
Via-Aware Global Routing for Good VLSI Manufacturability

and High Yield *

Yang Yang, Tong Jing, Xianlong Hong, Yu Hu Qi Zhu Xiaodong Hu, Guiying Yan

Computer Science & Technology Dept. EECS Dept. Inst Applied Math

Tsinghua Univ. UC at Berkeley CAS

Beijing, P. R. China U. S. A. Beijing, P. R. China

Abstract

CAD tools have become more and more important

for integrated circuit (IC) design since a complicated
system can be designed into a single chip, called

system-on-a-chip (SOC), in which physical design tool

is an essential and critical part. We try to consider the

via minimization problem as early as possible in
physical design. We propose a routing method focusing

on minimizing vias while considering routability and

wire-length constraint. That is, in the global routing

phase, we minimize the number of bends, which is
closely related to the number of vias. Previous work

only dealt with very small nets, but our algorithm is

general for the nets with any size. Experimental results

show that our algorithm can greatly reduce the count
of bends for various sizes of nets while meeting the

constraints of congestion and wire-length.

1. Introduction

Nowadays, the seriousness about effects of very

deep-submicron (VDSM) technology has led to a

greater and greater reliance on CAD tools in VDSM

physical design [1]-[3]. Global routing is an essential

part of physical design. It usually includes multiple

optimization goals. Congestion and wire-length have

long been focuses of research [4]-[7]. Besides,

interconnection delay [8]-[9] is an important issue for

high-performance routing.

While very large scale integrated circuits (VLSI)

feature size continues to shrink in the VDSM regime,

the number of vias becomes a critical issue, which has

a great effect on the circuit performance, layout size

* This work was supported in part by the NSFC under Grant

No.60373012, the SRFDP of China under Grant No.20020003008,
and the Hi-Tech Research and Development (863) Program of China

under Grant No.2004AA1Z1050.

and yield rate. In order to reduce the yield loss by via

failure, [10] proposed a redundant-via enhance maze

routing algorithm. On the other hand, minimizing the

count of vias is also an effective method to reduce the

yield loss, and moreover, it can meanwhile improve the

circuit performance and layout size. Traditionally, via

minimization is done in the detailed routing phase or

layer assignment [4], [11]-[12]. However, when the

size of design features keeps decreasing and the

complexity of circuits keeps increasing, it will be more

flexible and effective to minimize the number of vias

as early as in the global routing phase.

In the global routing phase, bends denote both the

corner points and the Steiner points in a Steiner tree. A

bend usually imply a switching of layers, therefore

cause the use of more vias. Also more bends require

more routing resources due to the larger via pitch and

reduce reliability [13]-[14]. Some papers focused on

bend minimization problem in global routing phase

[13]-[16]. [15] introduced a four-bend routing for 2-

terminal nets. [13] decomposed multi-terminal nets

into several 2-terminal nets, and presented an algorithm

to solve 2-terminal nets. [14] mainly used "Z-edge" to

bound the number of bends. [16] used "L-shaped" and

"Z-shaped" pattern routing to reduce the number of

bends for two-terminal nets.

Different from these previous works dealing with

some specific models or small nets, the main

contribution of this paper is to propose a general

method to effectively reduce the number of bends for

nets with any size, while still keeping the qualities of

congestion and wire-length.

The rest of this paper is organized as follows. In

Section 2, we formulate the problem and introduce

some basic definitions and theorems. In Section 3, a

new algorithm is proposed. The experimental results

are shown in Section 4. And in Section 5, we conclude

our work and introduce the future work.

