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Abstract

We give a tutorial on the rectilinear Steiner tree problem in the
plane. First, fundamental structural results are given with full proofs.
Then, recent exact algorithms allowing the solution of problem in-
stances with several thousand terminals are presented, and finally we
review some of the many heuristics proposed for the problem.
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1 Introduction

The rectilinear Steiner tree problem (RSTP) in the plane has received sub-
stantial attention over the last four decades due to its evident applications in
VLSI design. Given a finite set of points (also called terminals) in the plane,
construct a tree of minimal length that interconnects the terminals and uses
only horizontal and vertical line segments. In VLSI design, the points corre-
spond to electrical terminals that should be interconnected; minimizing the
length therefore minimizes the amount of wire needed. The constraints on
the orientation of the line segments come from current fabrication technol-
ogy requirements.

This paper is a tutorial on the rectilinear Steiner tree problem in the
plane. Fundamental results for the problem and important algorithmic de-
velopments during the last five years are presented. For a thorough survey on
RSTP (covering the developments up to 1992), we refer to the excellent book
by Hwang, Richards and Winter [12]. This book also covers polynomial-time
solvable cases and generalizations that are not discussed in this tutorial.

The reader is expected to be a graduate student in mathematics, com-
puter science or engineering with a moderate background in operations re-
search. Also, researchers in related fields or engineers in VLSI design should
find this tutorial useful. The text includes small exercises mainly intended
for self-study. Some of these cover special cases or the basis for induction
proofs given in the text.

Before embarking on the structural and algorithmic results known for
RSTP, it should be noted that the problem is indeed NP-hard. This fact
was established by Garey and Johnson [5]; the proof is rather involved —
and since this text is devoted to geometric properties and algorithms for
RSTP, we omit the NP-hardness proof here.

The tutorial is organized as follows: Firstly, we give fundamental struc-
tural properties of optimal solutions for RSTP (Section 2). We give full
proofs for the theorems stated. Secondly, we show how these structural
properties can be used to design practical exact algorithms for the prob-
lem (Section 3). The final part is devoted to classical heuristics and recent
developments in approximation algorithms for the problem (Section 4). In
particular, we give a detailed description of Arora’s polynomial time approx-
imation scheme for RSTP.



2 Structural Properties

Given a finite set Z of n points in the plane, we would like to construct a
rectilinear Steiner minimum tree (SMT). This is a tree that interconnects Z,
consists of horizontal and vertical line segments, and has minimum total
length. Equivalently, the task is to construct a Steiner minimum tree for Z
under the L; metric: For two points u = (ug, uy) and v = (vg,vy), their L;
distance is |uv| = |uy — vg| 4 |uy — vy|, that is, the sum of distances in each
of the two dimensions.

In the following we will mainly use the former definition, since it gives
us a direct geometric realization of SMTs. We first give some notation and
definitions, and then we present three classical results, one by Hanan [8] and
the other two by Hwang [11]. The notation, definitions and proofs in this
section are based on [12, 16]. The proofs are somewhat simpler than those
originally given by Hanan and Hwang.

2.1 Basic Notation and Definitions

An SMT consists of horizontal and vertical line segments that only intersect
at their endpoints. The intersection points are called nodes. The nodes are
either terminals (from the set Z) or non-terminals. We distinguish between
three types of non-terminals: corner points (having degree two or exactly
two incident perpendicular segments), T-points (having degree three) and
cross-points (having degree four). T-points and cross-points are also called
Steiner points.

A line of segments is a sequence of one or more adjacent, collinear seg-
ments with no terminal nodes sharing two adjacent segments (however, the
endpoints of the line may be terminals). A complete line is a line of seg-
ments of maximal length; it is not properly contained in any other line of
segments.

A corner point ¢ is an endpoint of two complete lines, one in each of the
two perpendicular directions given by the incident segments. Let v and v
be the other endpoints of the incident complete lines. The pair of complete
lines (cu, cv) is called a complete corner located at ¢; cu and cv are the legs
of the complete corner.

We illustrate these definitions in Figure 1; they will form the basic ele-
ments in the proofs given below.



Figure 1: Three SMTs for the same terminal set. Nodes v and z are ter-
minals, ¢ is a corner point, ¢ is a T-point. cz is a complete line and the
pair (cz, cv) is a complete corner. The topmost SMT is neither fulsome nor
canonical (as defined in Section 2.2); the middle SMT is fulsome but not
canonical, while the bottommost SMT is both fulsome and canonical.



2.2 Canonical Full Steiner Trees

One of the major difficulties when constructing algorithms for RSTP is that
there in general exists an infinite number of SMTs for a given terminal set Z.
One SMT may be transformed into another SMT by performing so-called
sliding and flipping operations that do not change the length of the tree
(Figure 2). In order to limit the number of SMTs to be considered we will
give a particular characterization of SMTs that turns out to be very strong.
Thus all SMTs that do not fulfill the properties of this characterization will
be ignored.

Figure 2: Sliding and flipping operations.

A rectilinear Steiner tree in which every terminal is a leaf is denoted
a full Steiner tree (FST). Every SMT is a union of FSTs (see Figure 1).
A fulsome SMT is an SMT in which the number of FSTs is maximized.
In particular, no FST in a fulsome SMT can be split into two FSTs of the
same total length. Alternatively, we may say that we maximize ) _, deg(z)
where deg(z) is the degree of terminal z € Z — this holds since the number
of FSTs is 1 + ) . ,(deg(z) — 1); see Exercise 3. We shall use both views
in the following.

Now consider an FST F' in a fulsome SMT. The FST F is said to be
canonical if no vertical segment s can be moved to the right using sliding
and/or flipping operations (without increasing the length of F' and without
moving any other vertical segments of F'; horizontal segments may be moved
freely). If every FST in a fulsome SMT is canonical, then the SMT is
canonical. It is clear that there exists a fulsome and canonical SMT: For
every FST F, as long as a vertical segment can be moved to the right, then
do so. Since every transformation moves some vertical segment further to
the right, this process must stop; the final FST is therefore canonical.

One particular consequence of this definition is that for any corner point
in a canonical FST, the incident vertical segment is completely to the right
of the the incident horizontal segment (Figure 1).



2.3 Hwang-topology FSTs

Let F be an FST in a fulsome and canonical SMT. In this section we show
that F' has a very particular shape, denoted a Hwang-topology. The precise
statement is given below in Theorem 2.3, but before we prove this theorem
we give a crucial lemma that forms the cornerstone of the theorem.

Lemma 2.1 Let uv be a segment in F' where u and v are non-terminals.
Then u and v cannot be incident to two segments perpendicular to uv and
on the same side of uv.

Proof. Suppose two such segments exist (Figure 3). Assuming that F' is
fulsome, we will prove that F' cannot be canonical.

Let a be the endpoint of the complete line that contains the perpendic-
ular segment incident to u (in the direction of the segment as seen from wu);
let a' be the other endpoint. Define b and b’ analogously as the endpoints
of the complete line that contains the segment incident to v (see Figure 3).
Assume w.l.o.g. that |ua| < |vb|. Clearly a cannot be a terminal, since oth-
erwise we could slide wv until hitting a, contradicting the fact that F' is
fulsome. Furthermore, since F' is an SMT, a must be a corner point (again
by sliding uv a third segment incident at a would overlap with uv). This
means that there are no other nodes than u and a on the line from u to a:
flipping the corner point a¢ would prove that F' could not be optimal if this
was the case. In particular, this means that the segment s, cannot exist.
This again implies the the segment s, must exist, since u cannot be a corner
point.

