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Abstract—Deep submicron effects, along with increasing in- used method for global and detailed routing. Briefly, the maze
terconnect densities, have increased the complexity of the routing routing algorithm starts from a source point and recursively
problem. Whereas previously we could focus on minimizing gearches jts neighbors for the best route until it reaches the sink

wirelength, we must now consider a variety of objectives during int. The best route is defined by a functi f i .
routing. For example, an increased amount of timing restrictions point. The bestroute Is detined by a function ot congestion, wire

means that we must minimize interconnect delay. But, intercon- length, chip size, number of bends, etc. Maze routing finds the
nect delay is no longer simply related to wirelength. Coupling optimal path for two-terminal nets according to the cost func-

capacitance has become a dominant component of delay due totion. A major drawback of the algorithm is the large amount of
the shrinking of device sizes. Regardless, the most important \yamqry required to label its data structure, the grid graph. There

objective is producing a routable circuit. Unfortunately, this often h b | oth d extensi d dificati
conflicts with minimizing interconnect delay as minimum delay ave been several other proposed extensions and modifications

routes create congested areas, for which an exact routing cannot t0 the maze routing algorithm in the almost 40 years since it has
be realized without violating design rules. In this work, we use been introduced, but the underlying method remains the same.

the concept of pattern routing to develop algorithms that guide  Pattern routingis the well-known idea of using prespecified
the router to a solution that minimizes interconnect delay—by yaierns to route two terminal nets. This is particularly useful

considering both coupling and wirelength—without damaging the . . . .
routability of the circuit. The paper is divided into two parts. The [0 high level computer-aided design (CAD) tools (.., tools

first part demonstrates that pattern routing can be used without Preceding global routing in the design flow). For example, most
affecting the routability of the circuit. We propose two schemes to placement tools use quick routing metrics to get a basic idea

choose a set of nets to pattern route. Using these schemes, we showhout congestion and wirelength information. In this paper, we
that the routability is not hindered. The second part builds on the develop quick routing methods that reduce the interconnect

previous part by presenting a framework for coupling reduction h . o AR
using pattern routing. We develop theory and algorithms relating delay, increase the predictability of the circuit, and do not affect

pattern routing and coupling. Additionally, we give suggestions on the quality of the routing solution. Since we know these metrics
how to extend our theory and use our algorithms for both global will not affect the routing, the placement tool can use these

and detailed routing. methods to model congestion and wirelength more accurately.

Index Terms—Congestion, coupling, detailed routing, global AlSO, since we know the routing topology of a net, we can start
routing, interconnect, pattern routing, physical design, routing wire sizing, wire planning, and optimally add buffeience we
estimation. have placement information.

Due to DSM effects, coupling is of greater importance for
power, area, and timing in circuits. There are four principal
) o ) reasons for this, increasing interconnect densities, faster clock
T HE PROCESS of routing can be divided into two subprolates, more aggressive use of high performance circuit families,

lems, global and detailed routing. Global routing decomynq scaling threshold voltages [7]. In fact, coupling capacitance
poses the routing problem into smaller manageable routings fitween wires can account for over 70% of the total wiring ca-
the detailed router. Specifically, the global router finds a rOUSHhcitance, even in 0.26m processes [8]. Therefore, it has be-
path for each net while trying to reduce the chip size, decreaggine necessary to consider coupling during both global and de-
the interconnect delay, and distribute the congestion across thged routing.
routing area, among other things [1]-[3]. Detailed routing usesyntjl recently, there has been little research on the coupling
the results of global routing to find an exact realization of thﬁroblem in routing. Coupling reduction was considered at
interconnections in VLSI circuits. the detailed routing stage for the river routing problem [9],

The global routing problem is known to be NP-hard [4]. Thighe channel routing problem [10], and the switch box routing
motivates the use of heuristic and approximation algorithr‘rﬁmmem [11]. Also, there have been efforts in reducing cou-
The maze routing (or maze running) algorithm [5] is a widelyjing in the stage between global and detailed routing. Xue

al. developed a post global routing tool which estimates the
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[15]. This work presents algorithms for coupling avoidance a) (gy) (i,v)
routing. The algorithms are general so they can be used in both ;
global and detailed routing. :
In this paper, we focus on increasing routing predictability

and reducing the unwanted effects caused by coupling during 777777 @9y
routing. This work is based on papers that appeared in upper wiring
[16]-[18]. In Section II, we give some basic definitions in
order to make this paper self-contained. In particular, we
discuss pattern routing, congestion, and coupling. Also, we
briefly describe our router used in the experiments. Section IlI @y b
introduces the idea of increasing routing predictability through &y
pattern routing. We present heuristics for finding a subset of lower wiring
nets which can be predictably routed and show the results,gpg_ 1. (a) Upper-L routings. (b) Lower-L routings.
those heuristics. We introduce the coupling-free routing (CFR

problem in Section IV and discuss its applications to global o R Globg) Bins

and detailed routing. An exact algorithm for coupling-free DD:DDEDDD‘D ] b)

routing decision problem (CFRDP) is presented. Then, we |- 2=t U% L1

show how to transform a CFR problem into implication graph |65 ©li52:[]2: 0 §>mm. -
to model the dependencies between nets. Finally, we introduce Dﬁ% DD:‘%E‘ Blees Edes
the maximum coupling-free layout (MAX-CFL) problem and Ti':r"f:':rﬁ':'"'n':’ﬁ"

analyze a couple algorithms developed to solve the problem. DDD:I:DDU

We conclude in Section V. DEEDE% Sg =il2

Il. PRELIMINARIES
Fig. 2. (a) Placement of cells into global bins. (b) The corresponding grid

A multiterminal netr, = {(z1,1,), (22, %2), - -, (@0, )} 973N
is a collection of points in the plane.t&rminalis single point of
a net. A multiterminal net can be partitioned into a collection of A global binis a rectangular partition of the chip. By parti-
two-terminalnets (a net with exactly two points) using a numbeioning the chip into many rectangular regions and placing the
of standard techniques. We adopt table spanning trepar-  Cells into these regions, we have a placement using global bins.
titioning of Ho et al.[19]. Additionally, the spanning tree is al- The boundaries of the global bins ajiebal bin edges
tered for flexibility [20]. Essentially, we use this to transform In this paper, we assume that a global placement of cells and
the multiterminal net into a set of either a very short two-tefheir interconnections are given by some placement engine (our
minal net or a large two-terminal net. That paper shows th@¥periments used Dragon [22]). The cells are placed into global
these nets can be pattern routed independently as two-termfiap and each cell is assumed to be placed in the center of the
nets without affecting the routability of the circuit. global bin. Looking at Fig. 2, itis easy to see that the global bins
A two-terminal net (or simply called aet hereafteryn = and edges can be transformed into a grid graph. The intercon-
{(#1,11), (z2,92)} is an unordered pair of points;;, ;) and hections between the cells can be modeled by nets.
(z2,y2). A routing or wiring of n is a set of horizontal and ver- ~ Congestion in a layout means that there are too many nets
tical line segments connectirig; , 1) and(x2, 32 ). A layoutis routed in a local area. This causes difficulty for the detailed
the routings of a set of nets. router as it may not find a feasible routing solution. We want

A netn can be routed without any bends if and only if eithet© evenly distribute the routing across the total chip area. The
71 = @2 O y1 = v». We call such a net zero-bend netOther- congestiorof an edge is the number of nets routed over a global
wise, there are two ways to routewith one bend as shown in bin €dge. From now on, we will refer to a global bin edgas
Fig. 1. When a routing has no more than one bend, it is calle¢a Thecapacity(also referred to as supply) of edggis c,. It
single-bend routing21]. We call such a netane-bend net IS the maximum number of nets that can be routed eyer,
lower-L routing A stable spanning tree ensures that upper{€chnology used in creating the chip. The routing demarg,of
routing and lower-L routing shapes of the two-terminal nets o§Pecified agl,, is defined as the number of route edges crossing
tained from a multiterminal net are pairwise nonintersecting. Te- Similarly, the demand of a vertexis d,,. Here the demand
avoid confusion, we often refer to a possible routing asude corresponds to the number of routes that pass though the vertex
Thus we say that a one-bend net has two one-bend routes g¢Hgauivalently the global bir). An edge is overflown if and

upper-L route and the lower-L route). only if d. > c.. Formally, the overflow of an edge is
A grid graphis a graphG(V, E) such that each vertex corre- Ao —t ifd >c
sponds to a point in a plane. See Fig. 2 for further explanation. overflow, = {OE 7 otherwise.