Proceedings of the16th International Conference on Application-Specific Systems, Architecture and Processors (ASAP’05)
1063-6862/05 $20.00 © 2005 IEEE

2. Preliminaries

2.1. Problem formulation

Global routing problem is normally formulated as

follows: the entire routing region is tiled into an array

of rectangular "global routing cells (GRCs)". Based on

these GRCs, a "global routing graph (GRG)" G(VG ,EG)

is constructed, where a vertex v∈VG corresponds to a

GRC, and an edge e∈EG corresponds to the border

between two GRCs. Since there is only finite routing

space on the borders, each edge has a capacity. A set of

nets N={N1, N2, ...} is given to represent the

interconnection between circuit elements. Each net

Ni∈N contains a set of terminals Vi={v0
i, v1

i, ...} which

are represented by the corresponding vertices in VG. In

the global routing phase, every net is routed by a

Steiner tree.

In the routing phase, the number of wires routed

across an edge is designated as the demand of the edge.

If for an edge e, demand(e) > capacity(e), then the

edge e is called over-congested, or we say there is an

overflow [5] on edge e. In our model, we do not allow

over-congested edges.

We assign additional cost to the route once it

reaches 80% capacity [17], by defining the weight of

an edge e∈E as follows.

)())(1()(elengthecongestkeweight ××+=

)
)(

)(8.0)(
,0max()(

ecapacity

ecapacityedemand
econgest

−
=

The weight of a route r is

∈re

eWeight)(.

This paper focuses on the global routing problem

with the objective of reducing the number of bends,

eliminating over-congested edges, and satisfying the

constraint of wire-length, which can be formulated as

follows.

min

∈∀ NN

i

i

b

s.t.)()(jj ecapacityedemand ≤ , Gj Ee ∈∀

∈∀
+≤

NN

i

i

Ww 0)1(α

In the above formulas, bi and wi respectively denote
the number of bends and the weight of the routing tree

of net Ni; α is an adjustable parameter; W0 denotes a
standard weight value. We use the total weight value

got by SSTT [7], an efficient global router focusing on

congestion and wire-length, as W0 in our algorithm.

2.2. Definitions and theorems

2.2.1. Definition 1, STST. The definition of STST in

our paper is extended from [18]. A special kind of
Steiner tree consisting of a single horizontal/vertical

line segment and vertical/horizontal line segments is

called STST-H (single horizontal trunk Steiner

trees)/STST-V (single vertical trunk Steiner trees). A
STST is either a STST-H or a STST-V, as shown in

Figure 1. The single horizontal/vertical line segment in

a STST-H/STST-V is called "trunk", and the

vertical/horizontal line segments are called "branches".

(a) A STST-H (b) A STST-V

Figure 1. Examples of the STST

2.2.2. Definition2, MSTST. A MSTST (minimal

single trunk Steiner tree) is the STST with minimal
total wire-length among all STST’s. A MSTST-H /

MSTST-V (minimal single horizontal / vertical trunk

Steiner tree) is the STST-H / STST-V with minimal

total wire-length among all STST-H / STST-Vs.
A MSTST must be either a MSTST-H or a MSTST-

V. It should be noticed that in most cases a MSTST is

not a SMT (Steiner minimal tree). In worst case, a

MSTST may have much longer wire-length than a
SMT.

2.2.3. Definition3, path and soft path. In this paper, a

path in a Steiner tree denotes a sequence of adjacent
segments with no terminals or Steiner points sharing

two adjacent segments (however, the endpoints of the

line may be terminals or Steiner points).

[5] defined the "soft edge" of connecting 2-terminal
nets. We extend this definition to the "soft path" in a

Steiner tree. A soft path is a path connecting two

terminals or Steiner points vi(xi,yi),vj(xj,yj) ∈V, so that:

1. xi≠xj and yi≠yj; 2. its length lij is fixed; 3. the precise
edge routing between vi and vj is not determined.

2.2.4. Theorem 1, location of the trunk in a MSTST.

In a STST, we denote the number of segments above

(or to the right of) the trunk as na, below (or to the left

of) the trunk as nb, and the number of terminals on the

trunk but not on any of the segments as no. Then the

trunk in a MSTST must have the property: |na-nb|≤no

(Examples are shown in Figure 2). The proof is omitted

due to the paper length limitation.