................................

:Sa Sb:
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Figure 3: Lemma 2.1, proof illustration.

Now, v cannot be a corner point either, so s, or s, must exist. Assume
that s, exists. Then we can use the same arguments as above to prove that



either @’ or b’ must be a corner point. In fact, since a’ cannot be a corner
point (flipping this corner point and the corner point a would contradict the
optimality of F'), b’ must be a corner point and thus s, does not exist. We
arrive at the situation depicted in Figure 4a.

On the other hand, if s, does not exist, then s, must exist and we arrive
at the situation depicted in Figure 4b.

So far we have made no assumptions on the actual orientation of the
segment uv. If uv in fact is horizontal, F' is clearly not canonical, inde-
pendent on the actual location of the first corner point a. In the first case
(Figure 4a), either of the two corners will not be canonical. In the latter
case (Figure 4b) we may slide uv vertically and again obtain two opposite
corner points either of which is not canonical.

If ww is vertical, the only difficult case is illustrated in Figure 4c. Here we
cannot slide uv horizontally to the right, but the corner point is nevertheless
not canonical. O

() (b) (c)

Figure 4: Lemma 2.1, different configurations. (a) segment s, exists; (b) seg-
ment s, does not exist; (c) segment uwv is vertical.

Using this lemma as a workhorse, we can begin to give a more detailed
characterization of F'. First we assume that F' has at least one corner point c.
Consider the complete corner (defined in Section 2.1) located at c. Let cv
be one of the legs of the complete corner and let si,so,...,s; denote the
sequence of (interior) Steiner points on cv in increasing distance from c.
Lemma 2.1 now implies the following sequence of corollaries:

e The Steiner points s1, ss,...,s must be T-nodes; let v; be the third
node adjacent to Steiner point s;, i = 1,...,[ (i.e., not on the leg cv).

e Segment s;v; is on the opposite side of cv as s;;iv;41 for all ¢+ =
1,...,1 — 1, that is, the incident segments alternate along the leg of
the complete corner.



e Segment sjv; is on the opposite side of cv as the second leg of the
complete corner.

e All nodes v;, 1 = 1,...,l must be terminals.

e The endpoint v of the leg cv must be a terminal. If v was a corner
point, ' would either not be optimal or not canonical, depending on
the orientation of the supposed corner point. If v was a T-point, F
would not be canonical since it would violate Lemma 2.1.

An analogous result is obviously obtained for the second leg; thus there
are no other complete corners in F', and in particular no other corner point.
We will now show that at most one leg of the complete corner can have more
than one incident segment.

Lemma 2.2 At most one of the legs of a complete corner in F has more
than one incident segment.

Proof. Assume that both legs have at least two incident segments, as shown
in Figure 5. Consider the rectangle R given by the Steiner points sg and sb,.
At least one of the two terminals vy and v}, is on the boundary of R; assume
w.l.o.g. that v is. Now we flip the corner point ¢ and slide the segment s/ s,
as far as possible towards v/, (see Figure 5). If we hit v, we have shown that
F is not fulsome. Otherwise we subsequently slide s1s9 towards v until we

hit vo, again contradicting the fact that F' is fulsome. O
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52 S1 c
! / /
1 s V]
—————— ————
o 1
(%) -:
v 85

Figure 5: Lemma 2.2, proof illustration.

So far we assumed that F' has at least one corner point. If F' has no
corner point, the situation is even more simple. Then F' consists of a single
complete line connecting two terminals; all other terminals are connected



to this line via alternating incident segments. The arguments are similar to
those given for the corner point case, since the corner-free case is essentially
a special case of the former in which one of the legs of the corner has zero
length. However, one peculiar case arises: If F' spans exactly four terminals,
the complete line could have single Steiner point being a cross-point, that is,
the FST consists of a cross-point to which the four terminals are connected.
Note that this case happens since the complete line is not a leg of a complete
corner; in the corner point case all Steiner points had to be T-points in
order not to violate the conditions of Lemma 2.1. We arrive at the following
important theorem:

Theorem 2.3 [11] An FST in a fulsome and canonical SMT spanning k
terminals consists of a complete corner (also denoted the backbone) given
by a root zg and a tip zx_1. The root is incident to the long leg and the tip
incident to the short leg of the complete corner. There are two main types
(i) and (ii) and two degenerate cases of type (i):

e Type (i) has k — 2 alternating segments incident to the long leg and
no segment incident to the short leg. The first degenerate case (V')
has a zero-length short leg, i.e., the complete corner is degenerated
into a complete line. The second degenerate case (i') is a cross-point
interconnecting exactly four terminals.

e Type (ii) has k — 3 alternating segments incident to the long leg and
one segment incident to the short leg.

Note that the terminology short leg and long leg is not meant to connote
geometric length — rather, the long leg can have more incident segments
than the short leg. The two types are illustrated in Figure 6, and the two
degenerate type (i) cases are depicted in Figure 7.

20 I ] 0 ! ]

R s

k-1
Type (i) Type (ii)

Figure 6: Hwang-topology FSTs.
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Figure 7: Degenerate cases of type (i) Hwang-topology FSTs.

As we shall see in the following two sections, this theorem has some nice
theoretical consequences. However, it is also used in the design of practical
algorithms for RSTP, as will be shown in Section 3 on exact algorithms for
the problem.

Before moving on, we give yet another property of fulsome and canonical
FSTs that will be used in Section 2.5.

Lemma 2.4 Let F be a fulsome and canonical FST. If F is a type (i) FST,
we let dg denote the length of the short leg; otherwise, if F' is a type (ii) FST,
we let ds denote the distance from the corner point to the Steiner point on
the short leg. Let s be any segment incident to the long leg of F' and on the
same side of the long leg as the short leg. Then, |s| > d;.

Proof. Assume that there exists a segment s such that |s| < ds. Then we
may perform a sequence of flipping and sliding operations as shown in Fig-
ure 8 that split F' into two FSTs, contradicting the fact that F' is fulsome. O

[ 1~ =L

Figure 8: Lemma 2.4; sequence of flipping and sliding operations showing
that a type (i) FST is not fulsome.
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2.4 The Hanan Grid

The first paper solely devoted to RSTP was written by Hanan [8] in 1966.
In addition to characterizing optimal solutions for small instances of the
problem, Hanan gave the following fundamental structural result. Draw
horizontal and vertical lines through every terminal in Z. Let H(Z) denote
the grid that is obtained, also called the Hanan grid for Z. Let Iz be the
set of O(n?) intersections in H(Z), where n = |Z| is the number of terminals
(Figure 9); note that Z C I(z.

Theorem 2.5 [8] There exists an SMT for Z such that every Steiner point
belongs to Ig(z).

Figure 9: Hanan grid for the terminal set from Figure 1.

Alternatively, we may say that there exists an SMT for Z that is (geo-
metrically) contained in the Hanan grid. The proof of Theorem 2.5 is a direct
corollary of Theorem 2.3; see Exercise 4. One obvious consequence of this
theorem is that we only need to consider a polynomial number of Steiner
points candidates — namely the O(n?) intersection points in the Hanan
grid. This means that there exist short certificates of optimal solutions,
since we only need to consider Steiner point coordinates that are among the
coordinates of the given terminals. Thus we have proven that RSTP is in
NP; this is in major contrast with the Euclidean Steiner tree problem for
which this question is still unsettled [12].