A routingof a net on a grid graph is a set of grid edges such that
the terminals are fully connected. Thmute edge®f a net are t is a threshold value which allow$ to go abovec. without
the set of edges used in the routing of that net. an overflow penaltyt is used since you can often route up:to
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nets though neighboring bins without affecting the congestion @ ®
of those binst is usually a small constant (approximately 2-5). ®i--1s hall i .
Using the global bin and global edge notation, the total overflow ® : RN R .
of a routing is J--le] e[
|BE| :. :_ °
overflow g = Z overflow,
e=1 Fig. 3. (a) L-shaped routing of two two-terminal nets. (b) Z-shaped routing of

where BE is the set of bin edges. The total overflow reflect§o nets.

the sh_o_rtage of rqutmg_ resources .for a particular set_of ed\s‘\?nen using pattern routing, only a constant number of edges
capacities. A routing with a minimized total overflow is one

of the objectives of our global router. Our industrial experienca.. searched. For example, L-shaped patern routing will only
J 9k : Pe Search the edges on the bounding box of the two-terminal net.
shows that total overflow is a good measure of congestion.

Then, depending on the cost of these edges, it will choose
the upper-L or lower-L and place the route there. Similarly,
Z-shaped pattern routing needs only search the edges on the
We implemented a global maze router. The maze router takRimeter and inside the two-terminal bounding box. On the
every net and routes them one at a time according to a cost fuggher hand, maze routing will search every edge (in the worst

A. Maze Routing

tion case). Therefore, pattern routing has a better upper bound on
overflowgyie = Z overflow, runtime complexity. We found that on average, the pattern
cCRouteBdges routing approach searches fewer edges than the maze router.

We formally summarize the complexities.

length.,.. =|RouteEdgels
1) Given a netn = {(z1,11),(x=2,92)} and a grid graph

COStoute = X OVErflow,oyte + length, ..

G(V,E).
COStotal = Z COStoute- 2) Let A be the edges on and within the bounding box of
allnets A C E|A] = 2-|xr — 22| [yr —yo| +]z1 — 2] +]y1 — 12
There is a tradeoff between minimizing overflow and mini- 3) Let P be the edges on the bounding boxofP C A.
mizing wire length. Ideally, you could minimize both concur- |P| =2 (Jz1 — 22| + |11 — ¥2])

rently. Most often this is not possible. Our cost function can 4) Maze routing—©O(|E|).

solely minimize wire length (sett = 0). Likewise, you can  5) L-shaped pattern routing&|P|).
minimize overflow by settingy >> 1. We found that varyingy 6) Z-shaped pattern routing&{| Al).
from 10 to 100 minimizes the total overflow while keeping the Theorem 1: |P| < |A| < |E|

wire length minimal. Proof 1: The proof is trivial sinceP C A C E. O

For nets with more than two terminals, we use stable Steinerrhe maze router ensures that the least cost route (according
trees to partition the net into a set of two-terminal nets. Each Rgtine cost function) is found. Pattern routing does not give you
is given an initial route and then a rip-up and reroute phaseyfgs juxury. In fact, an L-shaped pattern routing could produce
applied to further minimize the total overflow. This techniquene second worst possible route. This occurs if both the upper-L
(or variants of it) appears in most global routers in order to deglute and the lower-L route are the two worst paths. Pattern
with the net ordering problem [23]. During rip-up and reroutgoyting will choose the better of these two solutions, giving you
the bin edges are sequentially searched. If an edge is overfloyihad routing. In general this is not the case, as our results show.
then all of the nets that pass through that edge are ripped an@\nother benefit of pattern routing lies in the predictability of
rerouted. This process continues until the total overflow COB-pattern-routed net [17]. If you know that a net will be pattern
verges to a local minimum. That is, if the total overflow doegyyted, you can quickly and accurately estimate its route earlier
not decrease (the goal is to minimize the total overflow) afterj, the design flow. For example, you know that an L-shaped pat-
iterations, rip-up and reroute has completed. We found that gern route will take one of two routes. This allows higher level
of 200 gave good results for the designs that we tested. Largetp tools, such as the placement or logic synthesis engines,
designs may need an increaseavhich decreases the chancqg estimate routings which will lead to better congestion and
of getting stuck in a local minimum. In general, smaller designgea estimates. In order to exploit predictability, the tools need
can afford to decreasewhich would decrease the runtime.  pjacementinformation. Many industrial logic synthesis tools are

, moving toward layout-driven synthesis. Additionally, an aca-

B. Pattern Routing demic behavioral level synthesis tool has recently incorporated

Pattern routingis the notion of using predefined patterns t@lacement information [24].
route two-terminal nets. Usually these are simple patterns suctWith emergence of deep submicron (DSM) fabrication tech-
as an L-shaped (single bend) or a Z-shaped pattern with twology, interconnect has an increasingly dominant role. Now
bends, route restricted within bounding box. For more detailsycuit delay is determined by the gate resistance and capaci-
see Fig. 3. tance as well as the interconnect resistance and capacitance [25].

Patterns can speed up the routing process. Instead of mé#gen optimizing for delay in a circuit, logic synthesis tools look
routing a net, we pattern route it. In general, maze routing wal the critical path. Usually these tools only consider the gate
consider many bins that the final route will not actually uselelay, ignoring the interconnect delay. If we could pattern route
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the gates on the critical path, then we can more accurately esti- a)
mate the interconnect resistance and capacitance.

Finally, the number of vias on a pattern-routed net is fixed.
Since vias further increase the capacitance and resistance, it is
beneficial to keep them at a minimum. Also, vias negatively

affect the routability of the circuitj2z¢. ~ TTTTTTTOOT S“

wire j with width (Wj)
C. Coupling ®) s

Bakoglu [27] shows that the wire-delay on a distributed RC C

line contains aRyy - (Cs + Cc) time constant, wher&y; is substrate
the interconnect resistance afigd andC are the substrate and
coupling capacitances

A fe - l-w e Lot
Rw - (Cs+Cc) =2 ( + ) (1)

wire i with width (Wi)

dij C

coupled

w-t h s

wherep is resistivity of the conductog,, is the insulator dielec- C

tric constant, andv, ¢, andh are the conductor’s width, thick- T substrate T

ness, and separation from the substrate, respectively. The terms

lands are th_e COUpIed_ length and spacing of _the INterconNeqtiy 4. (a) Physical coupling capacitance between two wires. (b) The wires
The coupling capacitancg- between two wires andj can modeled by resistors and capacitors.

also be represented as follows: of crosstalk constraint generatiowhich uses the concepts of

Celi, j) = fv‘a_’ i ’1_ _ ) analog and digital sensitivitand a physical coupling term in
disty; 1 — % order to reduce the constraints given to layout synthesis. This
wherew: andw. are the sizes of wire&and; (wi,w; > O, fi allows us to remove false crosstalk constraints. For example, a
. g T : O ’7%  net A may couple with net B. But, net A could have a high tol-
is the unit length fringing capacitance between wiraady, L;; erance for delay and noise. Therefore, the A and B can couple

is the overlap length of wiresand; anddist;; is the distance . A
. o - . without negative circuit performance. We want to remove these
from the center line of wire¢ to the center of wirg (see Fig. 4). . .
cases as they unnecessarily over-constrain the problem.

