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Abstract 

CAD tools have become more and more important 

for integrated circuit (IC) design since a complicated 
system can be designed into a single chip, called 

system-on-a-chip (SOC), in which physical design tool 

is an essential and critical part. We try to consider the 

via minimization problem as early as possible in 
physical design. We propose a routing method focusing 

on minimizing vias while considering routability and 

wire-length constraint. That is, in the global routing 

phase, we minimize the number of bends, which is 
closely related to the number of vias. Previous work 

only dealt with very small nets, but our algorithm is 

general for the nets with any size. Experimental results 

show that our algorithm can greatly reduce the count 
of bends for various sizes of nets while meeting the 

constraints of congestion and wire-length. 

1. Introduction 

Nowadays, the seriousness about effects of very 

deep-submicron (VDSM) technology has led to a 

greater and greater reliance on CAD tools in VDSM 

physical design [1]-[3]. Global routing is an essential 

part of physical design. It usually includes multiple 

optimization goals. Congestion and wire-length have 

long been focuses of research [4]-[7]. Besides, 

interconnection delay [8]-[9] is an important issue for 

high-performance routing.  

While very large scale integrated circuits (VLSI) 

feature size continues to shrink in the VDSM regime, 

the number of vias becomes a critical issue, which has 

a great effect on the circuit performance, layout size 
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and yield rate. In order to reduce the yield loss by via 

failure, [10] proposed a redundant-via enhance maze 

routing algorithm. On the other hand, minimizing the 

count of vias is also an effective method to reduce the 

yield loss, and moreover, it can meanwhile improve the 

circuit performance and layout size. Traditionally, via 

minimization is done in the detailed routing phase or 

layer assignment [4], [11]-[12]. However, when the 

size of design features keeps decreasing and the 

complexity of circuits keeps increasing, it will be more 

flexible and effective to minimize the number of vias 

as early as in the global routing phase. 

In the global routing phase, bends denote both the  

corner points and the Steiner points in a Steiner tree. A 

bend usually imply a switching of layers, therefore 

cause the use of more vias. Also more bends require 

more routing resources due to the larger via pitch and 

reduce reliability [13]-[14]. Some papers focused on 

bend minimization problem in global routing phase 

[13]-[16].  [15] introduced a four-bend routing for 2-

terminal nets.  [13] decomposed multi-terminal nets 

into several 2-terminal nets, and presented an algorithm 

to solve 2-terminal nets. [14] mainly used "Z-edge" to 

bound the number of bends. [16] used "L-shaped" and 

"Z-shaped" pattern routing to reduce the number of 

bends for two-terminal nets.  

Different from these previous works dealing with 

some specific models or small nets, the main 

contribution of this paper is to propose a general 

method to effectively reduce the number of bends for 

nets with any size, while still keeping the qualities of 

congestion and wire-length. 

The rest of this paper is organized as follows. In 

Section 2, we formulate the problem and introduce 

some basic definitions and theorems. In Section 3, a 

new algorithm is proposed. The experimental results 

are shown in Section 4. And in Section 5, we conclude 

our work and introduce the future work. 
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2. Preliminaries 

2.1. Problem formulation 

Global routing problem is normally formulated as 

follows: the entire routing region is tiled into an array 

of rectangular "global routing cells (GRCs)". Based on 

these GRCs, a "global routing graph (GRG)" G(VG ,EG)

is constructed, where a vertex v∈VG corresponds to a 

GRC, and an edge e∈EG corresponds to the border 

between two GRCs. Since there is only finite routing 

space on the borders, each edge has a capacity. A set of 

nets N={N1, N2, ...} is given to represent the 

interconnection between circuit elements. Each net 

Ni∈N contains a set of terminals Vi={v0
i, v1

i, ...} which 

are represented by the corresponding vertices in VG. In 

the global routing phase, every net is routed by a 

Steiner tree. 

In the routing phase, the number of wires routed 

across an edge is designated as the demand of the edge. 

If for an edge e, demand(e) > capacity(e), then the 

edge e is called over-congested, or we say there is an 

overflow [5] on edge e. In our model, we do not allow 

over-congested edges.  

We assign additional cost to the route once it 

reaches 80% capacity [17], by defining the weight of 

an edge e∈E as follows.    
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This paper focuses on the global routing problem 

with the objective of reducing the number of bends, 

eliminating over-congested edges, and satisfying the 

constraint of wire-length, which can be formulated as 

follows. 
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In the above formulas, bi and wi respectively denote 
the number of bends and the weight of the routing tree 

of net Ni; α is an adjustable parameter; W0 denotes a 
standard weight value. We use the total weight value 

got by SSTT [7], an efficient global router focusing on 

congestion and wire-length, as W0 in our algorithm. 

2.2. Definitions and theorems 

2.2.1. Definition 1, STST. The definition of STST in 

our paper is extended from [18]. A special kind of 
Steiner tree consisting of a single horizontal/vertical 

line segment and vertical/horizontal line segments is 

called STST-H (single horizontal trunk Steiner 

trees)/STST-V (single vertical trunk Steiner trees). A 
STST is either a STST-H or a STST-V, as shown in 

Figure 1. The single horizontal/vertical line segment in 

a STST-H/STST-V is called "trunk", and the 

vertical/horizontal line segments are called "branches". 