11



2.5 The Steiner Ratio

Consider interconnecting Z under the L; metric without being allowed to
use Steiner points. This corresponds to computing a rectilinear minimum
spanning tree (MST) for Z: Construct a minimum-length tree interconnect-
ing Z in which only direct connections between terminals are allowed. Note
that in the geometric embedding of such a tree, line segments may overlap.

Minimum spanning trees in edge-weighted graphs can be computed in
polynomial time (essentially in linear time in the number of edges), but
for the rectilinear problem an MST can be computed in O(nlogn) time,
even though the complete graph on the terminals has O(n?) edges (see Sec-
tion 4.1). For a given terminal set Z, we let |SMT(Z)| and |MST(Z)|
denote the length of an SMT and an MST for Z, respectively. Clearly
|ISMT(Z)| < |MST(Z)| since an SMT is a shortest possible interconnection
of Z, but the question is: How much shorter can an SMT be relative to an
MST for the same set of terminals? Define

_|SMT(Z)]

to be the ratio between the length of an SMT and an MST for Z. The
Steiner ratio p; for the L; metric in the plane is defined as

p1 =it pi(Z)

That is, the Steiner ratio is the smallest possible ratio between SMT and
MST length for any set of terminals. In the remaining part of this section
we will prove the following theorem:

Theorem 2.6 [11] The Steiner ratio for the rectilinear plane is

2
,0125

This may at first seem to be a purely theoretical exercise, but as will
be shown in Section 4 on approximation algorithms for RSTP, this theo-
rem gives us a firm bound on the quality of heuristics that are based on
computing MSTs.

Before we start giving the proof, consider the set of terminals Z; =
{(-1,0),(0,-1),(1,0),(0,1)}. SMT(Zs) is a cross of length 4. Since the
length of MST(Zs4) is 6, we have p;(Z4) = 2/3. Thus there does actually
exist a terminal set for which the minimum ratio is achieved.

12



The proof of Theorem 2.6 only needs to be established for every possible
FST, in particular only for Hwang-topology FSTs (that by definition are
fulsome and canonical). To see why, consider an SMT(Z) that is a union
of FSTs Fy,..., F,,. Assume that the Steiner ratio theorem holds for ev-
ery FST Fj; consequently there exists an MST, denoted by M ST;, for the
terminal set spanned by Fj such that |[MST;| < 3/2|F;|. The union of all
MSTs, denoted by T, is clearly a spanning tree for Z. Since

m m
MST(2)| < |T| = 3 IMST| < Y 3/21F)| = 3/21SMT(Z)
=1 =1

the theorem also holds for any — not necessarily full — SMT.

We will therefore focus our attention on an arbitrary Hwang-topology
FST F spanning a set of terminals Zr, and show that [M ST (Zr)| < 3/2|F)|.
Suppose F spans k = |Zp| terminals. Our proof will be by induction on k.
The basis, k£ < 4, is left as Exercise 5.

First we assume that F' is a type (i) FST. The root is denoted by zg
and the alternating incident segments, in the direction from the root to the
corner point, are denoted by z1s1,...,2r_1Sk_1, where s;_; is the corner
point of F. It turns out to be useful also to consider the root as being
connected to the long leg via Steiner point sy = zy. Let d; = |z;s;| be the
length of segment z;s;,7=0,...,k— 1.

Zi4+2

Si+1

Si+2

Zi+1
Figure 10: Theorem 2.6, proof illustration.
Below we will prove that there always exists an i € {0,...,k — 4}
such that d; < djy9 and djyq > djp3 (Figure 10). Let A = {z0,...,2i}

and B = {zj;3,...,2k—1}. Let F4 and Fp be the parts of F' that inter-
connect A and B, respectively, and let Fo be the remaining part of F.

13



By the inductive hypothesis, |[MST(A)| < 3/2[SMT(A)| < 3/2|F4| and
IMST(B)| < 3/2|SMT(B)| < 3/2|Fp].

Let C' = {zi, #zi+1, zit+2, zi+3}. Consider the boundary of the smallest
axis-aligned rectangle that contains C'. This boundary has length 2(]s;s;13|+
di+1 + di12), and contains all terminals in C. Therefore, we can construct
a tree interconnecting C' that consists of terminal-terminal connections by
deleting the longest connection between two terminals on the boundary.
Thus we have

[MST(C)| < 3/2(|sisits| + dit1 + diy2) = 3/2|F¢|
In conclusion,
|MST(Zp) < [MST(A)| + |MST(B)| + [MST(C)| < 3/2|F|

What remains to be shown is that there always exists an i € {0,...,k—4}
such that d; < dj 2 and d; 1 > d;y3. Assume that this condition is not true
for i = 0 (otherwise we are done). Consider d4; the condition is fulfilled for
1 = 1 unless dy > d. Repeating this argument for all ¢, the only way the
condition cannot be fulfilled is if the length of the incident segments on each
side of the long leg are strictly increasing along the long leg. But this is in
contradiction with Lemma 2.4 that says that the length of the short leg is
shorter than all incident segments on the same side. This proves that there
must exist a sequence of four terminals fulfilling the condition for a type (i)
FST.

For a type (ii) FST all the arguments above can be repeated; the single
terminal attached to the short leg will never be part of the set C'. The only
problem is that we have no bound on the length of the short leg. That
is, we may arrive in the situation shown in Figure 11a, in which the above
condition is not fulfilled for any 7. However, in this case we may consider the
corner-flipped FST instead (Figure 11b). In this FST the first four terminals
on the long leg, corresponding to ¢ = 0, will always fulfill the condition. This
finishes our proof of the Steiner ratio theorem for the rectilinear plane.

3 Exact Algorithms

The NP-hardness of the rectilinear Steiner tree problem leaves little hope
that any polynomial time exact algorithm exists for the problem. However,
it turns out that fast and practical exact algorithms can be constructed for
the problem. These algorithms are fast in the sense that realistic prob-
lem instances — in particular instances from VLSI design — can be solved

14



(a) (b)

Figure 11: Type (ii) remaining case.

quickly in practice. The history of exact algorithms for RSTP is not long. In
fact, it is fair to say that no substantial progress was made before 1990. In
1993 Salowe and Warme [17] submitted a paper describing an algorithm that
could solve 30-terminal problems in less than one hour; in 1995 Hetzel [9]
could solve 50-terminal problems within the same amount of time. The real
breakthrough occurred a few years later when Warme [19] computed SMTs
for problem instances with more than 1000 terminals.

In this section we first give some necessary optimality conditions for
SMTs (Section 3.1). Then we describe the currently fastest exact algorithm
for RSTP (Section 3.2) [19, 20, 24]. This algorithm uses Hwang’s powerful
characterization of fulsome and canonical FSTs (Theorem 2.3) as a starting
point. Finally, in Section 3.3 we discuss solution methods that use the
property that an SMT exists in Hanan grid for the set of terminals.

3.1 Necessary Optimality Conditions

An edge e = (u,v) in an SMT is a direct connection between a pair of nodes
u and v (which are either terminals or Steiner points). In a fulsome and
canonical SMT an edge is either a single segment or a pair of perpendicular
segments adjacent at a corner point. The length of an edge e = (u,v),
denoted by |e], is the L; distance between u and v.

In this section we give some bounds on the length of edges in SMTs;
also, we present some properties that particular configurations of edges must
fulfill. Furthermore, note that any subtree of an SMT clearly must be an
SMT for the nodes spanned; in particular this holds for FSTs. Tests based
on this condition are usually denoted upper bound tests, and can be applied
by computing heuristic trees that span the set of nodes in question.

