the set of edges M in S is a maximum weighted
noncrossing matching if and only if the corresponding
points P(M) form a maximum-chain in P(S).

Proof: 1t is easy to see that the dominance relation is
reflexive (i.e., p; dominates p; itself) and antisymmetric
(i.e., if p; dominates p; and p; dominates p;, then p; = p)).
Also, according to Lemma 1, the dominance relation is
transitive. Therefore, the point set P(S) with the domi-
nance relation forms a partially ordered set [14].

According to the definition of the dominance relation,
it is easy to verify that two edges in M are noncrossing if
and only if the two corresponding points in P(M) are
related by the dominance relation (i.e., one dominates the
other). Therefore, the set of edges M < S forms a non-
crossing matching if and only if any two points in P(M)
are related by the dominance relation. Since P(S) is a
partially ordered set, any two points in P(M) are related
by the dominance relation is equivalent to that P(M) is a
chain in P(S). Moreover, since the weight of the chain
P(M) is the same as the weight of the edge set M, we
conclude that M is a maximum weighted noncrossing
matching if and only if P(M) is a maximum-chain in
P(S). ]

A maximum-chain of a point set P can be computed as
follows: We construct a directed graph Gp, called the
dominance graph, in which each node represents a point in
P, and add an edge (p;, p;) to G, if and only if point p,
dominates point p;. Fig. 5 shows a set of edges and the
dominance graph on the corresponding point set (the
edges implied by the transitive relation are omitted for
clarity). It is not difficult to show that G, thus constructed

is a directed acyclic graph and a maximum-chain in P

845
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Fig.5. A set of edges S and its corresponding point set P(S). Note that
start-points 2 and 3 are of the same net. The dominance relations are
shown in P(S) as thin arrows. The MWNCM in S, and the correspond-
ing maximum-chain in P(S) are shown as dotted lines.

Fig. 5 as dotted edges. However, since the procedure for
computing a maximum weighted noncrossing matching
will be used for every column-pair, we seek for a more
efficient implementation. We have developed an
O(nlog n) time algorithm for computing the MWNCM

based on a data structure called the priority search tree

[16]. Before we describe the algorithm in detail, we first
state a lemma.

Lemma 2: Suppose that each point in P has a positive
weight. Then, if point p laterally dominates point ¢ in a
maximum-chain in P, there does not exist a point r such
that p laterally dominates r and r laterally dominates g.

Proof: If such a point r exists, we can add it into the
maximum-chain to get a chain of even larger weight,
which leads to a contradiction. m]

According to Lemma 2, if point p laterally dominates
point g in a maximum-chain, then g is the first point of
the same net left of p in the same row. This fact is used in
the construction of a maximum-chain by our algorithm.

Let P be the corresponding point set of the given set of
edges, we shall compute a maximum chain in P under the
dominance relation. The points in P having the same
x-coordinate form a column, and the points in P with the
same y-coordinate form a row. Our algorithm processes
the points on a row by row basis, and we process the
points in the same row from left to right. This guarantees
that when we are processing a point, all the points which
are dominated by the current point have been processed
already. During the execution of the algorithm, we main-
tain a binary priority search tree, called PTREE. Each
leaf L of PTREE corresponds to a column occupied by a
point in P, and it has three fields, L.x, L.weight, and
L.head. The field L.x stores the x-coordinate of the
column. During the execution of our algorithm, assume
that p is the highest point that we have processed so far

corresponds to a maximum weighted path in Gp. Since the
maximum weighted path in a directed acyclic graph can be

computed in O(n?) time, where n is the number of nodes
in the graph [15],Jwe can compute a MWNCM in O(n?)
time, where n is the number of edges we generated
between a column-pair. The maximum weighted edges in
S and the maximum weighted path in P(S) are shown in

at column L.x, then L.weight is the weight of the maxi-
mum chain among the points that are strictly dominated
by p or in the same column below p, and L.head is the
head node of that maximum chain (note that p may not
be the head node). We shall show how to maintain
L.weight and L.head later on in the algorithm. Each
internal node I of PTREE has a field I.weight which
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records the largest weight of the leaves that are in the
subtree subtree(I) rooted at I. (Clearly, if X and Y
are the two children of I, then Lweight = max(X.weight,
Y.weight).) Fig. 6 shows an instance of the PTREE and the
point set in the x-y plane. The weights for the leaf-nodes
in PTREE and the points in P are also given in the Fig. 6.
For example, when we start processing point g, we have
H.weight = 27 and H.head = a since the maximum chain
among the points strictly dominated by g or in the same
column below g is (a, b, ¢).