We are trying to minimize the coupling. During routing, we
can control;;, dist;;, w;, andw; . By avoiding overlap between
two wires,l;; can be minimized. In other words, we do not want
adjacent wires to run in parallel for long distances. We assumdn this section, we show the effect of pattern routing on the
thatw;, w;, l;; are fixed; we do not consider wire sizing andjuality of the routing solution. We show that you can pattern
spacing in our algorithm. But, this can be done as a postpreute up to 80% of the nets with smallest bounding boxes while
cessing step using a number of techniques (see [28] ad [29] ifacurring little or no loss of quality. Then, we show how a set of
a comprehensive survey and tutorial). nets that satisfies the-density routing problem (formally de-

There are two problems introduced by coupling, delay detefired in Section I1I-C) can be pattern routed without sacrificing
oration, and crosstalk. Delay deterioration refers to the fact tithe routing quality. This gives us the ability to pattern route a
the total capacitance seen by a gate is no longer a constant vasubset of all the nets, even if the nets have a large bounding box.
The rising contribution of coupling capacitance to total load ca-
pacitance makes the Miller effect evident. Delay deterioratidh Benchmarks
occurs because the Miller effect causes the capacitance to varyfo perform our experiments, we used five MCNC stan-
For example, if two coupled nets switch in opposite directiongard-cell benchmark circuits [33]. The characteristics of the
at the same time, the capacitance, hence the delay, will increaseuits are shown in Table 1. The circuits were placed into

Crosstalk is a type of noigentroduced by coupling betweenglobal bins using the Dragon global and detailed placement
two adjacent wires. A change in voltage or current on one ehgine [22]. Some of the benchmarks (i.e., prim1 and prim1.2)
the wires may interfere with the signal on the other wire. Thetge repeated. Repeated benchmarks differ in the number of
are two unwanted effects of crosstalk. First, the two wires forglobal bins; they consist of the same number of nets, cells, and
a mutual inductor. This inductive effect must be considered pis but may have a completely different placement.
circuit frequencies move above 500 MHz [30], [31]. Inductive
effects are not addressed in this work. The second effect is Bs-Pattern Routing Analysis

sociated with coupling capacitance. Coupling capacitance carkor our experimental results, we choose to use L-shaped pat-
cause a switching net to induce noise onto a neighboring R&fn routing over Z-shaped for a several reasons. First, for two-
possibly resulting in an incorrect functional response. terminal nets there are only two possible L-shaped routes to
Coupling between nets is not always detrimental. In [32¢onsider. The number of Z-shaped routes grows linearly with
Kirkpatrick and Sangiovanni-Vincentelli introduce the notiofhe pounding box size. Since we are aiming toward predictable
2Noise is defined as an unwanted variation which makes the behavior of Ut€S, L-shaped patterns reduce the choices of routings. Sec-
manufactured circuit deviate from the expected response. ondly, we want the routing to execute quickly. The time to find

I1l. USING PATTERNS WHILE MAINTAINING ROUTABILITY
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TABLE | TABLE I
BENCHMARK CIRCUIT INFORMATION CONGESTIONDATA FOR LARGESTFIRST-PATTERN ROUTE HEURISTIC. 0% IS
THE BASE CASE CONGESTION THE REMAINING RESULTS TAKE THE
Data Num Num Num Global CONGESTION AND SUBTRACT THE BASE CASE CONGESTION SO 40 (AS IN
file Cells | Nets Pins Bins PrIM1 AT 5%) MEANS A TOTAL CONGESTION OF165+ 40= 205
priml 833 1156 3303 8 X 16

Datafile o% | 5% 10% 15% | 20%
priml 165 40 64 82 91
priml.2 121 46 79 88 99
prim2 112 26 71 101 190
prim2.2 35 -3 44 69 142
avqgs 63 | 224 384 414 464
avqgs.2 18 | 394 575 670 730
biomed 25 43 269 366 386
biomed.2 47 -5 238 363 408
struct 74 | 120 182 228 252
total 660 | 885 | 1906 | 2381 | 2762

priml.2 833 1156 3303 | 16 X 16
prim2 3014 | 3671 | 12014 | 8 X 16
prim2.2 3014 3671 | 12014 | 32 X 32

avgs 21584 | 30038 | 84081 | 30 X 80
avgs.2 21584 | 30038 | 84081 | 80 X 80
biomed 6417 7052 | 22253 | 20 X 40
biomed.2 || 6417 7052 | 22253 | 40 X 40
struct 1888 1920 5407 | 20 X 16

the congestion of the routes (3(| P|), whereas the Z-shaped
routes isO(| A|). Theorem 3.1 states the| < | Al.

We comment on a few observations. Even though pure mazeNGESTIONDATA FOR SMALLE;’AEI;ET IFI’IATTERN ROUTE HEURISTIC. 0% Is
routing has the _greateSt freedom "? terms of fln_dlhg the Ieag? THE BASE CASE CONGESTION THE REMAINING RESULTS TAKE THE ’
congested solution, the overall algorithm is a heuristic, thereforeoncesTion AND SUBTRACT THE BASE CASE CONGESTION A NEGATIVE
it is not guaranteed to find the optimal solution. The tradeoff be- RESULT MEANS THAT THE CURRENT CONGESTIONIS BETTER THAN

tween fast routing time and reduced number of routings (better THE BASE CONGESTION

predictability) favors L-shaped routing. Therefore, we will ex- Datafile || 0% [ 50% | 60% [ 70% [ 80% | 90%
clusively use L-shaped routing for all of our pattern routing ex- priml 165 | -4 0] 2] -3 6
periments. prim1.2 |[ 121 0| -3| 11 9 5

Our experiments focused on determining which nets we can prim2 112 1 1| -1 4| 28
pattern route while incurring little to no congestion penalty. Our prim2.2 3| -1| -4 -5 -4 -14
first heuristic (referred to as the largest first pattern route (LFPR) avgs 63| -14] -5 6 15| 27
heuristic) splits the multiterminal nets into two terminal nets and avgs.2 18| 7| 3] 12 O 6
sorts them from largest bounding box to smallest bounding box. biomed 25| 0 -2] -1} O] 5
Then, we pattern routed thé% largest nets while maze routing b::“r‘:’j:’ ‘_Z _g 'Z ;g 3; 52
the rest of the nets. The pattern routed nets were not rerouted total 660 -ia |3 | 31 57 122

during the rip and reroute phase. As shown in Table II, pat-
tern routing large nets gives unfavorable overflow results. If you
pattern route only the largest 5% of the nets, your overflow i@0% of the nets are fixed. This gives some insight as to why
creases more than two-fold over maze routing every net. A sithe LFPR heuristic does not work. If you fix the long nets to a
ilar trend occurs as you increase the pattern route percenta@itern, you greatly reduce the routing freedom that the maze
Pattern routing only 20% of the nets results in an overflow ovéguter needs to produce a good route. Since the small nets are
four times the 0% overflow. (Note, the 0% pattern route is elose in physical proximity, there are limited number of routes
actly equivalent to maze routing every net; the rip and reroufieat these nets could take. Therefore, the maze router may find a
stage will consider every net.) less congested solution, but due to the small number of feasible
The smallest first pattern route (SFPR) heuristic gives mo¥eutes, the pattern route solution will not significantly vary from
encouraging results. This heuristic is similar to LFPR excepite best (i.e., maze-routed) solution. Additionally, small nets are
here we sort the two terminal nets from smallest to largest. Th@éten entirely located within a congested region. In this case,
an SFPR of 5% will pattern route the smallest 5% of the ne@y shortest length path will be essentially equivalent in terms
Referring to Table Ill, we can see that we can pattern route up@boverflow minimization. Since there is no quality improve-
80% of the nets with only a small increase in overflow. In factnent using maze routing, the pattern route is preferable due to
pattern routing the small nets actually leads to better overfld§ faster run time and predictability.
results! These results add validity to our previous statement tha¥Ve have shown that you can pattern route up to 80% of the
pattern routing can lead the maze router to better overflow dtets with small bounding boxes. Unfortunately, you cannot do
lution. pattern routing on nets with large bounding boxes using the
This SFPR heuristic results may seem surprising. LookingldtPR heuristic without suffering a huge loss in the quality of
Table IV, you can see the percentage of the total route leng@lution. Now, we will show that any set gfdensity nets can
that the smallest:% of the nets comprises. Even when youdpe pattern routed without degrading the solution quality. This
pattern route the smallest 90% of the nets, the route lengthadows us to pattern route the nets with large bounding boxes.
these small nets is, on average, only 58.32% of the total route ) )
length. This means that the remaining 10% of the nets that &re Y"Pensity Routing
maze routed are much longer than the short nets. This allows th&he ~y-density(~-d) routing problem tries to find a one-bend
maze router enough freedom to find a good routing, even wheuting of two-terminal nets such that the routing demand of
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TABLE IV TABLE V
PERCENTAGE OFROUTE LENGTH USED BY SFPR NeTS. FOR EXAMPLE, WHEN OVERFLOW INFORMATION FOR PATTERN ROUTING A SET OF v-d NETS. v
YOU PATTERN ROUTE THE 10% SMALLEST NETS IN PRIM1, THE ROUTE IS VARIED FROM 1—5. THE BASE CASE IS THE TOTAL OVERFLOW
LENGTH OF THOSENETS IS ONLY 5.75%0F THE TOTAL ROUTE LENGTH WITH PURE MAZE ROUTING. THE NEXT COLUMNS ARE CURRENT
OVERFLOW—BASE CASE. A LOWER VALUE MEANS BETTER OVERFLOW,
Datafile || 10% | 20% | 30% 50% | 80% | 90% HENCE A BETTER SOLUTION
priml 5.8111.5|17.3 [ 28.5 | 50.7 | 64.1 -
priml.2 || 5.6 | 11.2 | 16.9 | 28.1 | 54.7 | 69.4 Datatile | base [ 1-d[2-d[3-d[4-d [ 5-d
prim2 | 6.3 | 12.6 | 19.0 | 31.6 | 52.2 | 65.2 primi 166 2] 5| 5] -7| 7
prim2.2 || 3.7 | 7.4 | 11.1 | 18.5 | 41.0 | 54.7 priml.2 | 121] O] 6] 6] 3| 3
avqgs || 2.8| 5.5| 8.3 |13.9 | 32.8 | 49.1 prim2 12| 0] 4| 4} 83| 2
avqs.2 || 3.6 | 7.2 10.9 | 18.1 | 36.6 | 50.5 prim2.2 5| 8] 2] 0] 6] 2
biomed || 3.6 | 7.3 | 10.9 | 18.1 | 40.8 | 54.8 avqs 63| 10| -16] -3| -7 -6
biomed.2 || 2.9 | 6.0 | 9.0 | 14.9 | 36.3 | 45.0 avgs.2 18 1 -13) 2| 6] -4] 22
struct || 3.3 | 6.6 ] 9.9 |21.9 |52.3|67.1 biomed 5| -2 -1} 4] 5] 1
avg 42| 84126215 441 | 58.3 biomed.2 ) 47| -6| 2| -4] 11| 6
struct 74 6 10 10 10 10
total 660 1 -2 18 -8 33