In order to simplify the exposition, we consider SMT(Z) and MST(Z)
as being unique. It is easy to see that all optimality conditions given will be

15



valid for any SMT(Z) and MST(Z).

Bottleneck Steiner Distances

Assume z;,z; € Z is a pair of distinct terminals and let Pr(z;,z;) denote
the unique path between z; and z; in a tree 7. The path consists of one or
more edges connecting the nodes.

Consider the paths Psyr(z)(2i, 25) and Pyrsr(z)(2i, zj). Note that the
latter can easily be computed. Pick an edge e € Psarr(z)(2i, 2j) and remove
it from SMT(Z). This breaks the tree into two connected components that
contain each of the terminals z; and z;, respectively. Now follow the path
Prrstz)(2i, 27) which only consists of edges connecting terminals. One of
the edges on this path, say f = (z, 2;), will reconnect the two components
of the broken SMT. Clearly, we must have that |e| < |f]| since otherwise we
would have shown that SMT(Z) was not a shortest tree.

This observation leads to the following definition. The bottleneck Steiner
distance, by, .;, between a pair of terminals z; and z; is equal to the length
of the longest edge on Py;s7(z)(2i,2j). Note that there exists no terminal-
path between z; and z; for which the longest edge is smaller than b,; 2 (see
Exercise 6).

Lemma 3.1 For any edge e € Psyrr(z)(2i, 25), we have |e| < by, .

Bottleneck Steiner distances between every pair of terminals can be de-
termined in O(n?) time by computing MST(Z) and doing a depth-first
traversal in this tree from every terminal. The optimality condition pro-
vided by Lemma 3.1 turns out to be very powerful in practice, and can be
supplemented by a generalization given in Exercise 7.

Empty Regions

In the previous section we gave an upper bound on the length of edges
connecting a pair of terminals. In this section we give some conditions that
depend on how close other terminals are to an edge or a pair of edges. Let
(u,v) be an edge in SMT(Z). Consider the region

L{u,v) ={p € R : |pu| < |uv| A |pv| < |uv]}

also denoted the “lune” given by (u,v) (Figure 12a). The lune is the inter-
section between the interior of two L; circles with radius |uv| centered at u
and v, respectively.

16



Lemma 3.2 If (u,v) is an edge in SMT(Z), then L(u,v) contains no other
point (terminal, Steiner point, or interior segment point) from SMT(Z).

Proof. Assume on the contrary that there exists a point p € £(u,v). Remove
edge (u,v) from SMT(Z), splitting the tree into two connected components.
The point p belongs to one of the two components, say the one that contains
u. By adding the edge (p,v) we have constructed a shorter tree intercon-
necting the terminals. If p belongs to the other component we would also

be able to construct a shorter tree, a contradiction. O
u l
.. ,
/7
R(u,v) g
u U, v ’
L(u,v) ’ ’
7/
/7
7/
7
7
7
7
7/
7/
7/
7/
v ,
7/
/7
w v

() (b)

Figure 12: Empty regions. (a) empty lune; (b) empty corner rectangle.
Gray-shaded areas cannot contain a point of SMT(Z).

Now, assume that the nodes u and v are not connected directly via an
edge, but through a third node w such that the segments uw and wv are
perpendicular (Figure 12b). Let R(u,v) be the interior of the axis-aligned
rectangle with sides uw and wwvj; note that R(u,v) C L(u,v).

Lemma 3.3 If uw and wv are perpendicular segments in SMT(Z), then
R(u,v) contains no other point of SMT(Z).

Proof. Assume on the contrary that SMT(Z) contains a point p € R(u,v).

Let [ be the line through w which bisects the perpendicular angle, and as-
sume that p is above [ (in Figure 12b). Remove uw from SMT(Z). If p
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belongs to the same component as u then add a vertical segment from p
down to segment wv, otherwise reconnect by connecting u and p. In both
cases the tree is shortened, a contradiction. If p is below [ a similar ar-
guments shows that the tree can be shortened is this case, too. Finally,
assume that p is exactly on the line [. Since SMT(Z) consists of vertical
and horizontal segments, there must exist another point p’ € R(u,v) that is
either above or below [, again allowing us to shorten the tree. O

The optimality condition given in Lemma 3.3, denoted the empty corner
rectangle property, has been used with great success in the design of both
exact and heuristic methods for RSTP [2, 15, 24].

3.2 FST Based Exact Algorithms

In this section we give a description of the currently most efficient method
for solving RSTP to optimality. This algorithm uses an overall approach
that was suggested by Winter [22] for the Euclidean Steiner tree problem in
the plane. We will use the fact that there exists an SMT which is a union
of FSTs having Hwang-topology (Theorem 2.3).

The idea is simply to generate all Hwang-topology FSTs that fulfill cer-
tain necessary optimality conditions, in particular those given in the previous
section. This may a first seem to be an hopelessly inefficient approach since
we (in principle) have to consider all O(2") subsets of terminals; however,
most subsets are only considered implicitly and very few (i.e., approximately
linear in the number of terminals) FSTs survive all the conditions in prac-
tice. After this first F'ST generation phase we need to select a subset of
the generated FSTs that interconnect all terminals and have minimum total
length. This second phase is called F'ST concatenation, and it turns out to
be the computationally hardest task of the two phases.

FST Generation

Assume that some terminal zy € Z is the root of a Hwang-topology FST
(see Theorem 2.3). The long leg has one of four possible directions: North,
East, South or West. Let us consider a specific direction, say East. This
situation is shown in Figure 13a. Let us (informally) describe a procedure
for generating all FSTs having root 2y and direction East.

Sort all terminals to the right of the vertical line through zy by their
z-coordinate. Let Z, be the list of sorted terminals that are above the
horizontal line through 2y and let Z, be the corresponding list of terminals
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Figure 13: FST generation algorithm example.
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below this line. Consider the first terminal in Z, and connect it to the
root as shown in Figure 13b, that is, create a segment along the long leg
and another one connecting the terminal to the long leg. Now we may test
whether this partial FST can be a subtree in some possibly larger FST. This
is done by applying several necessary optimality conditions, including those
given in Section 3.1.

In the example in Figure 13 we only show the effect of applying the
empty lune condition (Lemma 3.2). Since both lunes in Figure 13b are
empty we save this partial FST and continue growing this FST. This is
done by choosing the next terminal from Z, (Figure 13c); recall that the
terminals must alternate along the long leg. Again all necessary optimality
conditions are fulfilled and we recurse (Figure 13d). In this case a non-
empty lune appears; this means that this partial FST cannot be a subtree
in some larger FST. Therefore, we skip this terminal and choose the next
candidate from Z, (Figure 13e). In Figure 13f we again get a non-empty
lune and since there are no more candidates in Zp, we backtrack, i.e., choose
another candidate for the previous terminal (Figure 13g). Here we again
need to backtrack — and the FST generation algorithm continues until all
FSTs having zj as root and long leg direction East are generated (note that
we also need to consider the case where the first terminal is chosen from
Zp). Finally, this algorithm is repeated for all combinations of terminals
and directions.

As described, this procedure only generates type (i) FSTs, but type (ii)
FSTs can be generated simultaneously: Here we need to try all possibilities
of attaching a single terminal to the last vertical segment.

