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Abstract

We give a tutorial on the rectilinear Steiner tree problem in the
plane� First� fundamental structural results are given with full proofs�
Then� recent exact algorithms allowing the solution of problem in�
stances with several thousand terminals are presented� and 	nally we
review some of the many heuristics proposed for the problem�
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� Introduction

The rectilinear Steiner tree problem �RSTP� in the plane has received sub�
stantial attention over the last four decades due to its evident applications in
VLSI design� Given a �nite set of points �also called terminals� in the plane�
construct a tree of minimal length that interconnects the terminals and uses
only horizontal and vertical line segments� In VLSI design� the points corre�
spond to electrical terminals that should be interconnected� minimizing the
length therefore minimizes the amount of wire needed� The constraints on
the orientation of the line segments come from current fabrication technol�
ogy requirements�

This paper is a tutorial on the rectilinear Steiner tree problem in the
plane� Fundamental results for the problem and important algorithmic de�
velopments during the last �ve years are presented� For a thorough survey on
RSTP �covering the developments up to �		
�� we refer to the excellent book
by Hwang� Richards and Winter ��
�� This book also covers polynomial�time
solvable cases and generalizations that are not discussed in this tutorial�

The reader is expected to be a graduate student in mathematics� com�
puter science or engineering with a moderate background in operations re�
search� Also� researchers in related �elds or engineers in VLSI design should
�nd this tutorial useful� The text includes small exercises mainly intended
for self�study� Some of these cover special cases or the basis for induction
proofs given in the text�

Before embarking on the structural and algorithmic results known for
RSTP� it should be noted that the problem is indeed NP�hard� This fact
was established by Garey and Johnson �
�� the proof is rather involved �
and since this text is devoted to geometric properties and algorithms for
RSTP� we omit the NP�hardness proof here�

The tutorial is organized as follows� Firstly� we give fundamental struc�
tural properties of optimal solutions for RSTP �Section 
�� We give full
proofs for the theorems stated� Secondly� we show how these structural
properties can be used to design practical exact algorithms for the prob�
lem �Section ��� The �nal part is devoted to classical heuristics and recent
developments in approximation algorithms for the problem �Section ��� In
particular� we give a detailed description of Arora�s polynomial time approx�
imation scheme for RSTP�






� Structural Properties

Given a �nite set Z of n points in the plane� we would like to construct a
rectilinear Steiner minimum tree �SMT�� This is a tree that interconnects Z�
consists of horizontal and vertical line segments� and has minimum total
length� Equivalently� the task is to construct a Steiner minimum tree for Z
under the L� metric� For two points u � �ux� uy� and v � �vx� vy�� their L�

distance is juvj � jux � vxj� juy � vyj� that is� the sum of distances in each
of the two dimensions�

In the following we will mainly use the former de�nition� since it gives
us a direct geometric realization of SMTs� We �rst give some notation and
de�nitions� and then we present three classical results� one by Hanan ��� and
the other two by Hwang ����� The notation� de�nitions and proofs in this
section are based on ��
� ���� The proofs are somewhat simpler than those
originally given by Hanan and Hwang�

��� Basic Notation and De�nitions

An SMT consists of horizontal and vertical line segments that only intersect
at their endpoints� The intersection points are called nodes� The nodes are
either terminals �from the set Z� or non�terminals� We distinguish between
three types of non�terminals� corner points �having degree two or exactly
two incident perpendicular segments�� T�points �having degree three� and
cross�points �having degree four�� T�points and cross�points are also called
Steiner points�

A line of segments is a sequence of one or more adjacent� collinear seg�
ments with no terminal nodes sharing two adjacent segments �however� the
endpoints of the line may be terminals�� A complete line is a line of seg�
ments of maximal length� it is not properly contained in any other line of
segments�

A corner point c is an endpoint of two complete lines� one in each of the
two perpendicular directions given by the incident segments� Let u and v
be the other endpoints of the incident complete lines� The pair of complete
lines �cu� cv� is called a complete corner located at c� cu and cv are the legs
of the complete corner�

We illustrate these de�nitions in Figure �� they will form the basic ele�
ments in the proofs given below�
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Figure �� Three SMTs for the same terminal set� Nodes v and z are ter�
minals� c is a corner point� t is a T�point� cz is a complete line and the
pair �cz� cv� is a complete corner� The topmost SMT is neither fulsome nor
canonical �as de�ned in Section 
�
�� the middle SMT is fulsome but not
canonical� while the bottommost SMT is both fulsome and canonical�
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��� Canonical Full Steiner Trees

One of the major di�culties when constructing algorithms for RSTP is that
there in general exists an in�nite number of SMTs for a given terminal set Z�
One SMT may be transformed into another SMT by performing so�called
sliding and �ipping operations that do not change the length of the tree
�Figure 
�� In order to limit the number of SMTs to be considered we will
give a particular characterization of SMTs that turns out to be very strong�
Thus all SMTs that do not ful�ll the properties of this characterization will
be ignored�

Figure 
� Sliding and �ipping operations�

A rectilinear Steiner tree in which every terminal is a leaf is denoted
a full Steiner tree �FST�� Every SMT is a union of FSTs �see Figure ���
A fulsome SMT is an SMT in which the number of FSTs is maximized�
In particular� no FST in a fulsome SMT can be split into two FSTs of the
same total length� Alternatively� we may say that we maximize

P
z�Z deg�z�

where deg�z� is the degree of terminal z � Z � this holds since the number
of FSTs is � �

P
z�Z�deg�z� � ��� see Exercise �� We shall use both views

in the following�

Now consider an FST F in a fulsome SMT� The FST F is said to be
canonical if no vertical segment s can be moved to the right using sliding
and�or �ipping operations �without increasing the length of F and without
moving any other vertical segments of F � horizontal segments may be moved
freely�� If every FST in a fulsome SMT is canonical� then the SMT is
canonical� It is clear that there exists a fulsome and canonical SMT� For
every FST F � as long as a vertical segment can be moved to the right� then
do so� Since every transformation moves some vertical segment further to
the right� this process must stop� the �nal FST is therefore canonical�

One particular consequence of this de�nition is that for any corner point
in a canonical FST� the incident vertical segment is completely to the right
of the the incident horizontal segment �Figure ���






��� Hwang�topology FSTs

Let F be an FST in a fulsome and canonical SMT� In this section we show
that F has a very particular shape� denoted a Hwang�topology� The precise
statement is given below in Theorem 
��� but before we prove this theorem
we give a crucial lemma that forms the cornerstone of the theorem�

Lemma ��� Let uv be a segment in F where u and v are non�terminals�
Then u and v cannot be incident to two segments perpendicular to uv and
on the same side of uv�

Proof� Suppose two such segments exist �Figure ��� Assuming that F is
fulsome� we will prove that F cannot be canonical�

Let a be the endpoint of the complete line that contains the perpendic�
ular segment incident to u �in the direction of the segment as seen from u��
let a� be the other endpoint� De�ne b and b� analogously as the endpoints
of the complete line that contains the segment incident to v �see Figure ���
Assume w�l�o�g� that juaj � jvbj� Clearly a cannot be a terminal� since oth�
erwise we could slide uv until hitting a� contradicting the fact that F is
fulsome� Furthermore� since F is an SMT� a must be a corner point �again
by sliding uv a third segment incident at a would overlap with uv�� This
means that there are no other nodes than u and a on the line from u to a�
�ipping the corner point a would prove that F could not be optimal if this
was the case� In particular� this means that the segment su cannot exist�
This again implies the the segment sa must exist� since u cannot be a corner
point�

su sv

a

a�

b

b�

u v

sa sb

Figure �� Lemma 
��� proof illustration�

Now� v cannot be a corner point either� so sv or sb must exist� Assume
that sb exists� Then we can use the same arguments as above to prove that
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either a� or b� must be a corner point� In fact� since a� cannot be a corner
point ��ipping this corner point and the corner point a would contradict the
optimality of F �� b� must be a corner point and thus sv does not exist� We
arrive at the situation depicted in Figure �a�

On the other hand� if sb does not exist� then sv must exist and we arrive
at the situation depicted in Figure �b�

So far we have made no assumptions on the actual orientation of the
segment uv� If uv in fact is horizontal� F is clearly not canonical� inde�
pendent on the actual location of the �rst corner point a� In the �rst case
�Figure �a�� either of the two corners will not be canonical� In the latter
case �Figure �b� we may slide uv vertically and again obtain two opposite
corner points either of which is not canonical�

If uv is vertical� the only di�cult case is illustrated in Figure �c� Here we
cannot slide uv horizontally to the right� but the corner point is nevertheless
not canonical� �

a

u v

�a�

a

u v

�b�

a u

v

�c�

Figure �� Lemma 
��� di�erent con�gurations� �a� segment sb exists� �b� seg�
ment sb does not exist� �c� segment uv is vertical�

Using this lemma as a workhorse� we can begin to give a more detailed
characterization of F � First we assume that F has at least one corner point c�
Consider the complete corner �de�ned in Section 
��� located at c� Let cv
be one of the legs of the complete corner and let s�� s�� � � � � sl denote the
sequence of �interior� Steiner points on cv in increasing distance from c�
Lemma 
�� now implies the following sequence of corollaries�

� The Steiner points s�� s�� � � � � sl must be T�nodes� let vi be the third
node adjacent to Steiner point si� i � �� � � � � l �i�e�� not on the leg cv��

� Segment sivi is on the opposite side of cv as si��vi�� for all i �
�� � � � � l � �� that is� the incident segments alternate along the leg of
the complete corner�
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� Segment s�v� is on the opposite side of cv as the second leg of the
complete corner�

� All nodes vi� i � �� � � � � l must be terminals�

� The endpoint v of the leg cv must be a terminal� If v was a corner
point� F would either not be optimal or not canonical� depending on
the orientation of the supposed corner point� If v was a T�point� F
would not be canonical since it would violate Lemma 
���

An analogous result is obviously obtained for the second leg� thus there
are no other complete corners in F � and in particular no other corner point�
We will now show that at most one leg of the complete corner can have more
than one incident segment�

Lemma ��� At most one of the legs of a complete corner in F has more
than one incident segment�

Proof� Assume that both legs have at least two incident segments� as shown
in Figure 
� Consider the rectangle R given by the Steiner points s� and s���
At least one of the two terminals v� and v�� is on the boundary of R� assume
w�l�o�g� that v� is� Now we �ip the corner point c and slide the segment s��s

�
�

as far as possible towards v�� �see Figure 
�� If we hit v�� we have shown that
F is not fulsome� Otherwise we subsequently slide s�s� towards v� until we
hit v�� again contradicting the fact that F is fulsome� �

v�

s�

v�

s�

v��s��

v�� s��

c

Figure 
� Lemma 
�
� proof illustration�

So far we assumed that F has at least one corner point� If F has no
corner point� the situation is even more simple� Then F consists of a single
complete line connecting two terminals� all other terminals are connected

�



to this line via alternating incident segments� The arguments are similar to
those given for the corner point case� since the corner�free case is essentially
a special case of the former in which one of the legs of the corner has zero
length� However� one peculiar case arises� If F spans exactly four terminals�
the complete line could have single Steiner point being a cross�point� that is�
the FST consists of a cross�point to which the four terminals are connected�
Note that this case happens since the complete line is not a leg of a complete
corner� in the corner point case all Steiner points had to be T�points in
order not to violate the conditions of Lemma 
��� We arrive at the following
important theorem�

Theorem ��� ���� An FST in a fulsome and canonical SMT spanning k
terminals consists of a complete corner �also denoted the backbone� given
by a root z� and a tip zk��� The root is incident to the long leg and the tip
incident to the short leg of the complete corner� There are two main types
�i� and �ii� and two degenerate cases of type �i��

� Type �i� has k � 
 alternating segments incident to the long leg and
no segment incident to the short leg� The 	rst degenerate case �i��
has a zero�length short leg
 i�e�
 the complete corner is degenerated
into a complete line� The second degenerate case �i��� is a cross�point
interconnecting exactly four terminals�

� Type �ii� has k � � alternating segments incident to the long leg and
one segment incident to the short leg�

Note that the terminology short leg and long leg is not meant to connote
geometric length � rather� the long leg can have more incident segments
than the short leg� The two types are illustrated in Figure �� and the two
degenerate type �i� cases are depicted in Figure ��

z�

zk��

z�

zk��

Type �i� Type �ii�

Figure �� Hwang�topology FSTs�

	



z�
zk��

z�
zk��

Case �i�� Case �i��

Figure �� Degenerate cases of type �i� Hwang�topology FSTs�

As we shall see in the following two sections� this theorem has some nice
theoretical consequences� However� it is also used in the design of practical
algorithms for RSTP� as will be shown in Section � on exact algorithms for
the problem�

Before moving on� we give yet another property of fulsome and canonical
FSTs that will be used in Section 
�
�

Lemma ��� Let F be a fulsome and canonical FST� If F is a type �i� FST

we let ds denote the length of the short leg
 otherwise
 if F is a type �ii� FST

we let ds denote the distance from the corner point to the Steiner point on
the short leg� Let s be any segment incident to the long leg of F and on the
same side of the long leg as the short leg� Then
 jsj � ds�

Proof� Assume that there exists a segment s such that jsj � ds� Then we
may perform a sequence of �ipping and sliding operations as shown in Fig�
ure � that split F into two FSTs� contradicting the fact that F is fulsome� �

�� ��

Figure �� Lemma 
��� sequence of �ipping and sliding operations showing
that a type �i� FST is not fulsome�
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��� The Hanan Grid

The �rst paper solely devoted to RSTP was written by Hanan ��� in �	���
In addition to characterizing optimal solutions for small instances of the
problem� Hanan gave the following fundamental structural result� Draw
horizontal and vertical lines through every terminal in Z� Let H�Z� denote
the grid that is obtained� also called the Hanan grid for Z� Let IH�Z� be the
set of O�n�� intersections in H�Z�� where n � jZj is the number of terminals
�Figure 	�� note that Z � IH�Z��

Theorem ��� ��� There exists an SMT for Z such that every Steiner point
belongs to IH�Z��

Figure 	� Hanan grid for the terminal set from Figure ��

Alternatively� we may say that there exists an SMT for Z that is �geo�
metrically� contained in the Hanan grid� The proof of Theorem 
�
 is a direct
corollary of Theorem 
��� see Exercise �� One obvious consequence of this
theorem is that we only need to consider a polynomial number of Steiner
points candidates � namely the O�n�� intersection points in the Hanan
grid� This means that there exist short certi�cates of optimal solutions�
since we only need to consider Steiner point coordinates that are among the
coordinates of the given terminals� Thus we have proven that RSTP is in
NP� this is in major contrast with the Euclidean Steiner tree problem for
which this question is still unsettled ��
��
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��� The Steiner Ratio