Our algorithm processes the points in P one row at a
time from bottom to top, and processes the points in the
same row from left to right, so we sort all the points
according to their y-coordinates first and then x-coordi-
nates. We maintain four fields for each point p: p.weight,
p.net, p.total_weight, and p.next. The fields p.weight and
p.net store the weight and the net number of the edge
corresponding to the point, respectively. The field
p.total_weight stores the weight of the maximum-chain C,
with p as its head node, and p.next points to the next
point after p in C,. Initially p.total_weight = 0 and p.next
= nil for all points.

For each point p, p.total_weight can be determined as
follows: let leaf L in PTREE correspond to the column
where p is located. Let PATH,; be the path from L to
the root in PTREE. Let 1,,1,,---,1, be the roots of the left
subtrees hanging from the path PATH, (i.e., [; is the left
child of some node in PATH,). The algorithm searches
for leaf L’ such that

L' .weight = I_nléilx 1, .weight. 1)

i=

Then, we have p.total_weight = p.weight + L' weight and
p.next = L'.head. This covers the case where p strictly
dominates p.next. To cover the case that p laterally
dominates p.next, we look for the point g in the same row
as p with g.net = p.net. According to Lemma 2, we need
only to consider such a g which is closest to p. If
p-total_weight < p.weight + q.total_weight, then we set
p.total_weight = p.weight + q.total_weight and p.next = q.
Fig. 6 illustrates the computation of p.total_weight and
p-next for the point p. The leaf node L in PTREE
corresponds to the column where p is located. The path
PATH, from L to the root is shown by the dashed line.
The nodes F and H are the roots of the left subtrees
hanging from PATH, . According to (1),

L' .weight = max (F.weight, H weight)
= max (17,27) = 27.
If point ¢q is not in the same net és p, then
p.total_weight = p.weight + L' .weight = 15 + 27 = 42.
If g and p are in the same net, then
p.total_weight = max ( q.total_weight, L' .weight)

+ p.weight = max (47,27) + 15 = 62.

p.weight

30 15
q (o) p (]
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14 a® (o]
b0 12 [o) o
] 8
o] 11 (o]
3 o]
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i Il I it Il 1 1 i x
T T T T 1 T T
3 17 15 11 27 14 33 21w .
H L L.weight
O\o Ps O\o Pe 0\6 /Q, o\o P
F a3 4
<~ - -— PATH
PTREE

Fig. 6. Priority search tree (PTREE) used to compute the MWNCM.

(Note that g.total_weight = q.weight + F.weight = 30 +
17 = 47, which was computed when g was processed in
the previous step.)

After we have processed a row of points, we update the
entries in PTREE. (Note that we do not update the node
leaf L immediately after we have processed the current
point p, because we use L.weight to record the weight of
the maximum-chain among the points that are strictly
dominated by p or are in the same column below p.) For
each point g in the current row, let leaf L, correspond to
the column that g is located; if q.total_weight > L weight,
then L, .weight = q.total_weight and L, .head = q. Fur-
thermore we update the weights of the mtemal nodes in
PATH, .

After all the points are processed, the point p,, with
the largest total_weight is the head of the maximum chain
in P and we can follow the p,,.next field to get the rest of
the maximum chain. Our algorithm is summarized in Fig.
7. :

Theorem 2: Given the set S of n edges between a
column-pair, the maximum weighted noncrossing match-
ing can be computed in O(n log n) time.

Proof: We shall show that our algorithm spends
O(log n) time for processing each point p in P. Since
PTREE is a binary priority search tree, it has depth
O(log n). Thus, there are O(log n) left subtrees hanging
from PATH,. We can find out the subtree whose root, say
1,, has the maximum weight in O(log n). Moreover, we can
find the leaf node L' in the subtree subtree(l;) with
L' .weight = I, weight in O(log n) time. (In order to find
such a leaf node L’, we start with /; as the current node
and always move to the child who has the same weight as
the current node. When we eventually hit a leaf node, we
return it as L'.) Furthermore, to locate the point g, which
is immediately laterally dominated by p, takes only con-
stant time. (We preprocess each net and record for each
point p the point which is immediately laterally domi-
nated by p. This preprocessing can be done in linear
time.) Therefore, p.total_weight can be computed in-
O(log n) time for each point p in P.