An FST-independent preprocessing phase which runs in O(n?) time can
be used to speed up this FST growing algorithm significantly in practice [24].
In fact, for most problem instances the preprocessing dominates the total
running time even if the second part is the one that requires exponential
time in the worst-case. A well-tuned implementation of this algorithm [21]
generates the FST's for a randomly generated 1000 terminal instance in less
than one second; the number of FSTs surviving all tests is approximately 4n.
This set of FSTs includes n — 1 edges from an MST for Z, which may be
considered as the 2-terminal FSTs (Exercise 8 discusses why an arbitrary
MST for Z can be used).

FST Concatenation — Spanning Trees in Hypergraphs

Let H = (V,E) be a hypergraph with the set of terminals as its vertices
and the set of generated FSTs as its hyperedges. Each hyperedge e € F is
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a set of vertices of cardinality |e| > 2, which corresponds to the terminals
spanned by the FST. An hyperedge that spans k vertices is denoted a k-
edge. Hyperedge e € E has a weight c. that is equal to the geometric length
of the corresponding FST.

A chain in H from vg € V to vy € V is an alternating sequence of
vertices and hyperedges, vg, 1, v1, €2, v9,. . ., €k, Uk, such that all vertices and
hyperedges are distinct and v;_1,v; € ¢; for t = 1,2,..., k. A spanning tree
in H is is a subset of hyperedges E' C F such that there is a unique chain
between every pair of vertices v;,v; € V in the induced subgraph (Figure 14).
The uniqueness implies that there can be no pair of distinct hyperedges
ei,ej € E' that share two or more vertices, i.e., we have |e; Ne;| <1 for all
e;,ej € E'. The problem of finding a minimum spanning tree (MST) in H
— where each hyperedge e € F has weight c, — is equivalent to solving the
FST concatenation problem.

The MST in hypergraph problem (MSTHG) is NP-hard when the hy-
pegraph contains edges of cardinality four or more [19]. Actually, deciding
the existence of a spanning tree in such a hypergraph is NP-complete. A
number of methods for solving this problem have been suggested (see [20] for
a survey). Warme [19] gave an integer programming formulation that was
solved using branch-and-cut. This is currently the fastest solution method
in practice and we will therefore give a description of the main components
of the algorithm here.

We solve MSTHG by setting up an integer programming (IP) formula-
tion. Denote by x an |E|-dimensional binary vector; each element x, has
value 1 if the edge e € E is chosen to be part of the MST and 0 otherwise.
The IP formulation is then

min cz (1)

s.t. > (el —Dze = |V[-1 (2)
eck

> (lenS|=1ze < |S|—-1, VSCV, |S]>2 (3)

ecE:lenS|>1

This formulation requires some explanation. We only give informal argu-
ments showing that this formulation solves MSTHG; a formal proof can be
found in [19].

The objective (1) is to minimize the total length of the chosen hyperedges
subject to two types of constraints: Firstly, equation (2) enforces the correct
number and cardinality of hyperedges to construct a spanning tree. The
intuition behind this equation is that the number of 2-edges in a spanning
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(b)

Figure 14: Spanning tree in hypergraph example. (a) hypergraph; (b) span-
ning tree.
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tree of an ordinary graph with |V| vertices is exactly |V| — 1, otherwise the
tree is either not connected or contains a cycle. Since every hyperedge e € E
can be seen as consisting of |e|—1 2-edges (that is, a local tree interconnecting
the vertices spanned by the hyperedge), the equation follows.

Secondly, constraints (3) eliminate cycles by extending the standard no-
tion of subtour elimination constraints. For a given subset S C V, the total
number of 2-edges contained in the subset (again viewing hyperedges as a
set of 2-edges), is at most |S| — 1, otherwise a cycle is created (Figure 15).
Every edge e € E which intersects S contributes with |enS|—1 2-edges. The
intersection property is equivalent to |e 0S| > 1, but in fact only edges for
which |eN S| > 2 contribute to the sum. Using the first condition, however,
has some advantages as will be seen in the following.

Figure 15: Violation of a cycle elimination constraint. The dotted closed
curve defines a set S for which the number of internal edges is greater than
|S] — 1.

This integer program is solved via branch-and-cut. We give the main
details here, but in order to solve this problem quickly in practice a number
of additional techniques must be applied [19]. The implemented branch-and-
cut algorithm [21] solves a typical 100 terminal problem in a few seconds.

Lower bounds for the IP formulation are provided by linear program-
ming (LP) relaxation, i.e., by relaxing integrality of every component x.
of r to z. > 0. The major obstacle in solving this LP is the exponential
number of constrants given by (3). Therefore, the LP is solved using an iter-
ative method. First a subset of the constraints (3), more precisely those for
which |S| = 2, are included. Then the LP is solved, returning a (fractional)
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solution . Now we would like to see if x fulfills all the cycle elimination
constraints; if not, we should add at least one of these constraints to the
LP and iterate. The process of identifying violated constraints is denoted
separation. It turns out that separation can be done in polynomial time by
solving a series of max-flow problems in an appropriately defined auxiliary
graph.

Before we give the separation algorithm, a few definitions are needed.
The congestion level of a vertex v € V for an LP-solution x is:

by, = Z Te

ecE:wwee

This is the total (fractional) amount of edges that have v as one of their
vertices. Clearly, in an MST we must have b, > 1, since otherwise the
vertex is not included in the solution. For a subset S C V' we have:

b= Y |en S|z

veS ecE:lenS|>1

Furthermore, define the function

18 =18l = Y (ens|—1az
ecE:[enS|>1
= 18] - (va_ Z Te)
veS ecE:|enS|>1

The separation problem is equivalent to finding an S C V such that S # 0
and f(S) < 1 or proving that no such S exists. This can be achieved by
minimizing this function over all S # 0.

Define a flow network G5 = (N, A) for an LP-solution z as follows. The
vertex set is N = {s} UV U EU {t}, where V and E are the vertices and
edges in H, respectively. The vertex s is the source and the vertex ¢ the
sink. The arc set is defined as A = Ay U Ay U A;, where

A = {(s,v):v eV}
A = {(v,e):e€ E,ve€e}
A = {(e,t):e€ E}
Arc (s,v) € Ay has capacity b, — 1, arc (e,t) € A; capacity z, while all

arcs in A, have infinite capacity (Figure 16). Let W = {s}USUF —
where S C V and F C ¥ — be a minimum weight s — ¢ cut in G,. That
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is, t ¢ W and the total weight of the edges crossing from W to N \ W is
minimized. Note that no edges in Ay, can be part of a minimum weight cut,
since there exists a cut of finite weight: simply let S = F = (). Now we have
the following lemma;

Figure 16: Flow network for solving the separation problem.

Lemma 3.4 Let W = {s} US U F be a minimum weight s — t cut in G.
Then S is a minimum of f(S).

Proof. If v € S then all e € E for which v € e must be in F, since otherwise
the cut has infinite weight. Now assume that e € F but e S = (). Then
moving e to the other side of the cut can only decrease the weight of the
cut. Therefore, we may assume that F' is completely determined by S. The
value of the cut is therefore:

Z Te ~+ Z(bv—l)

e:lenS|>1 veEV\S
= > we + D b= (VI-|s]
e:leNS|>1 veV\S

By adding the constant V], subtracting the constant ) - b, and rear-
ranging, we obtain:

|S| - (va_ Z by — Z Te)

veV veV\S e:lenS|>1
=1sh = Qb= ) )
veS e:lenS|>1
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Therefore, there is a constant difference between the value of the cut and
f(S); this proves the lemma. O

Minimizing f(S) under the additional condition S # 0 is achieved as
follows. First we pick a terminal v; € V. Then we set up a reduced flow
network in which v; and the hyperedges that contain v; have been deleted.
The reduced flow problem is solved, thus obtaining a set of vertices S’ (pos-
sibly empty). The set S' U {v;1} is clearly a minimum over f(S) under the
condition that v; € S. Then we remove a second terminal v € V' (and the
hyperedges that contain it from the flow network) and iterate.