every bin edge is less than Let us define the-density routing
problem formally.

1) Given aset of two-terminal nefg, a grid graph(V, E), ) . . .
and an integes. Every route consists of horizontal and/or vertical line seg-

2) Does there exist a one-bend routing for everyinetN ments. We say two wiresoupleif the line segments forming
such thatd, < ~ for every edge: € E ? them are closer thasunits for more thar units. Two line seg-

In Table V, we show that pattern routing on a set of one—dimernn—eenrlt:l'rﬁi;‘s:cﬂ;t/hee?/nQ?gfhztnlizzt Ogiﬁ tFi)r?IQ(ng:rrclngmon and
sional (1-D) or 2-D routable nets does not affect the overéﬁ/FOrg1 ivex set of net§ = {n,; _p{( ), (w2 ' Y
routing solution quality. Since we are trying to show that nets 9 = U= AT Yii), (F2i, Y2i).

with large bounding boxes can be pattern routed, we useJts‘aS ¢ < |51}, a (single-bend) layout of is coupling-free if

A. Coupling-Free Routing

heuristic that focused on finding such nets. Like the LFP ere are no two routes that run in parallel at a distance equal

o .10 or closer thars units for more thari continuous units. Ex-
heuristic, we sort the nets from largest to smallest boundlr{!lgn les of counled and noncounled lavouts are diven in Fid. 6
box. Then, we assign an upper or lower routing to the nets é?vpe)n a set ofptwo—terminal nert)s they roblem c?f obtaining. a.
that they can bey-d routed. Therefore, some of the larges ' P 9

nets are always in the set ofd nets. Table V also shows coupling-free routing of nets is called tbeupllng-fr_ee routmg
Broblem(CFR problem). A more complex formulation to decide
the overflow results when we pattern route a set of 1-D, 2-

3.D, 4-D, and 5-D nets. Notice that some circuits allow up t(c)bupllng can be substituted in lieu of our coupling-free defi-

5-D routing without loss of quality. This highly depends or?mon' For exam.ple, We can use a cqmplex c.ouplmg equation,
the number of nets and number of bins in the benchmark. Fg"’ (2), and define two nets as coupling-free if they have a cou-

. . c1519 capacitance less than some threshold value. The theory
example, avgs is a large benchmark and the nets in the 3- . . e S
and equations we present will hold for any pairwise definition

: 0 :
routing only account for 17.7% of the total routing. Compare coupling? Additionally, it is straightforward to extend the

this to prim1.2 where the nets of the 3-d routing are 35.5%c : : . .
of the total routing. Notice that 1-D routing does not hurt thré;hmmat'on to consider the cumulative coupling effect caused

solution quality for all but three benchmark (here avgs see r:rl:Iggrl]iiggrgezbger'nsrggs' ;zr:zxg:-r_hfoilt?rjwatgnt\/‘v% E'S,ESSA
to be an anomaly since the 2-D, 3-D, and 4-D routings show P Y 9

. : . . nd B do not couple with upper-L routing of Net C. But, when
no degradation of the overall routing quality). We believe th%t th Aand B areprouted inpeflower—L thg additive effect of the

as the capacity of the edges grows larger, the allowable densé|§/

. . S o . upling causes a coupling violation for the upper-L routing of
(value ofv) can increase while maintaining similar routability. . .
C. We will explain how to handle such cases. Unfortunately, by

considering these cases, the complexity of the problem substan-
tially increases.

In Section Ill, we showed that it is possible to use L-shaped We consider routing only a subset of nets for a few reasons.
patterns to routes some nets without affecting the quality of tFérst, by routing a subset of the critical nets as patterns, we
routing solution. By pattern routing the nets, we reduce thgjuarantee that the nets have the minimum wirelength, which re-
interconnect delay (since the wirelength is minimal). But, cowtuces the interconnect delay of the nets so that the timing con-
pling is also an important component of delay that must be costraints can be met. The remaining critical nets can be routed
sidered. Therefore, we need methods to reduce the coupling lissing other more general coupling aware routing techniques,
tween nets. In this section, we present some theoretical aspegis, maze routing that considers coupling and timing as in [34].
to reduce coupling between nets and introduce some algorithygs are presenting a fundamental algorithm with polynomial
to implement this theory. The ideas that we introduce providea o _ _ g _ g exity of i |
framework from which more Complex algorithms and methoq:%lg\i%tg:t e runtime may increase due to increased complexity of coupling cal-
can be derived. We discuss some possible derivations to both thgye 6 from solving 2-SAT to solving the general SAT problem, which is
global and detailed routing problems. NP-complete.

IV. USING PATTERNS TOREDUCE COUPLING
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Many single-layer routing algorithms have been suggested.
Liao et al.[36] propose density routing or maze routing to per-
form this task. A more recent paper by Lin and Ro [37] improves

NetA NetB on the work by Liacet al. They employ a two step process. First,
O 0 they find a planar set of single-bend nets without considering
0 coupling. Then, they use a method based on rubberband equiv-

alent to find a routing for the remaining nets. CFR can easily
be incorporated into the first stage of Lin and Ro’s algorithm to
Net C obtain a planar layout that is coupling-free.
Generally, coupling at the global routing stage is hard to de-
Fig. 5. The combination of two routings cause a noncoupling-free layout. termine. A global route is not exact. Therefore, a net could pos-
sibly couple with every net that is routed in the same global bin.
But, the net will only couple with its immediate neighbérsll-
timately, track assignment (which can be done at the global or
: detailed routing stage) determines the coupling. Additionally,
0 ; 0 the detailed router will often make local changes which can af-
z: ..... J R