When p is the last point in a row, we update the leaf
node L, in PTREE for each point g in that row. More-
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Algorithm Compute MWNCM
P={py,p2 **-.pa}:/* Theserof (x, y) points mapped from S */
PTREE = A priority search tree with leaves associated with the x-coordinates of the points in
P
Sort P according to p.y followed by px:

foreach pin P
let leaf L in PTREE correspond to the column where p is located:
let PATH], be the path from L to the root in PTREE;
letly, I ..., Iy bethe roots of the left suiyuaeskhanging from PATH,;

locate the leaf node L’ such that L’.weight = max I; weight;
i=1

let g be the rightmost point in the same row as p with g.net = p.net;
if (g exists) and (g.fotal_weight > L’ weight) then
p.total_weight = q.1otal_weight + p.weight and p.next = q:
else
p.rotal_weight = L'._weight + p.weight and p.next = L' head;
endif

if (p is the last point in a row) then
foreach ¢ in the row do
let leaf L, correspond the column where g is located;
if (q.total_weight > L. weight) then
Lq.weight = q.to1al_weight:
Lg.head = ¢
update the weights of the intemal nodes in PATHL':
endif
end /* of foreach */
endif

let p, be the point with the largest p.total_weight;
construct the maximum chain C ,,, by following the p,, .next field;
Sywics = the edges corresponding 1o the points in C py; end

Fig. 7. Algorithm for computing the MWNCM.

over, we update the weights of the internal nodes in
PATH, (i.e., we start with L, as the current node X. Let
parent(X) be the parent node of X in PTREE, then we
update parent(X).weight by max (parent(X ).weight,
X.weight). We assign X = parent(X) and repeat the up-
dating operation until parent(X) becomes the root of
PTREE). Since the length of each PATH, is O(log n),
our algorithm spends O(log n) time updatinqg PTREE for
each point g in P.

Therefore, our algorithm spends at most O(log n) time

processing each point p in P. Hence, the time complexity
of our algorithm is bounded by O(n log n). ]

We noticed a significant speed-up when the O(n?) time
algorithm was replaced by the O(n log n) time algorithm
for computing a maximum weighted noncrossing matching
between each column-pair.

3.2.3. Physical Routing: The solution we obtained from
computing the maximum weighted noncrossing matching
in the previous section gives us a set of edges, Sy wney =
{s),55,, 5,}, where s; = (I, r;, net,), I; and r; being the
y-coordinates of the left and right endpoints of the edge,
and net; is the net number of the edge. Each edge
represents a connection between the two points, (x;,1;)
and (x,,r;) in the current routing plane, where x; and x,
are the x-coordinates of the left and right columns, re-
spectively. As the result of the physical routing, we end up
with a list of endpoints of the routings, P,, on the right
column, which together with the terminals that are on the
right column, will form the new list of start-points on the
new left column in the next iteration of column-pair
routing. Because the edges in S, ncy are topological
routing solutions, not all edges can be routed due to the
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channel capacity constraint. We add to P,,,, the start-

points whose edges failed to d.
We perform the routing\separately on two classes of

edges from S,y ncy as defined below. Given an edge
s; = (I;, r;, net;), we say that E_ng_e@ if I, <r,.
Otherwise, we say that s, is alfalling edgé G.e., /; > ;). We
group all the rising edges in S,;,, and all the falling edges
in S;,;. We also order the edges in Sg,, in increasing
y-coordinates, and order the edges in S,;,, in decreasing
y-coordinates. That is, if S,;;, or S, = {51, 55", 5,}, then
for Sy, I; <l for i = 0,+-,n — 1, whereas for §,,,,
I, >1,,, fori =0,-,n — 1. It is not difficult to show that
the edges in S,;,, and S, can be routed separately.