3.3 Hanan Grid Based Exact Algorithms

The first exact algorithms for RSTP were based on the classical result that
there exists an SMT in the Hanan grid H(Z) for the set of terminals (Sec-
tion 2.4). Consider the ordinary graph G = (V| E) representing the Hanan
grid. The intersections in H(Z) are the vertices in G while the segments in-
terconnecting neighbouring intersections form the edges of G. Let ¢, denote
the geometric length of the horizontal or vertical segment that edge e € £
represents. (G is a planar graph in which every vertex has maximum degree
four.

Hanan’s theorem shows that RSTP reduces to the Steiner tree problem
in graphs (STPG): Given an edge-weighted graph G = (V, E) and a set of
terminals Z C V, find a tree in G that interconnects Z and has minimum
total length. Numerous exact and heuristic algorithms have be suggested
for this well-studied problem [12], all of which (in principle) can be used to
solve the corresponding rectilinear Steiner tree problem.

In this section we give a short introduction to the best exact algorithm
for STPG [14]. This algorithm uses the so-called directed IP formulation for
STPG; other formulations and their relations to each other are described
in [6]. But before presenting the directed IP formulation, we discuss some
algorithms that can be used for reducing the Hanan grid before applying
algorithms for STPG.

Hanan Grid Graph Reductions

A straightforward and fast method for reducing the Hanan grid is to generate
Hwang-topology FSTs (Section 3.2). That is, take the set of generated FSTs
and place them on the Hanan grid. Note that every Hwang-topology FST
is contained in the Hanan grid. Edges and Steiner points in the Hanan grid
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which are not used by any FST can clearly be deleted. This is in practice
the most efficient way to reduce the Hanan grid, e.g., for n = 1000 there
are in the worst-case n? = 1000000 vertices in the complete Hanan grid but
only around 0.4% of these are retained after FST generation [24].

The disadvantage of using FST generation is that there is no guarantee
of polynomial running time. On the other hand, general graph reduction
techniques for the STPG are known to perform very poorly on the Hanan
grid graph [14]. Therefore, Winter [23] proposed several reduction tech-
niques that take advantage of the special structure of the Hanan grid graph,
in particular that vertices have low degree and that many edges have the
same length. Uchoa, Poggi de Aragao and Ribeiro [18] extended the ideas
of Winter to reducing Hanan grid graphs with holes; these graphs occur
frequently in VLSI routing [9].

Directed IP Formulation for STPG

We solve STPG for a graph G = (V, E) with non-negative edge weights c,,
e € E, and terminal set Z C V by setting up the following IP formulation.
First we create a directed graph G = (V, E)) having the same set of vertices
as G. For every edge (u,v) € E there are two directed edges [u,v] € E and
[v,u] € E, both having the same cost as (u,v) € E: ¢4 = Clyu] = Cluw)-
Let an arbitrary terminal r € Z be designated as the root. Solving STPG is
now equivalent to finding a rooted tree of minimum total length in G (with
r as root) that contains all terminals in Z. Such a tree is called a Steiner
arborescence.

Denote by x an |E|-dimensional binary vector; each element x, has value
1 if the edge € € E is chosen to be part of the Steiner arborescence and 0
otherwise. For any non-empty set S C V' let

§5(S)={[u,v] € E : ueS AN veV\S}

be the set of edges leaving from S and ending in V'\ S. The IP formulation
is then

min cx (4)
st Y me>=1, VSCV,reS, (VAS)NZ#0D (5)
ecos

The constraints (5) ensure that there is a path from the root to every ter-
minal: Any cut separating the root and a terminal must have at least one
edge crossing the cut.
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Koch and Martin [14] gave a branch-and-cut algorithm for solving STPG
using this [P formulation. Since the number of constraints is exponential a
separation method is used to iteratively add constraints to the linear pro-
gram (see also Section 3.2). The separation problem is solved by finding
a maximum flow from the root r to every terminal ¢t € Z \ {r} with ca-
pacities identical to the fractional solution values of the edges. If the value
of the flow is less than 1, the corresponding minimum cut gives us a vio-
lated constraint that can be added to the formulation. Although the results
presented in [14] are good for several classes of graphs, the algorithm has
serious problems solving Hanan grid graph problems; RSTP instances with
40 or more terminals are very hard to solve using the complete Hanan grid
graph.

4 Approximation Algorithms

The need for solving RSTP in the VLSI design domain — and the lack of
fast exact algorithms until a few years ago — has spawned a constant flow of
heuristic algorithms for the problem. Almost all of these use the rectilinear
minimum spanning tree (MST) as a starting point. Since the Steiner ratio
theorem (Section 2.5) tells us that

|MST(2)| _ 3

|SMT(Z)] = 2

for any set of terminals Z, we know that an MST is at most 50% longer
than an SMT for the same set of terminals. We say that an MST algorithm
has an approzimation ratio of 3/2. Polynomial time algorithms that have a
(known) approximation ratio are usually denoted approzimation algorithms.

A comprehensive survey of heuristics for RSTP was given in [12]. In this
tutorial we only describe a few of these (and more recent) approaches with-
out going into the same level of detail as in the preceding sections. Firstly,
simple and fast algorithms that take an MST and compute short embeddings
of the MST in the plane are presented in Section 4.1. These algorithms find
good ways to draw the MST in the plane such that the length of all segments
(only counting overlapping segments once) is as short as possible. Secondly,
we give a short introduction to the 1-Steiner heuristic which is currently
among the best performing heuristics for RSTP (Section 4.2).

None of these heuristics provide an approximation ratio that is strictly
less than 3/2. For a long time it remained an open problem to design a
heuristic with a strictly better approximation ratio. Zelikovsky [25] first
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broke the 3/2 barrier by giving an algorithm with a 11/8 approximation
ratio. However, Arora [1] finished the search for algorithms with better con-
stant approximation ratios when he gave a polynomial time approximation
scheme (PTAS) for RSTP: For any fixed € > 0 there exists a polynomial
time algorithm that has an approximation ratio of 1 + €. In Section 4.3 we
present the main algorithmic ideas leading to this amazing result.

4.1 MST Embeddings

A rectilinear MST can be computed in O(nlogn) time by using, e.g., rec-
tilinear Voronoi diagrams [12], but this is rather involved both in theory
and practice. Here we sketch a simpler algorithm for computing an MST in
O(nlogn) time.

Consider a terminal z € Z. Draw the two +45° lines passing through z.
This divides the plane into 8 regions (not including the point z): The four
half-lines extending from z and the interior of the four regions formed by the
lines. Now we have the following lemma whose proof is left as Exercise 9:

Lemma 4.1 [10] In MST(Z) any terminal z € Z has at most one neigh-
bour in each of the 8 regions; furthermore, this terminal will be a closest
neighbour to z in its region.

Using this lemma, we compute an MST as follows. For each terminal
z € Z, find a nearest neighbour in each of the 8 regions. This can be done
for all terminals in O(nlogn) time [7]. Construct a graph (having Z as
it vertices) in which every terminal z € Z is connected to the (at most)
8 nearest regional neighbours. The resulting graph has O(n) vertices and
edges; therefore, an MST can be computed in O(nlogn) time using, e.g.,
Kruskal’s algorithm.