: . fect the coupling of nets [38]. But, the detailed router can only
L. bfifees : make local changes, therefore considering coupling at the global

stage, even if itis not exact, is beneficial as it can provide a way
to make large scale changes to a layout that otherwise cannot

o copilrot Copet be done at the detailed level. If we have coupling-free layout at
the global stage, then the layout will remain coupling-free at the
Fig. 6. (a) Coupling-free routings. (b) Noncoupling-free routings. detailed stage. Therefore, we can use CFR at the global routing

stage to reduce coupling for the detailed router. This is similar to

runtime and basic theoretical properties. Additional heuristi¥d® Planning; we are trying to find a general area for the net's
can easily be added onto this algorithm to increase its appli€guting. Then, the detailed router can consider more exact cou-
tion. We believe that a solid framework with fundamental prof2ing while making track changes, locally permuting the wiring
erties is needed for every heuristic [35]; this paper present$24ding additional bends) and changing the spacing between
basic coupling algorithm to which heuristic extensions can Hdres as in [39]. Additionally, we could *freeze” the routings
added. Now, we discuss some possible applications and extdhthe detailed level to insure that the_y remain couplmg.—fre(_a.
sions that may be added to our base algorithm. Next, we propose an e_xact algorlthm for determining |_f a
As very large scale integration (VLSI) fabrication technolog§€t Of néts can be a coupling-free routing. Then, we describe a
progresses, more routing layers become available. Thereféf@UPle heuristics for solving threaximum coupling-free layout
we can afford to set asidereferred layersfor critical nets. A Problem— the maximum number of nets that can be laid outin
preferred layer usually has a lower wiring resistance due to go€eUPling-free fashion.
sition of the layer (lower layers have lower resistance) and wid . . -
of the wires 0¥1 tkfat Iayery(large wire widths have Io)vver resisE?' The Coupling-Free Routing Decision Problem
tance). Power, ground, and clock nets are already routed on preGiven a set of two-terminal nets, is there a single-bend
ferred layers. We propose using the preferred layers for routifjting for every net inS such that no two routings couple?
critical nets. Critical nets are allotted very little slack in ordefhat is, do there exist any routes that run in parallel at a dis-
to meet timing constraints. Since interconnect is becomingtance equal to or closer tharunits for more thard continuous
dominate factor in delay of a circuit and coupling plays arénits?
large role in interconnect delay, these nets should be routed iWe solve the coupling-free routing decision problem by
order to minimize coupling and wirelength. Therefore, we cdfansforming it into an instance of the 2-satisfiability (2-SAT)
use notion of coupling-free routing to provide a detailed routirigfoblem.
for the critical nets. Since the nets are routed with at most oneThe 2-Satisfiability Problem: Given a set/ of variables, a
bend, they have minimum wirelength. In addition, coupling-fregollectionC' of clauses such that each clause C' has|c| = 2.
routing minimizes the coupling of the routed nets. Combinini§ there a satisfying truth assignment {6?
these two factors, we have a routing of the critical nets with min- The 2-SAT problem can be solvedd|U|) time [40].
imal interconnect delay. After we have a coupling-free layout, In order to transform an instance of CFR decision problem to
noncritical nets can be routed, using any type of routing metha&tSAT, we assign a boolean variable to each net. Without loss
e.g., maze routing, on the preferred layers to maximize routif§generality, we say if net A has an upper-L route if its variable
resources. Additionally, we can consider all minimum lengti§ true(z.4) and a lower-L route if its variable is falge). A
routes, e.g., z-shapes. It is possible to extend our algorithmd@yting of a net majorcea routing of another net. For example,
consider z-shapes, though this extension creates a dramati@gsume net A is routed in an upper-L. If the upper-L routing

crease in CompleXIW' 8Theoretically, a net couples with every net on the chip. But, the neighboring

nets act as a shield which makes the coupling capacitance seen by the other nets
50Once again, the formulation goes from 2-SAT to the general SAT problerminimal.
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v P 2% 3’0 3) The lower-L routing for A forces the upper-L routing
D L 4 GD for B. Encoded agz 4 V )
& s o 4) The lower-L routing of A forces the lower-L routing
-0 % T of B. Encoded a$zr 4 V T5)
T e o 5) The upper-L routing of A forces the upper-L routing
7 —— 3 He—e— 9 108 of B. Encoded a7z V =)
SR - F 6) The upper-L routing of A forces the lower-L routing

of B. Encoded a$z; Vv Zg)

Fig. 7. Examples of the ten interactions for the coupling-free routing problem. 7) The lower-L routing of A forces a lower-L routing of
The solid points and lines correspond to net A. The dotted lines and circles B. Also, the upper-L routing of A forces an upper-L
correspond to the the bounding box and terminals of net B, respectively. routing of B. Encoded a& Y E) A (ﬂ v -TB)

8) Lower-L of A forces lower-L of B; Upper-L of A

of A (z.) couples with the lower-L routing of Bz ), then
forces lower-L of B. Encoded 434 V T5) A (T4 V

net B must be routed as an upper-L to avoid coupling. Hence e
x4 forceszg. With respect to two nets A and B, there are ten TB)
possible forcing interactions between these nets. 9) Lower-L of A forces upper-L of B; Upper-L of A
1) Aand B are independent. Either layout for each net does forces upper-L of B. Encoded 484 V 25) A (T4 V
not directly influence the layout for the other. 10) alj_]ca)\aver-L of A forces upper-L of B; Upper-L of A
2) A and B cannot be couple-free routed. ’ -
3) The lower-L routing for A forces the upper-L routing for fo_rces lower-L of B. Encoded dsi, V 25) A (T4 V
B. However, the upper-L routing for A does not influ- 75)
ence the routing of B. The next three cases are similar. qor each forced wire A, if the wire is forced to an upper-L
4) The lower-L routing of A forces the lower-L routing of ;e this is encoded as: if the wire is forced to a lower-L
B. ) ) route, this is encoded as;.
5) The upper-L routing of A forces the upper-L routing of Every netn is given a boolean variable. Therefol&]| =
B. . . |S]. The entire set of|S|(]S| — 1)/2) interaction relations are
6) The upper-L routing of A forces the lower-L routing ofgncoded as specified. Each of these relations becomes a clause

B, . ) in the 2-SAT instance.
7) The lower-L routing of A forces a lower-L routing of B. | smima 1: 0] = O(|S|2).

Also, the upper-L routing of A forces an upper-Lrouting  pyoof 1: Since there are at most two relations per interac-

of B. The next three cases are similar to this case. tions, |C| < 5] (|S] - 1). O
8) Lower-L of Aforces lower-L of B; Upper-L of Aforces  the 2.SAT instance is obtained by letting each nete a
lower-L of B. boolean variable 7. The set of clause§' are the encoded net
9) Lower-L of A forces upper-L of B; Upper-L of A forces jnteractions.
upper-L of B. Theorem 2: The coupling-free routing decision problem can
10) Lower-L of A forces upper-L of B; Upper-L of A forces pe golved inO(|S|?) time.
lower-L of B. o Proof 2: The CFRDPx 2-SAT in O(|S|?) time. An in-
Examples of all of these cases are given in Fig. 7. stance of 2-SAT can be solved in linear time. Therefore, we
The algorithm proceeds as follows. can solve the coupling-free routing decision probler®{s|?)
Stage 1 Consider the|S|(]S| — 1)/2) interactions wher&  time. O

is the set of nets under consideration. If two nets cannot belf we want to consider the cumulative effect of coupling be-
couple-free routed (corresponding to interaction 2), the algtween a set of nets, we can add additional clauses to the 2-SAT
rithm terminates and returns FALSE. For each pair of netsformulation we have just described. First, we must identify the
andj, we determine the interaction betweerandn;. Using set of nets that cumulatively cause a coupling violation as in
this information, we can determine which wires are forced Fig. 5. For each case, we add an additional clauses and vari-
Stage 2 The constraint information must be encoded intables. The clauses added will have a cardinality greater than 2,

boolean expression with these properties: i.e., we will no longer have a 2-SAT formulation. For the ex-
1) Itisin conjunctive normal form (CNF) (see [41]) ampl_e in Fig. 5, we add two additional clausgsindec; and one
2) It contains at most two literals per clause additional variablerp as follows:c; = (z4 Vap Vxp),ca =

3) It is satisfiable if and only if the corresponding wire(Zp V T¢). The new variables  indicates if both nets A and
set can be laid out (without coupling) in a single ben8 are routed in a lower-L fashion. If that is the case, clause

fashion. forces net C to be routed as a lower-L to avoid the joint coupling
Each of the ten interactions can be encapsulated as a birffct. The additional clauses and variables for other cases can
relation. be derived in a similar manner.