This property helps us to find out the trunk location

of a MSTST quickly in our algorithm. Also it shows
that there may exists more than one MSTST for a set of

terminals, as shown in Figure 2.

Proceedings of the16th International Conference on Application-Specific Systems, Architecture and Processors (ASAP’05)
1063-6862/05 $20.00 © 2005 IEEE

na=3, nb=5, no=2

(a)
na=5, nb=4, no=1

(b)

Figure 2. Examples of two different MSTST’s

routing the same set of terminals

2.2.5. Theorem 2, the number of bends in a MSTST.

A unique character of a MSTST is that in a STST

connecting n points, the number of bends must be no

more than n. The proof is omitted due to the paper
length limitation.

In our algorithm, we use MSTST’s as subtrees to

construct Steiner trees for nets, because MSTST’s have

relatively small number of bends compared with other
forms of subtrees.

2.2.6. Theorem 4, subtree concatenation = finding

spanning trees on hypergraphs. "Concatenation" and
"hypergraphs" are defined in [19]. It is proved in [19]

that the problem of finding a MST in a hypergraph Hi

is equivalent to solving the subtree concatenation

problem for the net Ni. Finding the MST in a
hypergraph problem (MSTHG) is NP-hard when the

hypergraph contains edges of cardinality four or more.

The examples are shown in Figure 3 and 4.

Figure 3. An example of tree concatenation

(a) (b)

(c)

Figure 4. Examples of (a) a hypergraph; (b) a

spanning tree in the hyper graph; (c) the

corresponding Steiner tree in the subgraph

2.2.7. Definition 6: overlapping of two edges. We call

two edges in a hypergraph overlapping if and only if
the two corresponding subtrees in the subgraph have

more than one point in common.

3. Single-trunk-subtrees Concatenating

Global Routing (SCGR) Algorithm

By utilizing the definitions and theorems introduced

above, an algorithm called "single-trunk-Steiner-tree

concatenating global routing (SCGR)" is proposed. The

objective of this algorithm consists of three parts: to
minimize the number of bends, to eliminate the over-

congested edges, and to satisfy the wire-length

constraint.

3.1. Outline of the SCGR algorithm

The overall pseudo code of the SCGR algorithm is

illustrated in Figure 5.

Step1: For every multi-terminal net

Construct a set of subtrees for the net;

Step2: Pre-estimate congestion map;

Step3: For every 2-terminal net

Route the net;

Update congestion map;

Step4: For every multi-terminal net

Route the net by concatenating its subtrees;

Update congestion map;

Step5: Solve the remaining congestion problem;

Figure 5. Pseudo code of the SCGR algorithm

The SCGR algorithm contains five steps. In Step 1,

we selectively construct subtrees which are flexible
MSTST’s for each multi-terminal net, and a soft path

for each 2-terminal net. In Step 2, we pre-estimate a

congestion map [17] by probability calculation method.

In Step 3, we route the 2-terminal nets by fixing the
soft path to be a solid path with minimum bends and

satisfying the weighted constraint. In Step 4, we first

fix subtrees according to their weights and then

concatenate subtrees to form a tree with minimum
bends under a weighted constraint. The subtree

concatenation problem is equivalent to finding a

minimal spanning tree in a hypergraph (MSTHG). We

formulate the MSTHG problem as an integer
programming (IP) problem. In Step 5, if there is any

tree of which more than 30% is in the over-congested

area, we re-fix and re-concatenate it under the updated

congestion map. After that, we use the rip-up and
reroute technique to solve the over-congested area.

Since we keep updating the congestion map during

Step 3 and 4, and carefully consider the congestion

problem during the first four steps, usually only a little
over-congested area remains for Step 5.