Consider interconnecting Z under the L� metric without being allowed to
use Steiner points� This corresponds to computing a rectilinear minimum
spanning tree �MST� for Z� Construct a minimum�length tree interconnect�
ing Z in which only direct connections between terminals are allowed� Note
that in the geometric embedding of such a tree� line segments may overlap�

Minimum spanning trees in edge�weighted graphs can be computed in
polynomial time �essentially in linear time in the number of edges�� but
for the rectilinear problem an MST can be computed in O�n logn� time�
even though the complete graph on the terminals has O�n�� edges �see Sec�
tion ����� For a given terminal set Z� we let jSMT �Z�j and jMST �Z�j
denote the length of an SMT and an MST for Z� respectively� Clearly
jSMT �Z�j � jMST �Z�j since an SMT is a shortest possible interconnection
of Z� but the question is� How much shorter can an SMT be relative to an
MST for the same set of terminals� De�ne

���Z� �
jSMT �Z�j

jMST �Z�j

to be the ratio between the length of an SMT and an MST for Z� The
Steiner ratio �� for the L� metric in the plane is de�ned as

�� � inf
Z
���Z�

That is� the Steiner ratio is the smallest possible ratio between SMT and
MST length for any set of terminals� In the remaining part of this section
we will prove the following theorem�

Theorem ��� ���� The Steiner ratio for the rectilinear plane is

�� �
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This may at �rst seem to be a purely theoretical exercise� but as will
be shown in Section � on approximation algorithms for RSTP� this theo�
rem gives us a �rm bound on the quality of heuristics that are based on
computing MSTs�

Before we start giving the proof� consider the set of terminals Z� �
f���� ��� ������� ��� ��� ��� ��g� SMT �Z�� is a cross of length �� Since the
length of MST �Z�� is �� we have ���Z�� � 
��� Thus there does actually
exist a terminal set for which the minimum ratio is achieved�
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The proof of Theorem 
�� only needs to be established for every possible
FST� in particular only for Hwang�topology FSTs �that by de�nition are
fulsome and canonical�� To see why� consider an SMT �Z� that is a union
of FSTs F�� � � � � Fm� Assume that the Steiner ratio theorem holds for ev�
ery FST Fi� consequently there exists an MST� denoted by MSTi� for the
terminal set spanned by Fi such that jMSTij � ��
jFij� The union of all
MSTs� denoted by T � is clearly a spanning tree for Z� Since

jMST �Z�j � jT j �
mX

i��

jMSTij �
mX

i��

��
jFij � ��
jSMT �Z�j

the theorem also holds for any � not necessarily full � SMT�
We will therefore focus our attention on an arbitrary Hwang�topology

FST F spanning a set of terminals ZF � and show that jMST �ZF �j � ��
jF j�
Suppose F spans k � jZF j terminals� Our proof will be by induction on k�
The basis� k � �� is left as Exercise 
�

First we assume that F is a type �i� FST� The root is denoted by z�
and the alternating incident segments� in the direction from the root to the
corner point� are denoted by z�s�� � � � � zk��sk��� where sk�� is the corner
point of F � It turns out to be useful also to consider the root as being
connected to the long leg via Steiner point s� � z�� Let di � jzisij be the
length of segment zisi� i � �� � � � � k � ��

A

FA

B

FB

zi

si

zi��

si��

zi��

si��

zi��

si��

Figure ��� Theorem 
��� proof illustration�

Below we will prove that there always exists an i � f�� � � � � k � �g
such that di � di�� and di�� � di�� �Figure ���� Let A � fz�� � � � � zig
and B � fzi��� � � � � zk��g� Let FA and FB be the parts of F that inter�
connect A and B� respectively� and let FC be the remaining part of F �
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By the inductive hypothesis� jMST �A�j � ��
jSMT �A�j � ��
jFAj and
jMST �B�j � ��
jSMT �B�j � ��
jFB j�

Let C � fzi� zi��� zi��� zi��g� Consider the boundary of the smallest
axis�aligned rectangle that contains C� This boundary has length 
�jsisi��j�
di�� � di���� and contains all terminals in C� Therefore� we can construct
a tree interconnecting C that consists of terminal�terminal connections by
deleting the longest connection between two terminals on the boundary�
Thus we have

jMST �C�j � ��
�jsisi��j� di�� � di��� � ��
jFC j

In conclusion�

jMST �ZF � � jMST �A�j� jMST �B�j� jMST �C�j � ��
jF j

What remains to be shown is that there always exists an i � f�� � � � � k��g
such that di � di�� and di�� � di��� Assume that this condition is not true
for i � � �otherwise we are done�� Consider d�� the condition is ful�lled for
i � � unless d� � d�� Repeating this argument for all i� the only way the
condition cannot be ful�lled is if the length of the incident segments on each
side of the long leg are strictly increasing along the long leg� But this is in
contradiction with Lemma 
�� that says that the length of the short leg is
shorter than all incident segments on the same side� This proves that there
must exist a sequence of four terminals ful�lling the condition for a type �i�
FST�

For a type �ii� FST all the arguments above can be repeated� the single
terminal attached to the short leg will never be part of the set C� The only
problem is that we have no bound on the length of the short leg� That
is� we may arrive in the situation shown in Figure ��a� in which the above
condition is not ful�lled for any i� However� in this case we may consider the
corner��ipped FST instead �Figure ��b�� In this FST the �rst four terminals
on the long leg� corresponding to i � �� will always ful�ll the condition� This
�nishes our proof of the Steiner ratio theorem for the rectilinear plane�

� Exact Algorithms

The NP�hardness of the rectilinear Steiner tree problem leaves little hope
that any polynomial time exact algorithm exists for the problem� However�
it turns out that fast and practical exact algorithms can be constructed for
the problem� These algorithms are fast in the sense that realistic prob�
lem instances � in particular instances from VLSI design � can be solved

��



�a� �b�

Figure ��� Type �ii� remaining case�

quickly in practice� The history of exact algorithms for RSTP is not long� In
fact� it is fair to say that no substantial progress was made before �		�� In
�		� Salowe and Warme ���� submitted a paper describing an algorithm that
could solve ���terminal problems in less than one hour� in �		
 Hetzel �	�
could solve 
��terminal problems within the same amount of time� The real
breakthrough occurred a few years later when Warme ��	� computed SMTs
for problem instances with more than ���� terminals�

In this section we �rst give some necessary optimality conditions for
SMTs �Section ����� Then we describe the currently fastest exact algorithm
for RSTP �Section ��
� ��	� 
�� 
��� This algorithm uses Hwang�s powerful
characterization of fulsome and canonical FSTs �Theorem 
��� as a starting
point� Finally� in Section ��� we discuss solution methods that use the
property that an SMT exists in Hanan grid for the set of terminals�

��� Necessary Optimality Conditions

An edge e � �u� v� in an SMT is a direct connection between a pair of nodes
u and v �which are either terminals or Steiner points�� In a fulsome and
canonical SMT an edge is either a single segment or a pair of perpendicular
segments adjacent at a corner point� The length of an edge e � �u� v��
denoted by jej� is the L� distance between u and v�

In this section we give some bounds on the length of edges in SMTs�
also� we present some properties that particular con�gurations of edges must
ful�ll� Furthermore� note that any subtree of an SMT clearly must be an
SMT for the nodes spanned� in particular this holds for FSTs� Tests based
on this condition are usually denoted upper bound tests� and can be applied
by computing heuristic trees that span the set of nodes in question�

In order to simplify the exposition� we consider SMT �Z� and MST �Z�
as being unique� It is easy to see that all optimality conditions given will be
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valid for any SMT �Z� and MST �Z��

Bottleneck Steiner Distances

Assume zi� zj � Z is a pair of distinct terminals and let PT �zi� zj� denote
the unique path between zi and zj in a tree T � The path consists of one or
more edges connecting the nodes�

Consider the paths PSMT �Z��zi� zj� and PMST �Z��zi� zj�� Note that the
latter can easily be computed� Pick an edge e � PSMT �Z��zi� zj� and remove
it from SMT �Z�� This breaks the tree into two connected components that
contain each of the terminals zi and zj � respectively� Now follow the path
PMST �Z��zi� zj� which only consists of edges connecting terminals� One of
the edges on this path� say f � �zk� zl�� will reconnect the two components
of the broken SMT� Clearly� we must have that jej � jf j since otherwise we
would have shown that SMT �Z� was not a shortest tree�

This observation leads to the following de�nition� The bottleneck Steiner
distance� bzizj � between a pair of terminals zi and zj is equal to the length
of the longest edge on PMST �Z��zi� zj�� Note that there exists no terminal�
path between zi and zj for which the longest edge is smaller than bzizj �see
Exercise ���

Lemma ��� For any edge e � PSMT �Z��zi� zj�
 we have jej � bzizj �

Bottleneck Steiner distances between every pair of terminals can be de�
termined in O�n�� time by computing MST �Z� and doing a depth��rst
traversal in this tree from every terminal� The optimality condition pro�
vided by Lemma ��� turns out to be very powerful in practice� and can be
supplemented by a generalization given in Exercise ��

Empty Regions

In the previous section we gave an upper bound on the length of edges
connecting a pair of terminals� In this section we give some conditions that
depend on how close other terminals are to an edge or a pair of edges� Let
�u� v� be an edge in SMT �Z�� Consider the region

L�u� v� � fp � R� � jpuj � juvj � jpvj � juvjg

also denoted the �lune� given by �u� v� �Figure �
a�� The lune is the inter�
section between the interior of two L� circles with radius juvj centered at u
and v� respectively�
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Lemma ��� If �u� v� is an edge in SMT �Z�
 then L�u� v� contains no other
point �terminal
 Steiner point
 or interior segment point� from SMT �Z��

Proof� Assume on the contrary that there exists a point p � L�u� v�� Remove
edge �u� v� from SMT �Z�� splitting the tree into two connected components�
The point p belongs to one of the two components� say the one that contains
u� By adding the edge �p� v� we have constructed a shorter tree intercon�
necting the terminals� If p belongs to the other component we would also
be able to construct a shorter tree� a contradiction� �

u

v

L�u� v�

�a�

w

u

v

l

R�u� v�

�b�

Figure �
� Empty regions� �a� empty lune� �b� empty corner rectangle�
Gray�shaded areas cannot contain a point of SMT �Z��

Now� assume that the nodes u and v are not connected directly via an
edge� but through a third node w such that the segments uw and wv are
perpendicular �Figure �
b�� Let R�u� v� be the interior of the axis�aligned
rectangle with sides uw and wv� note that R�u� v� � L�u� v��

Lemma ��� If uw and wv are perpendicular segments in SMT �Z�
 then
R�u� v� contains no other point of SMT �Z��

Proof� Assume on the contrary that SMT �Z� contains a point p � R�u� v��
Let l be the line through w which bisects the perpendicular angle� and as�
sume that p is above l �in Figure �
b�� Remove uw from SMT �Z�� If p
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belongs to the same component as u then add a vertical segment from p
down to segment wv� otherwise reconnect by connecting u and p� In both
cases the tree is shortened� a contradiction� If p is below l a similar ar�
guments shows that the tree can be shortened is this case� too� Finally�
assume that p is exactly on the line l� Since SMT �Z� consists of vertical
and horizontal segments� there must exist another point p� � R�u� v� that is
either above or below l� again allowing us to shorten the tree� �

The optimality condition given in Lemma ���� denoted the empty corner
rectangle property� has been used with great success in the design of both
exact and heuristic methods for RSTP �
� �
� 
���

��� FST Based Exact Algorithms

In this section we give a description of the currently most e�cient method
for solving RSTP to optimality� This algorithm uses an overall approach
that was suggested by Winter �

� for the Euclidean Steiner tree problem in
the plane� We will use the fact that there exists an SMT which is a union
of FSTs having Hwang�topology �Theorem 
����

The idea is simply to generate all Hwang�topology FSTs that ful�ll cer�
tain necessary optimality conditions� in particular those given in the previous
section� This may a �rst seem to be an hopelessly ine�cient approach since
we �in principle� have to consider all O�
n� subsets of terminals� however�
most subsets are only considered implicitly and very few �i�e�� approximately
linear in the number of terminals� FSTs survive all the conditions in prac�
tice� After this �rst FST generation phase we need to select a subset of
the generated FSTs that interconnect all terminals and have minimum total
length� This second phase is called FST concatenation� and it turns out to
be the computationally hardest task of the two phases�

FST Generation

Assume that some terminal z� � Z is the root of a Hwang�topology FST
�see Theorem 
���� The long leg has one of four possible directions� North�
East� South or West� Let us consider a speci�c direction� say East� This
situation is shown in Figure ��a� Let us �informally� describe a procedure
for generating all FSTs having root z� and direction East�

Sort all terminals to the right of the vertical line through z� by their
x�coordinate� Let Za be the list of sorted terminals that are above the
horizontal line through z� and let Zb be the corresponding list of terminals
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z�

�a� Root and direction

z�

�b� Save and recurse

z�

�c� Save and recurse

z�

�d� Skip and continue

Figure ��� FST generation algorithm example�
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z�

�e� Save and recurse

z�

�f� Backtrack

z�

�g� Backtrack

z�

�h� Skip and continue �etc��

Figure ��� �cont��
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below this line� Consider the �rst terminal in Za and connect it to the
root as shown in Figure ��b� that is� create a segment along the long leg
and another one connecting the terminal to the long leg� Now we may test
whether this partial FST can be a subtree in some possibly larger FST� This
is done by applying several necessary optimality conditions� including those
given in Section ����

In the example in Figure �� we only show the e�ect of applying the
empty lune condition �Lemma ��
�� Since both lunes in Figure ��b are
empty we save this partial FST and continue growing this FST� This is
done by choosing the next terminal from Zb �Figure ��c�� recall that the
terminals must alternate along the long leg� Again all necessary optimality
conditions are ful�lled and we recurse �Figure ��d�� In this case a non�
empty lune appears� this means that this partial FST cannot be a subtree
in some larger FST� Therefore� we skip this terminal and choose the next
candidate from Za �Figure ��e�� In Figure ��f we again get a non�empty
lune and since there are no more candidates in Zb� we backtrack� i�e�� choose
another candidate for the previous terminal �Figure ��g�� Here we again
need to backtrack � and the FST generation algorithm continues until all
FSTs having z� as root and long leg direction East are generated �note that
we also need to consider the case where the �rst terminal is chosen from
Zb�� Finally� this algorithm is repeated for all combinations of terminals
and directions�

As described� this procedure only generates type �i� FSTs� but type �ii�
FSTs can be generated simultaneously� Here we need to try all possibilities
of attaching a single terminal to the last vertical segment�

An FST�independent preprocessing phase which runs in O�n�� time can
be used to speed up this FST growing algorithm signi�cantly in practice �
���
In fact� for most problem instances the preprocessing dominates the total
running time even if the second part is the one that requires exponential
time in the worst�case� A well�tuned implementation of this algorithm �
��
generates the FSTs for a randomly generated ���� terminal instance in less
than one second� the number of FSTs surviving all tests is approximately �n�
This set of FSTs includes n � � edges from an MST for Z� which may be
considered as the 
�terminal FSTs �Exercise � discusses why an arbitrary
MST for Z can be used��

FST Concatenation � Spanning Trees in Hypergraphs

Let H � �V�E� be a hypergraph with the set of terminals as its vertices
and the set of generated FSTs as its hyperedges� Each hyperedge e � E is
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a set of vertices of cardinality jej � 
� which corresponds to the terminals
spanned by the FST� An hyperedge that spans k vertices is denoted a k�
edge� Hyperedge e � E has a weight ce that is equal to the geometric length
of the corresponding FST�

A chain in H from v� � V to vk � V is an alternating sequence of
vertices and hyperedges� v�� e�� v�� e�� v�� � � � � ek� vk� such that all vertices and
hyperedges are distinct and vi��� vi � ei for i � �� 
� � � � � k� A spanning tree
in H is is a subset of hyperedges E� � E such that there is a unique chain
between every pair of vertices vi� vj � V in the induced subgraph �Figure ����
The uniqueness implies that there can be no pair of distinct hyperedges
ei� ej � E� that share two or more vertices� i�e�� we have jei 	 ej j � � for all
ei� ej � E�� The problem of �nding a minimum spanning tree �MST� in H
� where each hyperedge e � E has weight ce � is equivalent to solving the
FST concatenation problem�

The MST in hypergraph problem �MSTHG� is NP�hard when the hy�
pegraph contains edges of cardinality four or more ��	�� Actually� deciding
the existence of a spanning tree in such a hypergraph is NP�complete� A
number of methods for solving this problem have been suggested �see �
�� for
a survey�� Warme ��	� gave an integer programming formulation that was
solved using branch�and�cut� This is currently the fastest solution method
in practice and we will therefore give a description of the main components
of the algorithm here�

We solve MSTHG by setting up an integer programming �IP� formula�
tion� Denote by x an jEj�dimensional binary vector� each element xe has
value � if the edge e � E is chosen to be part of the MST and � otherwise�
The IP formulation is then

min cx ���

s�t�
X

e�E

�jej � ��xe � jV j � � �
�

X

e�E	je�Sj��

�je 	 Sj � ��xe � jSj � �� 
S � V� jSj � 
 ���

This formulation requires some explanation� We only give informal argu�
ments showing that this formulation solves MSTHG� a formal proof can be
found in ��	��

The objective ��� is to minimize the total length of the chosen hyperedges
subject to two types of constraints� Firstly� equation �
� enforces the correct
number and cardinality of hyperedges to construct a spanning tree� The
intuition behind this equation is that the number of 
�edges in a spanning







�a�

�b�

Figure ��� Spanning tree in hypergraph example� �a� hypergraph� �b� span�
ning tree�
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tree of an ordinary graph with jV j vertices is exactly jV j � �� otherwise the
tree is either not connected or contains a cycle� Since every hyperedge e � E
can be seen as consisting of jej�� 
�edges �that is� a local tree interconnecting
the vertices spanned by the hyperedge�� the equation follows�

Secondly� constraints ��� eliminate cycles by extending the standard no�
tion of subtour elimination constraints� For a given subset S � V � the total
number of 
�edges contained in the subset �again viewing hyperedges as a
set of 
�edges�� is at most jSj � �� otherwise a cycle is created �Figure �
��
Every edge e � E which intersects S contributes with je	Sj�� 
�edges� The
intersection property is equivalent to je 	 Sj � �� but in fact only edges for
which je	Sj � 
 contribute to the sum� Using the �rst condition� however�
has some advantages as will be seen in the following�

Figure �
� Violation of a cycle elimination constraint� The dotted closed
curve de�nes a set S for which the number of internal edges is greater than
jSj � ��

This integer program is solved via branch�and�cut� We give the main
details here� but in order to solve this problem quickly in practice a number
of additional techniques must be applied ��	�� The implemented branch�and�
cut algorithm �
�� solves a typical ��� terminal problem in a few seconds�

Lower bounds for the IP formulation are provided by linear program�
ming �LP� relaxation� i�e�� by relaxing integrality of every component xe
of x to xe � �� The major obstacle in solving this LP is the exponential
number of constrants given by ���� Therefore� the LP is solved using an iter�
ative method� First a subset of the constraints ���� more precisely those for
which jSj � 
� are included� Then the LP is solved� returning a �fractional�
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solution x� Now we would like to see if x ful�lls all the cycle elimination
constraints� if not� we should add at least one of these constraints to the
LP and iterate� The process of identifying violated constraints is denoted
separation� It turns out that separation can be done in polynomial time by
solving a series of max��ow problems in an appropriately de�ned auxiliary
graph�

Before we give the separation algorithm� a few de�nitions are needed�
The congestion level of a vertex v � V for an LP�solution x is�

bv �
X

e�E	v�e

xe

This is the total �fractional� amount of edges that have v as one of their
vertices� Clearly� in an MST we must have bv � �� since otherwise the
vertex is not included in the solution� For a subset S � V we have�

X

v�S

bv �
X

e�E	je�Sj��

je 	 Sjxe

Furthermore� de�ne the function

f�S� � jSj �
X

e�E	je�Sj��

�je 	 Sj � ��xe

� jSj � �
X

v�S

bv �
X

e�E	je�Sj��

xe�

The separation problem is equivalent to �nding an S � V such that S �� �
and f�S� � � or proving that no such S exists� This can be achieved by
minimizing this function over all S �� ��

De�ne a �ow network Gx � �N�A� for an LP�solution x as follows� The
vertex set is N � fsg 
 V 
 E 
 ftg� where V and E are the vertices and
edges in H� respectively� The vertex s is the source and the vertex t the
sink� The arc set is de�ned as A � As 
A� 
At� where

As � f�s� v� � v � V g

A� � f�v� e� � e � E� v � eg

At � f�e� t� � e � Eg

Arc �s� v� � As has capacity bv � �� arc �e� t� � At capacity xe while all
arcs in A� have in�nite capacity �Figure ���� Let W � fsg 
 S 
 F �
where S � V and F � E � be a minimum weight s � t cut in Gx� That







is� t �� W and the total weight of the edges crossing from W to N nW is
minimized� Note that no edges in A� can be part of a minimum weight cut�
since there exists a cut of �nite weight� simply let S � F � �� Now we have
the following lemma�

s

v�

v�

v�

v�

v

���

e�

e�

e�

e�

e


e�

t

���

bv� � �

bv� � �

x�

x�

�

�

Figure ��� Flow network for solving the separation problem�

Lemma ��� Let W � fsg 
 S 
 F be a minimum weight s � t cut in Gx�
Then S is a minimum of f�S��

Proof� If v � S then all e � E for which v � e must be in F � since otherwise
the cut has in�nite weight� Now assume that e � F but e 	 S � �� Then
moving e to the other side of the cut can only decrease the weight of the
cut� Therefore� we may assume that F is completely determined by S� The
value of the cut is therefore�

X

e	je�Sj��

xe �
X

v�V nS

�bv � ��

�
X

e	je�Sj��

xe �
X

v�V nS

bv � �jV j � jSj�

By adding the constant jV j� subtracting the constant
P

v�V bv and rear�
ranging� we obtain�

jSj � �
X

v�V

bv �
X

v�V nS

bv �
X

e	je�Sj��

xe�

� jSj � �
X

v�S

bv �
X

e	je�Sj��

xe�
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Therefore� there is a constant di�erence between the value of the cut and
f�S�� this proves the lemma� �

Minimizing f�S� under the additional condition S �� � is achieved as
follows� First we pick a terminal v� � V � Then we set up a reduced �ow
network in which v� and the hyperedges that contain v� have been deleted�
The reduced �ow problem is solved� thus obtaining a set of vertices S� �pos�
sibly empty�� The set S� 
 fv�g is clearly a minimum over f�S� under the
condition that v� � S� Then we remove a second terminal v� � V �and the
hyperedges that contain it from the �ow network� and iterate�

��� Hanan Grid Based Exact Algorithms

The �rst exact algorithms for RSTP were based on the classical result that
there exists an SMT in the Hanan grid H�Z� for the set of terminals �Sec�
tion 
���� Consider the ordinary graph G � �V�E� representing the Hanan
grid� The intersections in H�Z� are the vertices in G while the segments in�
terconnecting neighbouring intersections form the edges of G� Let ce denote
the geometric length of the horizontal or vertical segment that edge e � E
represents� G is a planar graph in which every vertex has maximum degree
four�

Hanan�s theorem shows that RSTP reduces to the Steiner tree problem
in graphs �STPG�� Given an edge�weighted graph G � �V�E� and a set of
terminals Z � V � �nd a tree in G that interconnects Z and has minimum
total length� Numerous exact and heuristic algorithms have be suggested
for this well�studied problem ��
�� all of which �in principle� can be used to
solve the corresponding rectilinear Steiner tree problem�

In this section we give a short introduction to the best exact algorithm
for STPG ����� This algorithm uses the so�called directed IP formulation for
STPG� other formulations and their relations to each other are described
in ���� But before presenting the directed IP formulation� we discuss some
algorithms that can be used for reducing the Hanan grid before applying
algorithms for STPG�

Hanan Grid Graph Reductions

A straightforward and fast method for reducing the Hanan grid is to generate
Hwang�topology FSTs �Section ��
�� That is� take the set of generated FSTs
and place them on the Hanan grid� Note that every Hwang�topology FST
is contained in the Hanan grid� Edges and Steiner points in the Hanan grid
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which are not used by any FST can clearly be deleted� This is in practice
the most e�cient way to reduce the Hanan grid� e�g�� for n � ���� there
are in the worst�case n� � ������� vertices in the complete Hanan grid but
only around ���� of these are retained after FST generation �
���

The disadvantage of using FST generation is that there is no guarantee
of polynomial running time� On the other hand� general graph reduction
techniques for the STPG are known to perform very poorly on the Hanan
grid graph ����� Therefore� Winter �
�� proposed several reduction tech�
niques that take advantage of the special structure of the Hanan grid graph�
in particular that vertices have low degree and that many edges have the
same length� Uchoa� Poggi de Arag ao and Ribeiro ���� extended the ideas
of Winter to reducing Hanan grid graphs with holes� these graphs occur
frequently in VLSI routing �	��

Directed IP Formulation for STPG

We solve STPG for a graph G � �V�E� with non�negative edge weights ce�
e � E� and terminal set Z � V by setting up the following IP formulation�
First we create a directed graph !G � �V� !E� having the same set of vertices
as G� For every edge �u� v� � E there are two directed edges �u� v� � !E and
�v� u� � !E� both having the same cost as �u� v� � E� c�u�v
 � c�v�u
 � c�u�v��
Let an arbitrary terminal r � Z be designated as the root� Solving STPG is
now equivalent to �nding a rooted tree of minimum total length in !G �with
r as root� that contains all terminals in Z� Such a tree is called a Steiner
arborescence�

Denote by x an j !Ej�dimensional binary vector� each element x�e has value
� if the edge !e � !E is chosen to be part of the Steiner arborescence and �
otherwise� For any non�empty set S � V let

��S� � f�u� v� � !E � u � S � v � V n Sg

be the set of edges leaving from S and ending in V n S� The IP formulation
is then

min cx ���

s�t�
X

�e��S

x�e � �� 
S � V� r � S� �V n S� 	 Z �� � �
�

The constraints �
� ensure that there is a path from the root to every ter�
minal� Any cut separating the root and a terminal must have at least one
edge crossing the cut�
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Koch and Martin ���� gave a branch�and�cut algorithm for solving STPG
using this IP formulation� Since the number of constraints is exponential a
separation method is used to iteratively add constraints to the linear pro�
gram �see also Section ��
�� The separation problem is solved by �nding
a maximum �ow from the root r to every terminal t � Z n frg with ca�
pacities identical to the fractional solution values of the edges� If the value
of the �ow is less than �� the corresponding minimum cut gives us a vio�
lated constraint that can be added to the formulation� Although the results
presented in ���� are good for several classes of graphs� the algorithm has
serious problems solving Hanan grid graph problems� RSTP instances with
�� or more terminals are very hard to solve using the complete Hanan grid
graph�

� Approximation Algorithms

The need for solving RSTP in the VLSI design domain � and the lack of
fast exact algorithms until a few years ago � has spawned a constant �ow of
heuristic algorithms for the problem� Almost all of these use the rectilinear
minimum spanning tree �MST� as a starting point� Since the Steiner ratio
theorem �Section 
�
� tells us that

jMST �Z�j

jSMT �Z�j
�
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for any set of terminals Z� we know that an MST is at most 
�� longer
than an SMT for the same set of terminals� We say that an MST algorithm
has an approximation ratio of ��
� Polynomial time algorithms that have a
�known� approximation ratio are usually denoted approximation algorithms�

A comprehensive survey of heuristics for RSTP was given in ��
�� In this
tutorial we only describe a few of these �and more recent� approaches with�
out going into the same level of detail as in the preceding sections� Firstly�
simple and fast algorithms that take an MST and compute short embeddings
of the MST in the plane are presented in Section ���� These algorithms �nd
good ways to draw the MST in the plane such that the length of all segments
�only counting overlapping segments once� is as short as possible� Secondly�
we give a short introduction to the ��Steiner heuristic which is currently
among the best performing heuristics for RSTP �Section ��
��

None of these heuristics provide an approximation ratio that is strictly
less than ��
� For a long time it remained an open problem to design a
heuristic with a strictly better approximation ratio� Zelikovsky �

� �rst


	



broke the ��
 barrier by giving an algorithm with a ���� approximation
ratio� However� Arora ��� �nished the search for algorithms with better con�
stant approximation ratios when he gave a polynomial time approximation
scheme �PTAS� for RSTP� For any �xed � � � there exists a polynomial
time algorithm that has an approximation ratio of � � �� In Section ��� we
present the main algorithmic ideas leading to this amazing result�

��� MST Embeddings

A rectilinear MST can be computed in O�n log n� time by using� e�g�� rec�
tilinear Voronoi diagrams ��
�� but this is rather involved both in theory
and practice� Here we sketch a simpler algorithm for computing an MST in
O�n log n� time�

Consider a terminal z � Z� Draw the two ��
� lines passing through z�
This divides the plane into � regions �not including the point z�� The four
half�lines extending from z and the interior of the four regions formed by the
lines� Now we have the following lemma whose proof is left as Exercise 	�

Lemma ��� ���� In MST �Z� any terminal z � Z has at most one neigh�
bour in each of the � regions
 furthermore
 this terminal will be a closest
neighbour to z in its region�

Using this lemma� we compute an MST as follows� For each terminal
z � Z� �nd a nearest neighbour in each of the � regions� This can be done
for all terminals in O�n log n� time ���� Construct a graph �having Z as
it vertices� in which every terminal z � Z is connected to the �at most�
� nearest regional neighbours� The resulting graph has O�n� vertices and
edges� therefore� an MST can be computed in O�n logn� time using� e�g��
Kruskal�s algorithm�

Consider the MST shown in Figure ��� Each MST edge is a shortest
path under the L��metric between its endpoints� Assume that we choose a
particular drawing �or embedding� of the edges� Line segments from di�erent
edges may overlap� but we only need to keep one copy of overlapping line
segments in order to get a tree that interconnects Z� An optimal embedding
is a drawing for which the resulting heuristic tree� obtained by merging
overlapping line segments� is as short as possible�

In order to speed up the construction of good MST embeddings� it turns
out to be bene�cial to start with a separable MST� This is an MST for
which the bounding boxes of the edges only overlap if the corresponding
edges share a terminal �this is the case for the MST shown in Figure ����
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Figure ��� Rectilinear MST for the terminal set from Figure �� In the top�
most �gure each MST edge is drawn using dashed lines� Any staircase con�
nection between the terminals can be chosen� overlapping bounding boxes
indicate that the corresponding embeddings may overlap� In the embedding
given by the middle �gure no line segments overlap� the bottommost �gure
is an optimal embedding �in this case also an SMT for the terminal set��
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Ho� Vijayan and Wong ���� proved that a separable MST always exists and
that it can be constructed in O�n log n� time�

The simplest possible drawing of an MST is an L�shaped embedding�
Every edge has at most one corner point �it bends at most once�� Clearly�
there are at most two ways to draw an edge in an L�shaped embedding�
Note that the embeddings shown in Figure �� are L�shaped� Starting with
a separable MST� an optimal L�shaped embedding can be constructed in
O�n� time ����� The algorithm uses dynamic programming by rooting the
MST and constructing an optimal embedding bottom up in the tree� The
running time follows from the fact that the maximum degree in an MST is
bounded by a constant �Lemma �����

Let us now consider the case where at most two bends or so�called Z�
shaped drawings are allowed� Interestingly� it turns out that an optimal
Z�shaped embedding also is optimal among all possible embeddings� Fur�
thermore� an optimal L�shaped embedding can be constructed in polynomial
time ����� When the running time is taken into account� optimal MST em�
beddings � and in particular optimal L�shaped embeddings � produce
fairly good heuristic solutions in practice�

��� ��Steiner Heuristics

The problem of computing an SMT for a terminal set Z can be formulated
as follows� Find a set of Steiner points S such that MST �Z 
 S� has mini�
mum length� There are two facts which make this a good starting point for
designing a heuristic for RSTP� Firstly� the number of Steiner points is at
most n� 
 �see Exercise ��� and secondly� we clearly only need to consider
the Steiner points in the Hanan grid� H�Z�� as candidates to be included in
the set S�

A greedy approach is therefore to start with S � � and iteratively add
Steiner points to S such that the length of the MST is minimized in every
iteration� This is the basic iterated ��Steiner heuristic for RSTP�

�� S � �


� Find a point s � H�Z� such that jMST �Z 
 S 
 fsg�j is minimized

�� if jMST �Z 
 S 
 fsg�j � jMST �Z 
 S�j then stop

�� S � S 
 fsg� remove points in S having degree � 
 in MST �Z 
 S�


� Goto 


�




In step 
 we �nd a Steiner point that gives a maximum decrease in MST
length� There are O�n�� Steiner points in the Hanan grid and each MST
computation takes O�n log n� time� so a trivial implementation of step 

takes O�n� log n� time� By using a more sophisticated algorithm� step 
 can
be performed in O�n�� time �����

The algorithm stops when no improving Steiner point can be found
�step ��� In step � we remove Steiner points that have degree two or less
in the MST since the inclusion of these Steiner points does not decrease the
length of the MST� The number of iterations can be greater than n� 
 �see
Figure ���� but is �nite when the Steiner points are chosen from the Hanan
grid� In practical implementations at most n iterations are made� giving a
total running time of O�n�� using the improved search for a best Steiner
point in step 
�

�a� �b� �c� �d�

Figure ��� ��Steiner heuristic example� �a� MST of terminals� �b���d�
Sequential insertion of Steiner points� The degree�
 Steiner point in the
�nal tree is removed by the algorithm�

A number of variants of the iterated ��Steiner heuristic have been pro�
posed� One variant is to add several Steiner points in each iteration� hereby
avoiding expensive MST computations ����� Until recently this variant was
recognized as the champion heuristic for RSTP with respect to solution
quality� producing solutions within ��
� from optimum on average� A new
heuristic proposed by Mandoui� Vazirani and Ganley ��
� challenges the
leading position of iterated ��Steiner� On the top�level this new heuristic
is similar to iterated ��Steiner� it also adds one or more Steiner points to
the terminal set until the MST does not improve� However� Steiner points
are identi�ed using a much more sophisticated algorithm� This algorithm is
based on the directed IP formulation for STPG �Section ����� By applying
a primal�dual approach using this formulation� a heuristic solution is con�
structed� The Steiner points used by this heuristic solution are added to the
terminal set and the process iterates�

Although these variants of the iterated ��Steiner approach produce ex�
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cellent solutions� their running time requirement is not signi�cantly lower
than what is needed to construct SMTs using the exact algorithms described
in Section ��
 � except in very large� rare or contrived instances�

��� Arora�s PTAS

In this section we describe the �ultimate� heuristic for RSTP� at least from
a theoretical point of view� Given any �xed � � �� the heuristic produces �in
polynomial time� a rectilinear tree whose length is within a factor of � � �
from optimum� This polynomial time approximation scheme �PTAS� was
given by Arora ���� and it was a major breakthrough with its main focus
on approximating the Euclidean travelling salesman problem �TSP�� The
algorithm and proof of approximation for RSTP were essentially corollaries
to the results for TSP�

This presentation focuses on the algorithmic ideas leading to the PTAS�
Therefore� we state the approximation theorem without giving its proof�
The algorithm consists of three steps� �� Perturbation 
� Shifted quadtree
construction and �� Dynamic Programming� In the following we describe
each of these steps�

Let OPT � jSMT �Z�j be the length of the SMT for the n terminals
in Z� We assume w�l�o�g� that � � 
�C and n � 
N where C and N are
positive integers� Note that � is considered to be a constant in all subsequent
asymptotic expressions�

Perturbation

First we perturb and scale the terminal coordinates as follows� The bound�
ing square of Z is the smallest axis�aligned square that contains Z� Scale
the coordinates of the terminals such that the side length of the bounding
square becomes 
n�� � 
N�C�� � O�n�� Note that OPT � 
n�� in the
scaled instance� Place a unit grid over the bounding square and move the
terminals to the nearest grid point� Since every terminal is moved at most
distance �� the relative length di�erence between an SMT for the original
�scaled� problem instance and an SMT in the perturbed instance is at most
n�OPT � n��
n��� � ��
� Therefore� in order to �nd a ��� approximation
in the original instance� all we need is to �nd a �� ��
 approximation in the
perturbed instance�

��



Shifted quadtree construction

Consider the perturbed instance� All terminals in Z are grid points on a
L � L unit grid U � where L � 
N�C�� � O�n�� Since the Hanan grid for
Z is a subset of U � there exists an SMT in U � In particular note that all
Steiner points will be grid points�

In order to decide to which sub�square a terminal belongs� move every
terminal symbolically up and to the right� such that it belongs to exactly
one unit square of U � special care is obviously needed for terminals on the
right or upper boundary of U �

A dissection is a recursive partitioning of U into smaller squares� The dis�
section is represented by a ��ary tree �every internal node has four children�
with the root representing U � Divide U into four equal squares� represented
by the children of the root� For each of the four children again divide the
sub�square into four equal squares etc� The process stops when a node rep�
resents a unit square in U �Figure �	a�� The depth of this tree is clearly
log�
n��� � O�log n�� and it has as many leaves as there are unit squares in
U � i�e�� O�n�� leaves�

�a� �b�

Figure �	� Subdivision of bounding square� �a� Dissection� �b� Quadtree�

Let us now bring the terminals into play� A quadtree is similar to a
dissection� except that we only divide a sub�square if it contains more than
one terminal �Figure �	b�� How many nodes are there in a quadtree� The
tree has at most �n leaves and since the depth of the tree is O�log n�� there
are at most �n�O�logn� � O�n log n� nodes in the quadtree�

�




Let a and b be two integers in f�� � � � � L� �g� A quadtree with shift �a
b�
is a quadtree in which the �rst vertical division of U occurs at x�coordinate
a and the horizontal division at y�coordinate b� where the usual quadtree
has a � b � L�
� The bounding square is still divided into four sub�squares�
but these may be �wrapped�around� as shown in Figure 
�� Subsequent
divisions are made relative to the �rst division and may therefore also wrap�
around�

a

b

a

b

Figure 
�� Shifted quadtree� Two examples with di�erent a and b shifts are
shown� Note that each region consists of up to four rectangles� as indicated
with the �ll styles used�

Given a shift �a� b�� an �m� r��light rectilinear Steiner tree for Z is a tree
that intersects each side of every sub�square in the shifted quadtree at most
r times� furthermore� these intersections occur at m prespeci�ed portals on
each sub�square side� Now we have the following theorem�

Theorem ��� ��� Let shifts � � a� b � L be picked randomly� Then with
probability at least ��
 there exists a rectilinear Steiner tree with total length
at most �� � ��OPT that is �m� r��light with respect to the shifted quadtree
where m � O�logL��� � O�logn� and r � O����� � O����

Therefore� if we �nd an optimal �m� r��light rectilinear Steiner tree for
a given shift �a� b� �with m and r de�ned as in Theorem ��
�� we have con�
structed a ��� �� approximation with probability at least ��
� By trying all
L�L � O�n�� shifts we are guaranteed to �nd the required approximation�
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In the next section we show that an optimal tree for a given shift indeed can
be found in polynomial time�

Dynamic programming

We use a dynamic programming algorithm to compute an optimal �m� r��
light rectilinear Steiner tree for a given �a� b��shift� The algorithm will be
described for a � b � L�
� i�e�� ignoring squares that wrap�around �the
general case is similar but a bit involved�� First� note that a quadtree can
be computed in O�n log� n� time by using a sorting�based algorithm�

The optimal �m� r��light tree is constructed bottom�up in the quadtree�
optimal solutions to subproblems are stored and used to construct optimal
solutions to parent problems�

Consider a leaf node in the quadtree and a corresponding sub�square Q�
The intersection of the optimal global tree with Q is a forest� However�
this forest has at most �r � O��� intersections with the boundary of Q�
and these intersections are to be chosen among �m � O�log n� prespeci�ed
portals� Thus there are O��log n�O���� possible ways in which the optimal
tree can intersect the boundary of Q� For each of these� we construct a
minimum length forest that spans the intersections and the single terminal
in Q �if any�� Each forest can clearly be constructed in O��� time � thus
each leaf in the quadtree can be processed in O��log n�O���� time�

For each internal node there are again O��log n�O���� ways in which the
global optimal tree can intersect the corresponding square� For a given inter�
section speci�cation� the optimal forest is constructed by combining optimal
solutions stored at the children� Again the processing of each internal node
takes O��log n�O���� time� When the dynamic programming �nishes� the
optimal tree can be read from the root node of the quadtree�

Since there are O�n log n� nodes in the quadtree� the total running time
to compute an optimal �m� r��light tree for m � O�log n� and r � O��� is
O�n�logn�O�����

� Conclusion

The practical and theoretical developments with regard to RSTP over the
last �ve years are amazing� On the practical side� we can today solve problem
instances with several thousand terminals to optimality� On the theoretical
side� Arora constructed a polynomial�time approximation scheme for the
problem� showing that it can be approximated arbitrarily well in polyno�
mial time� However� the FST based exact algorithms leave several theoreti�
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cal problems open� e�g�� whether it is possible to prove strong average�case
bounds on the number of surviving FSTs for randomly generated instances�
Conversely� Arora�s breakthrough poses the question of whether a practical
implementation of his sophisticated algorithm can be devised� In addition�
it is still an open question whether the suggested exact and heuristic algo�
rithms can be applied to variants and generalisations of RSTP�

Further Reading

Heuristics and VLSI oriented variants of RSTP are described in the book by Kahng
and Robins ��
�� For more information on the Steiner tree problem under other
metrics and in higher dimensions� consult the book by Hwang� Richards and Win�
ter ����� and the books by Cieslik �
� 
��

Exercises

Exercise � Prove that the number of Steiner points in an SMT spanning n
terminals is at most n � �� Hint� Assume that the tree has k Steiner points� use
the fact that the tree has n�k�� edges and that the degree of every Steiner point
is at least 
�

Exercise � Give a sequence of sliding and �ipping operations that transform the
fulsome SMT in Figure � �middle� to the fulsome and canonical SMT in Figure �
�bottom��

Exercise 
 Prove that the number of FSTs in a tree is � �
P

z�Z�deg�z� � ���
where deg�z� is the degree �number of incident FSTs� of terminal z � Z�

Exercise 
 Prove Theorem ���� the Hanan grid theorem� using Hwang�s charac�
terization of FSTs �Theorem ��
��

Exercise � Given a Hwang�topology FST F spanning at most four terminals�
show that there always exists a rectilinear minimum spanning tree of length at
most 
��jF j that spans the same set of terminals�

Exercise � Prove that the use of MST �Z� to de	ne bottleneck Steiner distances
in Section 
�� is the best possible in the sense that there exists no terminal�path
P �zi� zj� connecting zi� zj � Z for which the longest edge is shorter than bzizj � Hint�
Assume such a path exists and prove that MST �Z� would not be minimal�

Exercise � Consider removing a set e�� e�� � � � � ek of distinct edges from an SMT�
For each of the remaining components containing at least one terminal� choose one
�arbitrary� terminal from this component� Let ZR be the set of chosen terminals�

��



Construct a minimum spanning tree �MST� over ZR using bzizj �de	ned in Sec�
tion 
��� as the distance between a pair of terminals zi� zj � ZR� Let l be the

length of this MST� Show that l �
Pk

l�� jelj�

Exercise � The FST generation algorithm described in Section 
�� outputs the
n�� edges of an arbitrary MST for Z as candidates for ��terminal FSTs in an SMT
for Z� Prove that this is indeed su�cient� i�e�� that there exists an SMT in which
all ��terminal FSTs edges come from one particular MST� Hint� Consider an SMT
containing a minimum number of ��terminal FSTs not belonging to the particular
MST and arrive at a contradiction�

Exercise � Prove Lemma 
��� Hint� Assume that there are two neighbours
u� v � Z within a single region� Prove that juvj � juzj or juvj � jvzj� contradicting
the fact that the tree is an MST� Use a similar argument for proving that the single
neighbour must be a closest neighbour�
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