1) A and B are independent. No encoding o
2) Aand B can not be couple-free routed. No encoding;: 'mplication Graph
the algorithm will terminate and return FALSE if this In this section, we show how an instance of the CFR problem
case is found. is transformable into aimplication graph Then, we define
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some properties associated with the implication graph. We can @ ! 2 3 B

utilize the properties of the implication graph to solve the CFR
problem. 2

1) If Xa then Xc¢
2) If Xa then Xb
3) If Xb then Xc
4) If Xb then Xa
5) If Xc then Xb
6) 1f Xc then Xa

D. 2-SATx Implication Graph

Net A= {(2,1),(1,3) }
NetB ={ (1,2),(3,1) }

First, we show how an instance of 2-SAT is transformable into NetC = { (2,2), (3,3) }
an implication graph. In Section IV, we show how to transform © (xa) (xv) (xc)
an instance of the CFR problem to an instance of 2-SAT. Since ’
CFRx 2-SAT « implication graph, CFRx implication graph. '
The multistep transformation allows us to elegantly prove many (=) © (=

properties associated with the implication graph. But, we will

also show how to directly transform the CFR problem to an o
implication graph. Fig. 8. (@) The layout of nets A, B, and C. (b) The implications of the nets.

. (c) The implication graphz; indicates an upper-L routing of nét The
LetC = C;(x; Vy;) be aninstance of 2-SAT, whetg, y; are  implication graph does not have any cycles containingndz;, i € A, B, C;
literals overuy, ..., u, € U. We want to know when SAT(C) therefore, the nets are coupling-free routable.

is true. Define a digrapt¥ = (V, E) by lettingV" be the set of

literals and(x, y) € £ if and only if vy is one of the clauses. | oyma 2: Consider a set of netd and its corresponding
Recall thatz v y is equivalent tar = y (implication). We can o hjication graphG. If there is a cycle in containingz; and

assume there is no clause of the fo_zrm>  since that is always 7; wherei € N, then the netsV are not couple-free routable.
true. Finally, note that = --- = y impliesz = y.

} . \ o -~ Proof 2: This is a direct consequence of Theorem 4.1.
Theorem 3:1f there is a cycle i’z containing both: andz g should not be surprising since we can transform the CFR

forallz € V, Cis not SAT. ;
Pra(j)of 3: Thereason is that if = 7, thenz must be false problem into ZTSAT' ; -
_ - & TSt * Lemma 3: Given a set of net&, there is arO(| V|| E|) algo-
But since there is a_CYC@ = z which meanse MUSt be true. jhm to determine if these nets are coupling-free routable.
We have a contradiction. Therefore, C is SAT difdoes not Proof 3;: Theorem 5 says that an implication graph is cre-
contain any cycles including andz for any literalz. - U 5164 ino(| ¥|2) time. According to Lemma 2, if we find a cycle
We call the digraplG an implication graph since it models ., ptaining:, andz; the netsV are not coupling-free routable.
the implications between the literals. We can look for these cycles by doing a depth-first search from
every vertex. If there is a path frony to z; and a path from
E. Coupling-Free Routingc Implication Graph T; to z;, there is a cycle containing; andz;. We can do this
Now we show how the CFR problemis directlytrc';msformablf r every vertex inO(JV|| E]). O(IN[*) < O(|V]|E]). There-
; e ore, we can determine if the nets are coupling-free routable in
into an implication graph. O(VIIED -
Given a set of netsV. The implication graph is a directed For eath implication case, up to two clauses are added to
raph (digraph)di..(V, E). Let every ver rre- ) . i .
gp?)%d SnguggeFL ri)EJ‘t/ing)andeTo(\aN:r—)I/_ rgl}t?r):zg}] ; e‘;cioqmé 2-SAT in the transformation. These clauses correspond directly
R. Therefore]V| = 2 x |N|. Then,(z,y) € E if and only if = to edges in the implication digraph. Fig. 8 shows a simple ex-
forcesy or e(iuivalently,x - Wé cr;ﬂl this an implication ample for three nets. Focusing on nets A and B, we see that an
Thegrer,n 4: If there is an g{r.nplicatiom: — 2. there .is upper-L routing of net A forces a lower-L routing for net B (cor-
contrapositivé implicatiors = 75 A B responding to case 6). Therefore, we add the clégges 75)
Proof4: Sinces . = ; theﬁpper-L routing of , must to the 2-SAT instance. In the implication graph, we add an edge
couple the |(.)W8r-L r(?uting gf;B. Therefore, a Iower-LArouting from vertexz 4 to vertexzp. Notice that an upper-L routing
of net B(z5) will force a lower-L routing 012 netAz). O of net B forces a lower-L routing of net A. This corresponds to
Theoren]f 5:Given a set of netdV. the construct?orll of the ¥B = T4 which is the contrapositive of the previous statement.
' ' The other cases are similar. Notice that there are no cycles in the

corresponding implication graph takes running ti@o@n|?). = " ° . :
Proof 5: First, we must determine the forcing interaction%mpllcatlon gr_aph in Fig. 8(c). This means that these three nets
can be coupling-free routed.

between every net. There afgV|(| V| — 1)/2) possible inter-
actions. Determining whether coupling exists in each interaction

takeO(1) time. Therefore, it take®(|N|?) time to determine F. Properties
the interactions. The number of vertices in the implication graph

is exactly2|IV|. The maximum number of edges is 1) Direct Forcing: Assume that we have implication graph

Gimp(V, E) which is constructed from an instance of a CFR
2|N| ) problem containing the set of nef§. Remember that every
< 9 ) = O(IN]%). vertex in the implication graph corresponds to a routing of a
nete N. Therefore, there are two vertices per net, one vertex
The forcing interactions determine whether or not an edge existr the upper-L routing and one vertex for the lower-L routing.
This requires a simplé(1) lookup into an interaction table. We define the routing corresponding to vertexas route(v).
Adding up the complexities gives us the runtimef N|?).0 Letw,v € V be two unique vertices. If there is a directed edge
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If we consider criticality, MAX-CFL tries to route a subset of
nets with maximum criticality. A subset with maximum criti-
cality will not always be the subset of maximum size.

Additional routing restrictions to the MAX-CFL problem are
often needed. For example, we can use MAX-CFL to find a
subset of planar nets. In this case, we must slightly modify
the algorithms to consider intersection between the nets. An-
other common routing problem allows two layers to route the
nets—one for vertical segments, one for horizontal segments.
In this case, we must consider overlap between the nets. The
algorithms that we present next assume that there are no restric-
tions. With the proper simple modifications, they can consider

Fig. 9. (a) The layout of the nets. (b) The implication graph for routes 1, 2, §,UCh restrictions. L
and 4. Now, we look at a few heuristics to solve the MAX-CFL

problem.

1) Greedy Algorithm: The first and most obvious algorithm
atwe consider is the greedy algorithm. This algorithm chooses
e most critical net and, if possible, routes the netin an upper-L
or lower-L fashion. If both the upper-L and lower-L routings
couple with net that has already been laid out, the current net is
not laid out; the most critical remaining net is then considered.
The algorithm iterates until all nets have been considered.

(u,v), then the routéw) forces routgv). This is a direct con-
sequence of the way that the implication graph is constructetg:
The outdegreeof vertexw in a digraph is the number of ver-
tices adjacent te. In an implication graph, the outdegree-of
corresponds to the number of routings that rduteforces. We
call this adirect forcing
2) Indirect Forcing: A routing may force a net even if it is
not a direct forcing. Referring to Fig. 9, Route 1 directly forces
only one route, Route 2. But, Route 2 forces Route 3 whic
forces Route 4. So, if we choose to route the net Ain an uppely i
manner (Route 1), then nets B, C, and D must be laid out gjven a set of nets N
Routes 2, 3, and 4, respectively, if we want to route every niSort N by criticality (largest — smallest)
Route 1 forces three routes even though it only directly forc{f’ each net n € N . .
L o route n in upper-L or lower-L, if possible
Route 2. We say that Route 1 indirectly forces Routes 2, 3, a
4,

Algorithm 1: Maximum Coupling-Free Layout Routing Greedy

Given an implication graplifi,(V, E) and verticess, v €
V. A v indirectly forcesu if there is a path from: to v. The
number of total forcings (direct and indirect) ofis calculated
by determining the number of vertices that are connected to,
A slightly modified version of depth-first search can be used t
determine the number of indirect forcing in tird&|V|).