3.2. Details of the steps in SCGR

Proceedings of the16th International Conference on Application-Specific Systems, Architecture and Processors (ASAP’05)
1063-6862/05 $20.00 © 2005 IEEE

3.2.1. Step 1, subtree construction. In this step, for

every net Ni with a set of terminals Vi={v0
i, v1

i, …}, we

construct a set of mi(mi≥1) subtrees, each of which

connects a subset vertices Vk
i⊆Vi, k={1, …, mi}. These

subtrees are constructed under following three
constraints.

Constraint 1: they must be MSTST’s.

Constraint 2: all the terminals in Vi must be in at

least one of the subtrees, i.e. i
m

k

i
k VV

i

=
=1

.

Constraint 3: they should not have bad wire-lengths.

Here, we do not strictly constrain wire-lengths of
subtrees, because a subtree with not very good wire-

length may probably be part of a good routing tree.

More strict and exact constraint about wire-length of a

whole tree will be in Step 4. This constraint helps to
reduce the number of the subtrees in the early step, so

as to improve the efficiency of the algorithm.

3.2.2. Step 2, pre-estimate the congestion map. We
calculate the pre-estimated congestion map by the

subtrees and the soft paths constructed in Step 1. We

calculate the probabilistic demand (PD) of every soft

path in subtrees and 2-terminal nets using the similar
method as [14]. Besides, we calculate probabilistic

usage (PU) of every subtree for every multi-terminal

net. Then, we get the pre-estimated congestion map by

adding up the demand of edges of all the nets. The
concrete method is described below.

For a soft path p, we calculate probabilistic demand

similarly as in [14] as below. In order to limit the

number of bends, we only allow the path to be a "Z"-
path. For each soft path p, we define a probabilistic

demand PDp(e) to indicate the possibility that the soft

path p will take a route across the edge e∈EG. Suppose
the two ends of p are vi(xi,yi) and vj(xj,yj), we can

conclude that there are totally T=|xi-xj|+|yi-yj| "Z"-

paths between the two ends. We assume the soft path p
has the uniform probability to take any one of "Z"-

paths. So an edge has a probabilistic demand

PDp(e)=C(e)/T from this path p, where C(e) is the

number of the "Z"-paths that passing through the edge.
Then we can calculate the total probabilistic demand of

an edge e from a subtree st by
∈∀

=
stp

pst ePDePD)()(.

For every multi-terminal net Ni∈N, which has a set
STSeti of subtrees constructed in Step1, we calculate

approximate probabilistic usage of each subtree st

∈STSeti by the equations below, where TC(st) is the
terminal count of st, and t stands for a terminal.

)
),(

1
(

)(

1
)(

:min ∈∀
∈′∀

′
×=

sttalter
STSetts i

ttsCstTC
stPU

=′
0

1
),(ttsC ,

tst

tst

′∉
′∈

Finally, the congestion map can be described by the

demand of every edge e∈EG as)(edemand

∈∀∈∀ ∈∀
+×=

t
j

j

m
i i NN

p
NN STSetst

st ePDstPUePD)()()(,

where Nm= {Ni | Ni
is multi-terminal net, Ni∈N}, Nt = {

Nj | Nj
 is 2-terminal net, Nl∈N }; STSeti

is the set of

subtrees constructed for the multi-terminal net Ni
 , and

pj
 is the path constructed for the 2-terminal net Nj

constructed in Step 1.

3.2.3. Step 4, route multi-terminal nets by subtree

concatenation. Geo-Steiner algorithm [19] constructs

the Steiner minimal tree by FST generation and FST

concatenation. We borrow its idea in some parts of our

algorithm. But we use the idea in a different way,

because our objective is quite distinct from Geo-

Steiner: rather than constructing a Steiner tree with

minimal wire-length for one net, we focus on routing a

large number of nets in a routing region, considering

the performance of all the nets as a whole. We

construct MSTST’s in Step 1, which are a particular

kind of FST’s, for the sake of reducing bends;

moreover, we make the MSTST’s with soft paths,

slidable trunks and Steiner points so as to have more

flexibility. Then in Step 4, we first fix the MSTST’s

according to congestion and wire-length constraints,

and then concatenate them under the objective function

about the number of bends and the constraints of

congestion and wire-length.