We perform the physical routing one edge at a time.
We now describe the routing for S,,,,. For each edge s; in
S,ise» We start routing from (x,,/;) in the routing plane,
and route towards (x,,r;) in the following manner. We
advance the routing along the y-axis upward until the
routing is blocked, or if we have reached the y-coordinate
r,. Then we shall route one grid unit along the x-axis
rightward if possible and repeat the routing along the
y-axis. This process is repeated until one of the following
three cases is encountered. 1) The connection is com-
pleted, 2) the routing has ended on the right column but
did not reach (x,,r,), and 3) the routing has failed to
reach the right column. For the case 1), we simply add the
start-point (x,,r;, net;) to P,. For case 2), we add the
start-point with the new y-coordinate, (x,, new_r;, net;) to
P., where r_new; is the y-coordinate of the end-point of
the physical routing on the right column. For case 3) we
remove any partial routing that we might have added
between the column-pair, and add the start-points n; =
(x,,1;, net;), and target(n;) to the list of terminals P,,,, to
be propagated to the next layer. Fig. 8 illustrates these
cases. The left side of Fig. 8 shows four rising edges in the
MWNCM named a, b, c,d. Terminals ¢1 and 2 are of
other nets. Routing for edges a and b are completed.
Edge c is routed to the right column but at a different
y-coordinate. That is, we have altered the topological
solution since the end-point of the routing does not corre-
spond to the end-point of the edge in MWNCM. How-
ever, we fail to route edge d because of the blocking
terminal on the right column. In this case, both the
start-point of the edge d and its target will be added to
P For edges in S;,;;, the procedure is similar except

prop-
that routing along the y-axis is always downward.

3.3. Pin Redistribution

Another feature of the SLICE router is that it redis-
tributes terminals during the routing process to_ avoid
local congestion. Unlike the pin redistribution algorithm
presented in [12], our pin redistribution process is inter-
leaved with the routing process. At the end of planar
Touting of each layer, a pin_redistribution step is per-
formed. Since the planar routing for a net is blocked only
when it encounters some obstacles or other routings, the
terminals in P,,,, tend to be clustered. This will make the

pro
routing on subsequent layers difficult because the routings
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completed

Routed to a new

b1 yooordinate

1
-— . )
T Routing failed

o, o
a o o o
l I"‘“"“_

MWNCM

After physical routing

Fig. 8. Example of physical routing.

will be congested around the clustered terminals. To
reduce the routing congestion, we want to ensure that the
terminals in P,,, are evenly distributed. We define the
terminal density of a given column to be the number of
terminals in that column. Then to reduce the routing
congestion, we try to move the terminals in P,,,, such
that the terminal densities are roughly equal among all
the columns.® Furthermore, we should try to move the
terminals in such a way so that the increase in wirelength
is minimized. Our pin redistribution algorithm processes
the terminals one at a time moving the terminals horizon-
tally to a column with the lowest terminal density. For a
given terminal of net #n, the possible columns that it can
be moved to is restricted to be in the range [x(n), —
slack, x(n), + slack], where x(n), and x(n), are the x-co-
ordinates of the leftmost and rightmost terminals of net
n, and slack is a small constant. Experimental results
show that the pin redistribution algorithm consistently
improves the utilization of the routing resources.

3.4. Restricted Maze Routing

Our planar algorithm will produce routing segments
extending predominantly in the scanning direction. There-
fore, many start-points may not be routed because they
are lined up almost vertically. To complement the planar
routing, we use a restricted maze router to complete as
many left over nets as possible.

To conserve memory, we restrict the maze-routing to
within two routing layers. Moreover, we restrict the range
of the maze router to a thin “vertical slice” of the routing
region since we are primarily interested in vertical con-
nections. Typically, the maze range is 10% of the width of
the routing region.

3.5. Jog Removal

Since the planar routing algorithm does not penalize
the formation of wiring jogs, the completed routings may
contain _many unnecessary jogs. Therefore, a clean up
phase is necessary to remove these jogs to improve the
quality of the planar routing solution.

We identify two kinds of jogs. We call simple jogs to be
those that can be eliminated by moving a single wire

>Since the routing direction for the next layer is vertical, the terminals
that are on the same column often block each other. Therefore, reduc-
tion in terminal density at each column leads to better routing results.

> —0 *r—=e

 J
r—-‘iZ l
Before Jog removal After jog removal

Fig. 9. Removal of simple jogs by moving horizontal segments down-
— ward.