Theorem 7:The maximum coupling-free routing greedy

heuristic take€)(|N|log | N|) time.
Proof 7: The sorting step take3(|V|log|N|) time. The

or” loop will complete after| V| iterations. Hence, we have
(|¥]log | N|) run time for the algorithm. O
The greedy heuristic is a simple and fast method of finding a
maximum coupling-free layout solution.

Of course, there are many shortcomings to this algorithm.

The Maximum Coupling-Free Layout Problem First, the greedy nature of the algorithm may cause a critical net
(MAX-CFL) : Given a set of two-terminal net§ and a that couples with many other less critical nets to be routed. By
positive integetX’ < |S]. Is there a single-bend routing for atnot routing a critical net, you may be able to route a large number

G. Maximum Coupling-Free Layout

leastK nets inS such that no two routings couple? of other less critical nets which can lead to a better overall solu-
Theorem 6: The maximum coupling-free layout problem fortion. A simple example of this situation is shown in Fig. 10. The
planar layouts is NP-Complete. greedy algorithm will place net A first. Then, it will place net

Proof 6: We make a transformation from the MAXWIREB in an upper-L routing because it is the most critical unrouted
problem. The MAXWIRE problem is defined as finding a subsetet. Now, neither net C or net D can be placed since they both
of netsT whereZ’ C S and|T’| > K such that all the wires in couple with net B. The best solution in terms of number of nets
T can be laid out in a single bend fashion on one layer. Theuted and total criticality routed is routing nets A, C, and D.
MAXWIRE problem is NP-Complete [42]. By setting the cou- 2) Implication Algorithm: We showed how to generate an
pling variablesd = oo and! = 0, we can directly transform implication graph from an instance of the coupling-free routing
any instance of MAXWIRE to an instance of MAX-CFL. Thisproblem in Section IV-C. Now, we use some of the proper-
essentially removes any coupling restrictions from the probletres of the implication graph to create a heuristic to solve the
O MAX-CFL problem.

MAX-CFL can be extended for consideration criticality. The The implication algorithm tries to eliminate the bad deci-
criticality of a net can be defined in numerous ways. Most oftesions made by the greedy algorithm. It starts by determining the
a net's criticality is determined by the amount of timing slackorcing interactions between every pair of nets. Then, it finds
that is available to that net. Also, the length of a net can be usélte nets that have a truly independent routing (either upper-L
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K < |U], themaximum 2-satisfiability (MAX-2SApjoblem is
defined as finding a truth assignment férsuch that at leagt’
BOr------meee | clausesc C are satisfied. MAX-2SAT is NP-complete [41].

It seems that solving the MAX-2SAT problem on a trans-
formed 2-SAT instance of CFR would be equivalent to solving
MAX-CFL. Yet there are some subtle differences between them.
First, the objective of MAX-2SAT maximizes the number of
satisfied clauses by finding an appropriate truth assignment to
Oc the boolean variables. But, in MAX-CFL, we wish to maximize

_ o _ the number of routed nets; this means that we wish to mini-
I'i:r'%' fgsuﬁlﬂﬂ;ciuéﬁﬁclﬁy'sﬁ'ﬁﬂ@yidfbso?gmf% gf‘ih%g?“ie%”e:t hfj'a Sofize the number of variables in unsatisfied clauses of the equiv-
(a) Greedy algorithm solution. Two nets are placed with a total criticality dlent MAX-2SAT instance. These are two different objective
150. (b) Best solution. Three nets are placed with a total criticality of 180. functions.

Remember that each variable corresponds to the routing of
or lower-L) and routes them in the appropriate manner. An iexactly one net. If a clause is unsatisfied, then the value of the
dependent routing is equivalent to a route that forces no othew variables in that clause are not valid. For example, assume
nets (corresponding to interactions 1, 3—6 from Fig. 7). If a néHat we have two nets, A and B, that have a coupling interaction
only forces other nets when it is routed in a lower-L (upper-Lypecified by the clausg: 4 V z).7 If that clause is unsatisfied,
it will be routed in an upper-L (lower-L). The upper-L situa-t implies thatz 4, andz g are bothfalse i.e., both netsi andB
tions corresponds to interactions 3 and 5 while the lower-L sitare routed in a lower-L pattern which causes coupling between
ations corresponds to interactions 4 and 6. Since these routitfys two nets. Therefore, we cannot route eitherder netB
are independent, routing these nets cannot cause a situatioarakstill keep a coupling-free routing.
described in Fig. 10. The remaining nets are routed accordinge may have a large number of unsatisfied clauses, hence
to a function of number of nets that they directly and indirectiwe must eliminate at least one net for each unsatisfied clause.
force. The net with lowest value according to that function ©f course, eliminating the routing of one net corresponds
routed first, as long it does not couple with any net that is a0 removing all the forcing interactions, i.e., all the clauses
ready routed. This process continues until all of the nets hawbere that variable exists, between that net and every other net.
been considered. Therefore, the real problem becomes finding a maximum set of

Theorem 8: The running time of the implication algorithm isnets such that they are coupling-free, i.e., their 2-SAT instance
O(|N|?). is completely satisfied. This in itself is another optimization

Proof 8: According to Theorem 4.3, the construction oProblem.
the implication graph take®(|N|?) time. There are)(|N|) Despite these differences, a correlation between the number
vertices in the implication graph, therefore the first “for” loopPf Satisfied clauses in the MAX-2SAT instance and the number
hasO(|N|) iterations. As stated in Theorem 5.4, the Forcing®f coupling-free routed nets exists. Therefore, we can still use a

algorithm has a run time @b(|V'| + | E|). Note thatO([V]) = MAX-2SAT algorithm to solve the MAX-CFL problem as long
O(|N|) andO(|E|) = O(|N|?). Therefore, the total run time @ We take into account the differences. We do this by deter-

of the “for” loop isO(|N|?). Sorting take®©(|N| log | N|) time. Mining the number of variables in the unsatisfied clauses and
The final “for” loop is O(|N|) time. Therefore, the algorithm removmg.the. routing of the nets that correspond to those vari-
requiresO(| N |?) time. 0 ablgs_. This y|elds a lower bound for the MAX-CFL problem, _

as it is possible to remove only a subset of these nets and still
Algorithm 2: Maximum Coupling-Free Layout Routing Implication Maintain a valid solution.

o

o
O
a

?
e
T o )

(@4
o

Heuristic 4) Evaluation: To perform our experiments, we used five
gngtleaaieg n‘:fl?s;:lé‘rfl raph G(V, E) MCNC standard-cell benchmark circuits and five benchmarks
R«0 P grap ’ from the ISPD98 benchmark suite [43] (ibm01-05). The circuits
for each vertex v € V were placed into using the Dragon global and detailed place-
do r.net ‘__frou.te(") Forcings(route(v)) ment engine [22].

ﬁ‘nﬁmR &r?ng - Forcingstroutely Our experiments focus on reducing the added delay caused by

Sort R by function(direct_forcings,indirectforcing) (smallest — coupling. Long nets (in terms of wirelength) have the greatest

largest) . . . )
for each routing r € R opportunity for coupling and have the largest amount of inter
do if r.net is unrouted and r is routable connect delay. Therefore, we look at the longest nets from each
then route r of these circuits. We attempt to find a coupling-free 1-D routing

. N . ] for the set of nets since we showed in the previous section that
8) Maximum 2—Satishability Algorl_thmln Sec“‘?” IV-B, 4 set of 1-D nets will not affect the overall routability of the

we showed how to transform the coupling-free routing prObleH?rcuit

into an instance of 2-SAT. In this section, we show how one g o e investigate the sensitivity of the coupling threshold.

can use the well-known problem of maximum 2-satisfiabilitjy 11 shows the number of constraints when we vary the cou-
(MAX-2SAT) to solve MAX-CFL.