Details of the subtree concatenation method in Step

4 are described below.

In order to do subtree concatenation for every multi-

terminal net Ni∈N, we solve the corresponding

MSTHG in the hypergraph Hi
 according to Theorem 4.

The MSTHG is solved by setting up an integer

programming (IP) formulation in our algorithm.

A |EH
i|-dimensional binary vector is denoted by x:

each element xe has value 1 if the hyperedge e∈EH
i

(corresponding to a subtree in the induced subgraph) is

chosen to be part of the MST in the hypergraph Hi
 and

0 otherwise. The IP formulation is firstly formulated as

follows.

min Txb ⋅ (1)

s.t.

∈
−=−

i
HEe

e Vxe 1||)1|(| (2)

≥∩∈
−≤−∩

1|:|

1||)1|(|

SeEe
e

i
H

SxSe ,

2||, ≥⊂∀ SVS i (3)

 0)1(wxw T α+≤⋅ (4)

Proceedings of the16th International Conference on Application-Specific Systems, Architecture and Processors (ASAP’05)
1063-6862/05 $20.00 © 2005 IEEE

The b and w are both |EH
i|-dimensional binary

vectors: each element be equals to the number of bends

in the subtree corresponding to the hyperedge e∈EH
i
;

each element we equals to the weight of the subtree

corresponding to the hyperedge e∈EH
i
; (1+α)w0 is the

weighted constraint of the net, where w0 is the weight

of the routing tree got by SSTT [7], and α is an

adjustable parameter.

The major difficulty in solving the IP is the

exponential number of constrains in (3). We take full

advantage of the special properties of the subtrees, and

finally cut down the number of constraints to only

O(|EH
i|2). The IP formulation used in our algorithm is:

min Txb ⋅ (5)

s.t.

∈
−=−

i
HEe

e Vxe 1||)1|(| (6)

pqpqp xyyyy)maxmaxmin(min +

qqpqp xyyyy)maxmaxmin(min ++

)maxmaxmin(min qpqp yyyy +≤

)maxminmax(min qqpp yyyy ++ ,

i
HEqp ≤<≤1 (7)

 1≤+ qp xx , i
HEqp ≤<≤1 & p , q overlap (8)

0)1(Wxw T α+≤⋅ (9)

The maxyk and minyk (k=p, q) in (7) respectively

stand for the maximum y value and the minimum y

value of the corresponding subtree in the subgraph.
The objective (5) is to minimize the total bends of

the chosen hyperedges subjecting to four constraints.

Equation (6) enforces the correct number and

cardinality of hyperedges to construct a spanning tree.
Constraints (7) and (8) have the same effect in our

algorithm as (3), which is to eliminate cycles in every

subset of Vi. Constraints (6), (7) and (8) operate

together to ensure that the chosen hyperedges can
construct a corresponding Steiner tree in the subgraph,

while (9) is the weighted constraint.

There are totally |EH
i|(|EH

i|-1)/2 constrains in (7)

and m constraints in (8), where m is the number of
overlapping pairs of hyperedges and is O(|EH

i|2).

The IP solving progress in our algorithm cost short

running time, because we not only restrict the number

of subtrees (equal to the dimension of x in IP formula)
in Step 1, but also cut down the number of constraints

in IP formula as explained above.

4. Experimental results

The SCGR algorithm has been implemented in C

language. We compare it with SSTT [7]. For fair

comparison, both programs are compiled and run on a

SUN V880 workstation. MCNC and IBM benchmarks
are used as the test cases in Table 1. Besides, we

randomly generate two more test cases, by setting the

percentage of multi-terminal nets and large nets.