[ ]

*r— [}

P —
Jog j can be removed if
b is first moved to b'.

Jog j cannot be removed
by moving a single segment.

Fig. 10. Example of a complex jog.

TABLE 1
CHARACTERISTICS OF EXAMPLES

size

number number number of
of of of substrate  pitch

Example  chips nets pins (mm?) (um)  grid size
testl 4 500 1000 225x225 75 300 x 300
test2 9 957 1914 30 x 30 75 400 X 400
test3 9 1254 2508 375%x375 75 500 X 500
mecl 6 802 2495 45%x 45 75 599 X 599
mcc2 37 7118 14659 1524 X 1524 75 2032 X 2032

segment as shown in Fig. 9. Otherwise, the remaining jogs
are called the complex jogs, where more than one wire
segments need to be moved to eliminate a jog as shown in
Fig. 10. SLICE tries to remove the simple jogs first, then it
tries to remove the remaining complex jogs. Both algo-
rithms are based on the efficient plane sweeping tech-

nique used extensively in computational geometry [17].

Experimental results show that on the average, more than
47% of the jogs can be removed by our algorithms.

IV. EXPERIMENTAL RESULTS

We implemented SLICE on the Sun workstations using
the C language. The following experimental results were
recorded on a Sun SPARC station II with 32 MB of
memory. We tested the program on five examples shown
in Table I. The examples, testl, test2, and test3, are
generated with random netlists. Examples mccl and mcc2
were industrial MCM routing examples provided by MCC.
Example mcc2 is a supercomputer with 37 VHSIC gate
arrays.

The routing results obtained by SLICE on these exam-
ples are given in Table II. The lower bound on wire length
for each net is computed by the half perimeter of the
bounding rectangle that encloses all the terminals in the
net. This is a conservative lower bound for multiterminal
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TABLE 1I
CHARACTERISTICS OF SOLUTIONS

wire length

number of number of number of run time
Example layers vias jogs lower bound SLICE ratio (hr:min)
testl 5 2013 3453 102238 109092 1.067 0:02
test2 6 5271 9656 265000 286723 1.082 0:06
test3 6 6892 13552 426308 459046 1.077 0:12
mecl 5 6386 11215 339226 402258 1.186 0:12
mec2 7 47751 107888 5362181 5691700 1.061 7:25
TABLE III TABLE IV
DISTRIBUTION OF COMPLETED NETS EFFECTS OF JOG REMOVAL ALGORITHMS
% of nets complexed in x layers Total number of jogs
Example 1 2 3 4 5 6 7 Without Algo. to remove  Algo. to remove Both
testl 48 528 802 976 1000 Example jog removal Simple Jogs ~ Complex Jogs Algorithms
test2 25 276 558 827 96.3 100.0 testl 6732 3785 4015 3453
test3 23 301 569 849 97.3 100.0 test2 18519 10991 11328 9656
mccl 122 531 828 980 1000 test3 25725 15944 16079 13552
mec2 1.6 339 609 812 94.2 99.3 100 mccl 20399 12260 12999 11215
mec2 241844 129127 122566 107888

nets. It can be seen that SLICE uses at most 9% more
than this lower bound for all examples except mccl.®

Table III shows that a large percentage of the nets are
completed within the first few routing layers. For all cases,
more than 80% of the nets are completed within the first
4 routing layers.

Table IV shows the effect of the two jog removal
algorithms. Note that each of the individual jog removal
algorithms may remove both kinds of jogs, thus the total
jogs removed by applying both algorithms are less than
the sum of the jogs removed by applying the two individ-
uval algorithms independently.

Table V shows the effect of the pin redistribution
algorithm. The algorithm consistently reduces the number
of layers needed to complete the routing at the expense of
a slight increase (2.6%) in the total wirelength. The im-
pact of the pin redistribution algorithm on the number of
vias and jogs is usually small. On average, the number of
jogs is increased by 2.5% and the number of vias is
increased by 0.3%.

We also compare our results with a general 3-D maze
router in Table VI. The 3-D maze router uses a reserved
layer model,® in which the horizontal wires and vertical

®There are many multiterminal nets in mccl. Since the lower bound
given by the half perimeter of the bounding box is not tight for
multiterminal nets of size 4, our lower bound for mccl is considerably
smaller than the optimal wirelength. In fact, it is commonly believed that
the wirelength of a minimum Steiner tree for a multiterminal net is at
most 88% of the wirelength of a minimum spanning tree on average [18],
which leads to a new wirelength lower bound of 362497 for meccl. The
result by the SLICE router is only 11.0% more than the new lower
bound.