Given a set of boolean variables, a collection of (?Iauses "This corresponds to the lower-L routing fdr forcing the upper-L routing
C such that each claugsec C has|c¢| = 2, and for an integer for B. See Section IV-B, interaction 3.
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Fig. 11. The number of coupling constraints over the ISPD98 benchmark filggg. 13. Fraction of nets placed averaged over all benchmarks.
The coupling width over all the benchmarks is 1 unit. The coupling length varies
from 5-45 units according to the legend.
proper buffer insertion [44]. We did experiments using linear

(1), I-root-l (13/1), and quadrati¢/?) functions. Of course, the
criticality function can easily be changed to incorporate some
other function.

To solve the MAX-2SAT problem, we used the FMSAT
solver from the University of Michigan [45]. The algorithm
used is similar to the Fiduccia—Mattheyses algorithm for hyper-
graph partitioning except that the gain update is different and
there is no balance constraint. Unlike many other satisfiability
solvers, FMSAT has the ability to output partially satisfied
(MAX-SAT) answers when a fully satisfied answer is not
achieved. In order to obtain a solution, we removed all the
variables (hence nets) that are in unsatisfied clauses. Therefore,
Fig.12. The number of coupling constraints over the ISPD98 benchmark fild8€ MAX-SAT solution we obtain is a lower bound on the best
The coupling width over all the benchmarks is 2 unit. The coupling length varignssible solution generated from the solver. We could possibly
from 5-45 units according to the legend. obtain a better solution by removing only a subset of these nets.

Yet, this is another optimization problem itself; we only wish
pling length while the coupling width remains at 1 unit. Fig. 120 use the MAX-SAT solver as a comparison with the other
shows a similar figure when the coupling width is 2 units. Realgorithms and leave this optimization problem as potential
call that two nets have a coupling interaction iff they have linkiture work.
segments that are at a distance of the coupling width or less ané&ig. 13 shows the fraction of nets that are placed by the
run in parallel to another for more than the coupling length. Wgeedy, implication, and MAX-2SAT algorithms. In this
use the ISPD98 benchmarks for comparison since they rougbkperiment, we used the linear function indirect_forcirg
have the same grid size. Furthermore, we consider the case whendirect_forcing for the implication algorithm. We set the
there are 100 nets. coupling width and length thresholds to 1 and 10, respectively.

We expect two general trends. First, the number of constraintd/Ve can see that the implication algorithm consistently finds a
should monotonically increase as the coupling length decreagesiting for a larger percentage of nets. Over all the experiments
Second, the number of constraints should monotonically diatwe ran, the implication algorithm routes, on average, 3.38%
crease as the coupling width increases. The rate of increasefdere nets than the greedy algorithm. Both these algorithms per-
crease is the relevant data. It is interesting to note that the diffesrm much better than the MAX-2SAT solver. We believe there
ence in the number of constraints between the two charts diffare several reasons for the poor performance of the MAX-2SAT
significantly when the coupling length is small (e.g., 10, 20), yetigorithm. First, we are trying to maximize the number of vi-
the difference is minimal when the coupling length is large (e.glated variables (variables in unsatisifed clauses) which is dif-
40, 45). As the coupling length decreases, the benchmarks tésrent from the MAX-SAT objective function (maximizing the
to show an exponential decrease in the number of constraintsumber of unviolated clauses). Also, a MAX-SAT solver is not

We compare the greedy algorithm, implication, andenerated specifically for MAX-2SAT. A solver that focuses on
MAX-2SAT algorithms in terms of the number of nets route@-SAT instances would undoubtedly perform better. Finally, as
and criticality of the nets that are routed. Net criticality isve discussed earlier, the number of violated variables is only a
normally defined at the logic synthesis stage and is a functitower bound on the number of routable nets.
of the amount of slack available on a net. Unfortunately, the When the problem is highly constrained, the greedy and im-
benchmarks do not include timing information. Hence, we ne@tication algorithms perform similarly. A smaller grid size and
another measure of criticality. It has been shown that the delidne larger number of nets adds constraints to the problem. With
for a wire of lengthl increases at the rate @¥(I%) without fewer constraints on the problem, the implication algorithm per-
wire sizing,O(1y/1) with optimal wire sizing and linearly with forms notably better. Table VI shows the routed net results for

3500
3000
2500
2000
1500

- 1000
500

(0]

constraints

benchmark name
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since it allows them to choose the routings of a subset of nets
while insuring the quality of the routing solution. In addition, we

Num avgs 1bmo1 5 bmo2 showed that pattern routing can help even at the global routing
nets || greedy | imp. | greedy | imp. | greedy | imp. stage by leading the router find a better solution.
25 76% 84Y, 647 72% 647, 72Y% In the first part of the paper, we looked for nets that can be
50 58% 627 50% 74% 46% 50% pattern routed without degrading the quality of the routing so-
75 52 56% 417% 46% 33% | 41% lution. Even with this limitation, we show that we can pattern
100 || 45% | 49% | 36% | 37%h | 33% | 38% route up to 80% of the nets. Also, we show that pattern routing
125 467 46% 227, 29% 29% 33% works with large nets if they are-d routable.
In the second part of the paper, we address the issue of cou-
e . pling during routing. We present algorithms and theory for a new
. problem named CFR which is a coupling formulation for pat-
! tern routing. We purposely define a CFR problem to be generic;
“ . e this allows us to use the problem as a base algorithm to which a

wide variety of extensions can be added to create more complex
heuristics. We mention some possible extensions to CFR for de-
tailed routing, single layer routing, and global routing. Addition-
ally, we discuss an extension to the algorithm that considers the
cumulative effects of coupling from multiple nets.

We show how to transform CFR to an implication graph,
- which takes an instance of the problem and models the depen-
== dencies or forcings that exist between the nets. We present an
exact, efficient algorithm for the CFR decision problem via a
transformation to the 2-satisfiability problem. The CFR decision
problem will determine whether every net within a specified set
is coupling-free routable.

Fig. 14. Relative criticality of nets placed by the greedy algorithm compared Tha MAX-CFL problem is defined as finding a coupling-free

to the implication algorithm. The results are averaged over all benchmarks. . . .

The criticality of the benchmarks are normalized to the criticality result gouting for the maximum number of nets in a set. We show that

the implication algorithm. Therefore, a result gfindicates that the greedy the planar MAX-CFL problem is NP-complete. Also, we give a

algorithm laid outyx (criticality of implication algorithm). few heuristics for solving the general MAX-CFL problem and
the greedy, implication, and MAX-2SAT algorithms.

some of the larger benchmarks. You can see that the perforThe greedy algorithm is quite simple, yet it is an effective

mance of the implication algorithm is quite good on the larg&ay of obtaining a layout with maximal criticality with small

benchmarks, especially when we consider a small numberrgfitime complexity. The implication algorithm uses some prop-

nets. erties associated with the implication graph to formulate a so-

If we only look at the criticality of the nets routed, we sedution. The MAX-2SAT algorithm transforms the MAX-CFL
that the greedy algorithm is better than the implication alg@roblem into a 2-satisfiability instance and generates an answer
rithm. Fig. 14 confirms that the greedy algorithm outperformiésing a MAX-SAT solver. Our experiments show that the impli-
the implication algorithm using a quadratic function, I-root-Ication algorithm is the best algorithm at routing the maximum
and linear function. For a linear criticality function, the greedfpumber of nets; it consistently routes the largest number of nets.
algorithm was approximately 1.1 times better than the impli-
cation algorithm. If we use the quadratic function, the greedy
function outperforms the implication heuristic by a factor of 1.8 ,
(when we consider the 250 most critical nets). This should beThe authors would like to thank Prof. I. Markov and A.

of little surprise, however, since the implication algorithm doegargi?_i frcIJm the dUni\ije_rs_ity c_)f M;_c h:]gan f(:]r pr,ovidigg %eir
not use the idea criticality to find a routing of the nets. solver and modifying it to fit the authors’ needs. Also,

In summary, the results indicate that the implication algéhey wo_uld like to thank the referees for their constructive
rithm is the best algorithm for routing the maximum number gtuggestions and comments.
nets. The greedy algorithm tends to find a layout with maximum
criticality but performs poorly with respect to maximizing the
number of nets. [

—
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