Table 1. Description of test circuits
Test

circuit

Grid size Net

count

Multi-

terminal net

count

(percentage)

Large net

count

(percent-

age)

test1 30 ×30 5000 2500 (50%) 1500 (30%)

test2 30 ×30 5000 3500 (70%) 2500 (50%)

c2 9×11 745 198 (26.6%) 4 (0.5%)

c5 16×18 1764 250 (14.2%) 95 (4.8%)

c7 16×18 2356 626 (26.6%) 23 (0.97%)

ibm01 134×135 11753 5481
(46.6%)

1751
(14.9%)

ibm02 79×78 18688 7865

(66.9%)

2776

(14.9%)

ibm07 234×235 44681 19272

(43.1%)

6694

(15.0%)

ibm08 245×245 48230 19002
(39.4%)

6251
(13.0%)

Table 2. Comparing SCGR with SSTT
α = 10% α = 20%Test

circuit Wire-

length

Bend

count

Wire-

length

Bend

count

test1 102.5% 79.3% 105.1% 72.8%

test2 104.8% 63.4% 109.5% 56.0%

c2 98.1% 96.0% 98.7% 95.3%

c5 98.3% 94.2% 99.3% 92.8%

c7 99.9% 93.8% 102.9% 89.1%

ibm01 105.7% 91.7% 112.5% 88.5%

ibm02 103.4% 86.5% 107.1% 83.9%

ibm07 104.4% 94.8% 114.8% 89.3%

ibm08 104.6% 93.2% 110.5% 90.5%

Table 2 shows the comparison of routing result
between SCGR and SSTT. It should be noted that both

SCGR and SSTT completely eliminate over-congested

edges. We constrain the wire-length of SCGR to be not

more than 110% and 120% of SSTT, by setting the

adjustable parameter α (explained in Section 2.1).
Table 2 shows that SCGR greatly reduces the number

of bends while meets this wire-length constraint: when

α=0.1, the number of bends decreases for 11.9% on the
average while the wire-length increasing 2.4%; when

α=0.2, the number of bends decreases for 15.7% on the
average while the wire-length increasing 6.8%. We

also notice that, generally, more decreasing can be got

 The number of nets with more than 5 terminals in every test case

α is a parameter used to constrain the ratio of wire-length of

SCGR to SSTT (explained in Section 2.1)
 The ratio of total wire-length by SCGR to total wire-length by

SSTT
 The ratio of total number of bends by SCGR to total number of

bends by SSTT

Proceedings of the16th International Conference on Application-Specific Systems, Architecture and Processors (ASAP’05)
1063-6862/05 $20.00 © 2005 IEEE

for test cases with larger portion of multi-terminal nets

and large nets.
Table 3 shows the running time of SCGR. It is

shown that our algorithm is efficient enough

considering the effective results and the scale of test

cases. From experiments, we notice that the IP step
takes the major portion of running time. So far, our

program applies an existing IP solver called GLPK

[20]. A shorter running time could be achieved when

more efficient solver is used.

Table 3. CPU time
Test

circuit

SSTT (s) SCGR (s) Percentage of IP

process in SCGR

test1 21.84 75.210 89.1%

test2 26.20 98.580 92.3%

c2 0.52 1. 56 74.5%

c5 1.20 3. 37 78.9%

c7 1.77 3. 59 71.7%

ibm01 35.54 110.13 84.5%

ibm02 22.17 114.64 83.2%

ibm07 215.72 948.32 84.1%

ibm08 463.61 1207.86 82.9%

5. Conclusions and further work

We propose a general bend minimization global

routing algorithm in this paper. This algorithm focuses
on the competing objectives of minimizing number of

bends, eliminating congestion and satisfying wire-

length constraint simultaneously. We apply flexible

single-trunk Steiner trees, soft paths, pre-estimated and
updated congestion map in our algorithm to approach a

good global routing result. The experimental results

show that this algorithm can greatly reduce the number

of bends, especially for the nets with relatively more
terminals.

We will continue studying on the performance-

driven global routing in the future. We plan to integrate

the consideration of interconnect delay in our SCGR
algorithm.