"The 3-D maze router using the reserved layer model performed much
better than the one using the unreserved layer model. For example, in
our experiment, the number of layers required for example mccl is 17
with the unreserved layer model versus S layer with the reserved layer
model.

8We tried both the reserved layer and the unreserved layer model
two-layer maze router in SLICE but the difference in the results is
insignificant. For all the test cases, the results by SLICE reported in
Tables II-VI are based on the unreserved layer model two-layer maze
router.

wires are routed in different layers. The 3-D maze router
was not able to run on mcc2 on our system due to the
large size of the example. On the average, SLICE is more
than six times faster than the 3-D maze router, and uses
29% fewer vias than the 3-D maze router. However, the
number of layers used by SLICE is generally more than
the 3-D maze router. But as shown in Table III, the last
few layers in the SLICE solutions are very sparse.
Another advantage that SLICE has over the 3-D maze
router is its low memory requirement. For the example
mcc2 (a supercomputer with 37 gate arrays), in order to
store the entire grid of size 7 X 2032 x 2032, the 3-D
maze router needs 110 MB of memory (assuming that we
use four bytes for each grid point to store the net number,
routing cost, etc.) That is why the 3-D maze router failed
to route the example on our system. However, using a
maze routing range of 10%, at any time, the working
space of SLICE is only 2 X 10% X 2032 X 2032 = 3.3
MB of memory. So SLICE successfully produced a satis-
factory solution. Furthermore, if the routing pitch for the
same example is reduced by a factor of two, the 3-D maze
router will require 441 MB of memory whereas SLICE
will require only 13.2 MB of working memory. Clearly, for
the next generation of dense MCM design, the 3-D maze
router will face more severe memory limitation, and the
advantage of SLICE will become much more significant.

V. CONCLUSIONS AND FUTURE EXTENSIONS

In this paper, we presented a fast multilayer general
area router named SLICE for MCM Designs. The routing
result of the SLICE router is independent of net ordering
and uses fewer vias. The total wirelength produced by
SLICE is only a few percents away from the optimal.
Compared with a general 3-D maze router, with a small
increase in the number of routing layers, SLICE runs
more than six times faster, uses 29% fewer vias, and
requires far less memory.
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v

EFFECTS OF PIN REDISTRIBUTION ALGORITHM

no. of layers no. of vias no. of jogs total wirelength
Example with without with without with without with without
testl 5 6 2013 2025 3453 3366 109092 107247
test2 6 7 5271 5268 9656 9230 286723 279542
test3 6 7 6892 6821 13552 13326 459046 445208
mecl 5 6 6386 6120 11215 11183 402258 388078
mec2 7 9 47751 49475 107888 104665 5691700 5588512
TABLE VI
COMPARISON WITH MAZE ROUTER
number of number of number of total run time
layers vias jogs wire length (br:min)
Example SLICE maze SLICE maze SLICE maze SLICE maze SLICE maze
testl 5 4 2013 2975 3453 421 109092 107908 0:02 0:08
test2 6 4 5271 7127 9656 892 286723 273642 0:06 0:48
test3 6 4 6892 9347 13552 1094 459046 441552 0:12 1:40
mccl 5 5 6386 8794 11215 1244 402258 397221 0:12 0:59
mcc2 7 —_ 47751 — 107888 — 5691700 — 7:25 —

The SLICE router can also handle 45° routing. After
we obtain a maximum weighted noncrossing matching, we
can use a more sophisticated procedure to map the topo-
logical routing solution into a physical routing solution
which allows 45° routing. The SLICE router can handle
arbitrary obstacle in the routing region as well since it can
avoid generating edges whose end-points are on the ob-
stacles.

Although the SLICE router reduces the total number
of vias significantly, it might be possible that some individ-
val nets have high via counts. We are in the process
of developing a MCM router which can bound the num-
ber of vias used for every net in order to achieve pre-
dictable performance. We also hope to take some perfor-
mance issues (such as coupling and reflection) into consid-
eration in our design of the next generation of MCM
router.
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