Consider the MST shown in Figure 17. Each MST edge is a shortest
path under the L;-metric between its endpoints. Assume that we choose a
particular drawing (or embedding) of the edges. Line segments from different
edges may overlap, but we only need to keep one copy of overlapping line
segments in order to get a tree that interconnects Z. An optimal embedding
is a drawing for which the resulting heuristic tree, obtained by merging
overlapping line segments, is as short as possible.

In order to speed up the construction of good MST embeddings, it turns
out to be beneficial to start with a separable MST. This is an MST for
which the bounding boxes of the edges only overlap if the corresponding
edges share a terminal (this is the case for the MST shown in Figure 17).
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Figure 17: Rectilinear MST for the terminal set from Figure 1. In the top-
most figure each MST edge is drawn using dashed lines. Any staircase con-
nection between the terminals can be chosen; overlapping bounding boxes
indicate that the corresponding embeddings may overlap. In the embedding
given by the middle figure no line segments overlap; the bottommost figure
is an optimal embedding (in this case also an SMT for the terminal set).
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Ho, Vijayan and Wong [10] proved that a separable MST always exists and
that it can be constructed in O(nlogn) time.

The simplest possible drawing of an MST is an L-shaped embedding;:
Every edge has at most one corner point (it bends at most once). Clearly,
there are at most two ways to draw an edge in an L-shaped embedding.
Note that the embeddings shown in Figure 17 are L-shaped. Starting with
a separable MST, an optimal L-shaped embedding can be constructed in
O(n) time [10]. The algorithm uses dynamic programming by rooting the
MST and constructing an optimal embedding bottom up in the tree. The
running time follows from the fact that the maximum degree in an MST is
bounded by a constant (Lemma 4.1).

Let us now consider the case where at most two bends or so-called Z-
shaped drawings are allowed. Interestingly, it turns out that an optimal
Z-shaped embedding also is optimal among all possible embeddings. Fur-
thermore, an optimal L-shaped embedding can be constructed in polynomial
time [10]. When the running time is taken into account, optimal MST em-
beddings — and in particular optimal L-shaped embeddings — produce
fairly good heuristic solutions in practice.

4.2 1-Steiner Heuristics

The problem of computing an SMT for a terminal set Z can be formulated
as follows. Find a set of Steiner points S such that M ST(Z U S) has mini-
mum length. There are two facts which make this a good starting point for
designing a heuristic for RSTP. Firstly, the number of Steiner points is at
most n — 2 (see Exercise 1), and secondly, we clearly only need to consider
the Steiner points in the Hanan grid, H(Z), as candidates to be included in
the set S.

A greedy approach is therefore to start with S = () and iteratively add
Steiner points to S such that the length of the MST is minimized in every
iteration. This is the basic iterated 1-Steiner heuristic for RSTP:

1. S=0

2. Find a point s € H(Z) such that |[MST(Z U S U {s})| is minimized
3. if [MST(ZUSU{s})| > |MST(Z U S)| then stop

4. S = SU{s}; remove points in S having degree < 2 in MST(Z U S)

5. Goto 2
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In step 2 we find a Steiner point that gives a maximum decrease in MST
length. There are O(n?) Steiner points in the Hanan grid and each MST
computation takes O(nlogn) time, so a trivial implementation of step 2
takes O(n3logn) time. By using a more sophisticated algorithm, step 2 can
be performed in O(n?) time [13].

The algorithm stops when no improving Steiner point can be found
(step 3). In step 4 we remove Steiner points that have degree two or less
in the MST since the inclusion of these Steiner points does not decrease the
length of the MST. The number of iterations can be greater than n — 2 (see
Figure 18), but is finite when the Steiner points are chosen from the Hanan
grid. In practical implementations at most n iterations are made, giving a
total running time of O(n?®) using the improved search for a best Steiner
point in step 2.

BE e
o (b)\ (c) (d)

()

Figure 18: 1-Steiner heuristic example. (a) MST of terminals. (b)-(d)
Sequential insertion of Steiner points. The degree-2 Steiner point in the
final tree is removed by the algorithm.

A number of variants of the iterated 1-Steiner heuristic have been pro-
posed. One variant is to add several Steiner points in each iteration, hereby
avoiding expensive MST computations [13]. Until recently this variant was
recognized as the champion heuristic for RSTP with respect to solution
quality, producing solutions within 0.5% from optimum on average. A new
heuristic proposed by Mandoui, Vazirani and Ganley [15] challenges the
leading position of iterated 1-Steiner. On the top-level this new heuristic
is similar to iterated 1-Steiner; it also adds one or more Steiner points to
the terminal set until the MST does not improve. However, Steiner points
are identified using a much more sophisticated algorithm. This algorithm is
based on the directed IP formulation for STPG (Section 3.3). By applying
a primal-dual approach using this formulation, a heuristic solution is con-
structed. The Steiner points used by this heuristic solution are added to the
terminal set and the process iterates.

Although these variants of the iterated 1-Steiner approach produce ex-
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cellent solutions, their running time requirement is not significantly lower
than what is needed to construct SMTs using the exact algorithms described
in Section 3.2 — except in very large, rare or contrived instances.

4.3 Arora’s PTAS

In this section we describe the “ultimate” heuristic for RSTP, at least from
a theoretical point of view. Given any fixed € > 0, the heuristic produces (in
polynomial time) a rectilinear tree whose length is within a factor of 1 + €
from optimum. This polynomial time approximation scheme (PTAS) was
given by Arora [1], and it was a major breakthrough with its main focus
on approximating the Euclidean travelling salesman problem (TSP). The
algorithm and proof of approximation for RSTP were essentially corollaries
to the results for TSP.

This presentation focuses on the algorithmic ideas leading to the PTAS.
Therefore, we state the approximation theorem without giving its proof.
The algorithm consists of three steps: 1) Perturbation 2) Shifted quadtree
construction and 3) Dynamic Programming. In the following we describe
each of these steps.

Let OPT = |SMT(Z)| be the length of the SMT for the n terminals
in Z. We assume w.l.o.g. that ¢ = 27¢ and n = 2V where C and N are
positive integers. Note that € is considered to be a constant in all subsequent
asymptotic expressions.

Perturbation

First we perturb and scale the terminal coordinates as follows. The bound-
ing square of Z is the smallest axis-aligned square that contains Z. Scale
the coordinates of the terminals such that the side length of the bounding
square becomes 2n/e = 2V+C+l = O(n). Note that OPT > 2n/e in the
scaled instance. Place a unit grid over the bounding square and move the
terminals to the nearest grid point. Since every terminal is moved at most
distance 1, the relative length difference between an SMT for the original
(scaled) problem instance and an SMT in the perturbed instance is at most
n/OPT < n/(2n/e) = €/2. Therefore, in order to find a 1+ € approximation
in the original instance, all we need is to find a 14 ¢/2 approximation in the
perturbed instance.
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Shifted quadtree construction

Consider the perturbed instance: All terminals in Z are grid points on a
L x L unit grid U, where L = 2VT¢*1 = O(n). Since the Hanan grid for
Z is a subset of U, there exists an SMT in U. In particular note that all
Steiner points will be grid points.

In order to decide to which sub-square a terminal belongs, move every
terminal symbolically up and to the right, such that it belongs to exactly
one unit square of U; special care is obviously needed for terminals on the
right or upper boundary of U.