6. References

[1] J.K. Wee, P.J. Kim, et al, "An Effective Routing

Methodology in the Era of 0.2µm and Beyond Technologies

for Reducing the DRAM Design Cost", in Proc. AP-ASIC,

1999, pp. 392-395.

[2] T. Watanabe, Y. Ohtomo, et al, "An Effective Routing

Methodology for Gb/s LSI Using Deep Submicron

CMOS/SIMOX Technology", in Proc. CICC, 1997, pp. 569-

572.

[3] M. Lavin and L. Liebmann, "CAD Computation for

Manufacturability: Can We Save VLSI Technology from

Itself?", in Proc. ICCAD, 2002, pp. 424 -431.

[4] C. Chiang, M. Sarrafzadeh, et al, "Global Routing Based

on Steiner Min-Max Trees", IEEE Trans. on CAD, 1990, pp.

1318-1325.

[5] J. Hu and S.S. Sapatnekar, "A Timing-Constrained

Algorithm for Simultaneous Global Routing of Multiple

Nets", in Proc. ICCAD, 2000, pp. 99-103.

[6] C. Albrecht, "Provably Good Global Routing by a New

Approximation Algorithm for Multicommodity Flow", in

Proc. ISPD, 2000, pp 19-25.

[7] T. Jing, X.L. Hong, et al, "SSTT: Efficient Local Search

for GSI Global Routing", J. of Compute Science and

Technology (JCST), 2003, pp.632-639.

[8] J. Huang , X.L. Hong, et al, "An Efficient Timing-

Driven Global Routing Algorithm", in Proc. DAC, 1993, pp.

596-600.

[9] J. Hu and S.S. Sapatnekar, "A Timing-Constrained

Algorithm for Simultaneous Global Routing of Multiple

Nets", in Proc. ICCAD, 2000, pp. 99-103.

[10] G. Xu, L.D. Huang, D.Z. Pan, et al, "Redundant-Via

Enhanced Maze Routing for Yield Improvement", in Proc.

ASP-DAC, 2005, pp. 1148-1151.

[11] C.C. Chang and J. Cong, "An Efficient Approach to

Multilayer Layer Assignment with and Application to Via

Minimization", IEEE Trans. on CAD, 1999, pp. 608-620.

[12] M.C. Yildiz and P.H. Madden, "Preferred Direction

Steiner Trees", IEEE Trans. on CAD, 2002, pp. 1368-1372.

[13] J. D. Cho and M. Sarrafzadeh, "Four-Bend Top-Down

Global Routing", IEEE Trans. on CAD, 1998, pp. 793-802.

[14] J. Hu and S.S. Sapatnekar, "Performance Driven Global

Routing through Gradual Refinement", in Proc. ICCD, 2001,

pp. 481 - 483.

[15] J.D. Cho, "Wiring Space and Length Estimation in Two-

Dimensional Arrays", IEEE Trans. on CAD, 2000, pp. 612-

615.

[16] R. Kastner, E. Bozorgzadeh, et al, "Pattern Routing: Use

and Theory for Increasing Predictability and Avoiding

Coupling", IEEE Trans. on CAD, 2002, pp. 777-790.

[17] R.T. Hadsell and P.H. Madden, "Improved Global

Routing through Congestion Estimation", in Proc. DAC,

2003, pp. 28-31.

[18] N.A. Sherwani, Algorithms for VLSI physical design

automation, 3rd edition, Kluwer Academic Pub. Norwell,

MA, USA, 1999, pp. 121-122.

[19] M. Zachariasen, The Rectilinear Steiner Tree Problem:

A Tutorial, Steiner Trees in Industries, Kluwer Academic

Publishers, 2001, pp. 467-507.

[20] http://www.gnu.org/software/glpk/glpk.html

Proceedings of the16th International Conference on Application-Specific Systems, Architecture and Processors (ASAP’05)
1063-6862/05 $20.00 © 2005 IEEE