A dissection is a recursive partitioning of U into smaller squares. The dis-
section is represented by a 4-ary tree (every internal node has four children)
with the root representing U. Divide U into four equal squares, represented
by the children of the root. For each of the four children again divide the
sub-square into four equal squares etc. The process stops when a node rep-
resents a unit square in U (Figure 19a). The depth of this tree is clearly
log(2n/€e) = O(logn), and it has as many leaves as there are unit squares in
U, i.e., O(n?) leaves.

[ [

(a) (b)

Figure 19: Subdivision of bounding square. (a) Dissection; (b) Quadtree.

Let us now bring the terminals into play. A quadtree is similar to a
dissection, except that we only divide a sub-square if it contains more than
one terminal (Figure 19b). How many nodes are there in a quadtree? The
tree has at most 4n leaves and since the depth of the tree is O(logn), there
are at most 4n x O(logn) = O(nlogn) nodes in the quadtree.
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Let a and b be two integers in {0,...,L —1}. A quaditree with shift (a,b)
is a quadtree in which the first vertical division of U occurs at z-coordinate
a and the horizontal division at y-coordinate b, where the usual quadtree
has a = b = L/2. The bounding square is still divided into four sub-squares,
but these may be “wrapped-around” as shown in Figure 20. Subsequent
divisions are made relative to the first division and may therefore also wrap-
around.

Figure 20: Shifted quadtree. Two examples with different ¢ and b shifts are
shown. Note that each region consists of up to four rectangles, as indicated
with the fill styles used.

Given a shift (a,b), an (m, r)-light rectilinear Steiner tree for Z is a tree
that intersects each side of every sub-square in the shifted quadtree at most
r times; furthermore, these intersections occur at m prespecified portals on
each sub-square side. Now we have the following theorem:

Theorem 4.2 [1] Let shifts 0 < a,b < L be picked randomly. Then with
probability at least 1/2 there exists a rectilinear Steiner tree with total length
at most (1 + €)OPT that is (m,r)-light with respect to the shifted quadiree
where m = O(log L/e) = O(logn) and r = O(1/e) = O(1).

Therefore, if we find an optimal (m,r)-light rectilinear Steiner tree for
a given shift (a,b) (with m and r defined as in Theorem 4.2), we have con-
structed a (14 ¢€) approximation with probability at least 1/2. By trying all
L x L = O(n?) shifts we are guaranteed to find the required approximation.
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In the next section we show that an optimal tree for a given shift indeed can
be found in polynomial time.

Dynamic programming

We use a dynamic programming algorithm to compute an optimal (m,r)-
light rectilinear Steiner tree for a given (a,b)-shift. The algorithm will be
described for a = b = L/2, i.e., ignoring squares that wrap-around (the
general case is similar but a bit involved). First, note that a quadtree can
be computed in O(nlog?n) time by using a sorting-based algorithm.

The optimal (m, r)-light tree is constructed bottom-up in the quadtree;
optimal solutions to subproblems are stored and used to construct optimal
solutions to parent problems.

Consider a leaf node in the quadtree and a corresponding sub-square Q.
The intersection of the optimal global tree with @ is a forest. However,
this forest has at most 4r = O(1) intersections with the boundary of @,
and these intersections are to be chosen among 4m = O(logn) prespecified
portals. Thus there are O((logn)?()) possible ways in which the optimal
tree can intersect the boundary of ). For each of these, we construct a
minimum length forest that spans the intersections and the single terminal
in @ (if any). Each forest can clearly be constructed in O(1) time — thus
each leaf in the quadtree can be processed in O((logn)°M) time.

For each internal node there are again O((logn)?(")) ways in which the
global optimal tree can intersect the corresponding square. For a given inter-
section specification, the optimal forest is constructed by combining optimal
solutions stored at the children. Again the processing of each internal node
takes O((logn)?®) time. When the dynamic programming finishes, the
optimal tree can be read from the root node of the quadtree.

Since there are O(nlogn) nodes in the quadtree, the total running time
to compute an optimal (m,r)-light tree for m = O(logn) and r = O(1) is
O(n(logn)®M),

5 Conclusion

The practical and theoretical developments with regard to RSTP over the
last five years are amazing. On the practical side, we can today solve problem
instances with several thousand terminals to optimality. On the theoretical
side, Arora constructed a polynomial-time approximation scheme for the
problem, showing that it can be approximated arbitrarily well in polyno-
mial time. However, the FST based exact algorithms leave several theoreti-
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cal problems open, e.g., whether it is possible to prove strong average-case
bounds on the number of surviving FSTs for randomly generated instances.
Conversely, Arora’s breakthrough poses the question of whether a practical
implementation of his sophisticated algorithm can be devised. In addition,
it is still an open question whether the suggested exact and heuristic algo-
rithms can be applied to variants and generalisations of RSTP.

Further Reading

Heuristics and VLSI oriented variants of RSTP are described in the book by Kahng
and Robins [13]. For more information on the Steiner tree problem under other
metrics and in higher dimensions, consult the book by Hwang, Richards and Win-
ter [12], and the books by Cieslik [3, 4].

Exercises

Exercise 1  Prove that the number of Steiner points in an SMT spanning n
terminals is at most n — 2. Hint: Assume that the tree has k Steiner points; use
the fact that the tree has n+ k —1 edges and that the degree of every Steiner point
is at least 3.

Exercise 2 Give a sequence of sliding and flipping operations that transform the
fulsome SMT in Figure 1 (middle) to the fulsome and canonical SMT in Figure 1
(bottom).

Exercise 3 Prove that the number of FSTs in a tree is 14+ Y. _,(deg(z) — 1),
where deg(z) is the degree (number of incident FSTs) of terminal z € Z.

Exercise 4 Prove Theorem 2.5, the Hanan grid theorem, using Hwang’s charac-
terization of FSTs (Theorem 2.3).

Exercise 5 Given a Hwang-topology FST F' spanning at most four terminals,
show that there always exists a rectilinear minimum spanning tree of length at
most 3/2|F| that spans the same set of terminals.

Exercise 6 Prove that the use of M ST(Z) to define bottleneck Steiner distances
in Section 3.1 is the best possible in the sense that there exists no terminal-path
P(zi,z;) connecting z;, z; € Z for which the longest edge is shorter than b.,.,. Hint:
Assume such a path exists and prove that M ST (Z) would not be minimal.

Exercise 7 Consider removing a set ey, es, . .., e of distinct edges from an SMT.
For each of the remaining components containing at least one terminal, choose one
(arbitrary) terminal from this component. Let Zgr be the set of chosen terminals.
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Construct a minimum spanning tree (MST) over Zg using b.,.; (defined in Sec-
tion 3.1) as the distance between a pair of terminals z;,z; € Zg. Let [ be the

length of this MST. Show that [ > Zlk:1 led]-

Exercise 8 The FST generation algorithm described in Section 3.2 outputs the
n—1 edges of an arbitrary MST for Z as candidates for 2-terminal FSTs in an SMT
for Z. Prove that this is indeed sufficient, i.e., that there exists an SMT in which
all 2-terminal FSTs edges come from one particular MST. Hint: Consider an SMT
containing a minimum number of 2-terminal FSTs not belonging to the particular
MST and arrive at a contradiction.

Exercise 9 Prove Lemma 4.1. Hint: Assume that there are two neighbours
u,v € Z within a single region. Prove that |uv| < |uz| or |uv| < |vz|, contradicting
the fact that the tree is an MST. Use a similar argument for proving that the single
neighbour must be a closest neighbour.
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