(a) A STST-H (b) A STST-V

Figure 1. Examples of the STST 

2.2.2. Definition2, MSTST. A MSTST (minimal 

single trunk Steiner tree) is the STST with minimal 
total wire-length among all STST’s. A MSTST-H / 

MSTST-V (minimal single horizontal / vertical trunk 

Steiner tree) is the STST-H / STST-V with minimal 

total wire-length among all STST-H / STST-Vs.  
A MSTST must be either a MSTST-H or a MSTST-

V. It should be noticed that in most cases a MSTST is 

not a SMT (Steiner minimal tree). In worst case, a 

MSTST may have much longer wire-length than a 
SMT. 

2.2.3. Definition3, path and soft path. In this paper, a 

path in a Steiner tree denotes a sequence of adjacent 
segments with no terminals or Steiner points sharing 

two adjacent segments (however, the endpoints of the 

line may be terminals or Steiner points). 

[5] defined the "soft edge" of connecting 2-terminal 
nets. We extend this definition to the "soft path" in a 

Steiner tree. A soft path is a path connecting two 

terminals or Steiner points vi(xi,yi),vj(xj,yj) ∈V, so that: 

1. xi≠xj and yi≠yj; 2. its length lij is fixed; 3. the precise 
edge routing between vi and vj is not determined. 

2.2.4. Theorem 1, location of the trunk in a MSTST. 

In a STST, we denote the number of segments above 

(or to the right of) the trunk as na, below (or to the left 

of) the trunk as nb, and the number of terminals on the 

trunk but not on any of the segments as no. Then the 

trunk in a MSTST must have the property: |na-nb|≤no

(Examples are shown in Figure 2). The proof is omitted 

due to the paper length limitation. 

This property helps us to find out the trunk location 

of a MSTST quickly in our algorithm. Also it shows 
that there may exists more than one MSTST for a set of 

terminals, as shown in Figure 2. 
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na=3, nb=5, no=2 

(a)
na=5, nb=4, no=1

(b)

Figure 2. Examples of two different MSTST’s 

routing the same set of terminals 

2.2.5. Theorem 2, the number of bends in a MSTST. 

A unique character of a MSTST is that in a STST 

connecting n points, the number of bends must be no 

more than n. The proof is omitted due to the paper 
length limitation. 

In our algorithm, we use MSTST’s as subtrees to 

construct Steiner trees for nets, because MSTST’s have 

relatively small number of bends compared with other 
forms of subtrees. 

2.2.6. Theorem 4, subtree concatenation = finding 

spanning trees on hypergraphs. "Concatenation" and 
"hypergraphs" are defined in [19].  It is proved in [19] 

that the problem of finding a MST in a hypergraph Hi

is equivalent to solving the subtree concatenation 

problem for the net Ni. Finding the MST in a 
hypergraph problem (MSTHG) is NP-hard when the 

hypergraph contains edges of cardinality four or more. 

The examples are shown in Figure 3 and 4.  

Figure 3. An example of tree concatenation 

(a)  (b)

(c)

Figure 4. Examples of (a) a hypergraph; (b) a 

spanning tree in the hyper graph; (c) the 

corresponding Steiner tree in the subgraph 

2.2.7. Definition 6: overlapping of two edges. We call 

two edges in a hypergraph overlapping if and only if 
the two corresponding subtrees in the subgraph have 

more than one point in common. 

3. Single-trunk-subtrees Concatenating 

Global Routing (SCGR) Algorithm  

By utilizing the definitions and theorems introduced 

above, an algorithm called "single-trunk-Steiner-tree 

concatenating global routing (SCGR)" is proposed. The 

objective of this algorithm consists of three parts: to 
minimize the number of bends, to eliminate the over-

congested edges, and to satisfy the wire-length 

constraint.  

3.1. Outline of the SCGR algorithm 

The overall pseudo code of the SCGR algorithm is 

illustrated in Figure 5.  

Step1: For every multi-terminal net 

Construct a set of subtrees for the net;  

Step2: Pre-estimate congestion map; 

Step3: For every 2-terminal net   

Route the net;  

Update congestion map; 

Step4: For every multi-terminal net   

Route the net by concatenating its subtrees; 

Update congestion map; 

Step5: Solve the remaining congestion problem; 

Figure 5. Pseudo code of the SCGR algorithm 

The SCGR algorithm contains five steps. In Step 1, 

we selectively construct subtrees which are flexible 
MSTST’s for each multi-terminal net, and a soft path 

for each 2-terminal net. In Step 2, we pre-estimate a 

congestion map [17] by probability calculation method. 

In Step 3, we route the 2-terminal nets by fixing the 
soft path to be a solid path with minimum bends and 

satisfying the weighted constraint. In Step 4, we first 

fix subtrees according to their weights and then 

concatenate subtrees to form a tree with minimum 
bends under a weighted constraint. The subtree 

concatenation problem is equivalent to finding a 

minimal spanning tree in a hypergraph (MSTHG). We 

formulate the MSTHG problem as an integer 
programming (IP) problem. In Step 5, if there is any 

tree of which more than 30% is in the over-congested 

area, we re-fix and re-concatenate it under the updated 

congestion map. After that, we use the rip-up and 
reroute technique to solve the over-congested area. 

Since we keep updating the congestion map during 

Step 3 and 4, and carefully consider the congestion 

problem during the first four steps, usually only a little 
over-congested area remains for Step 5. 

3.2. Details of the steps in SCGR 
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3.2.1. Step 1, subtree construction. In this step, for 

every net Ni with a set of terminals Vi={v0
i, v1

i, …}, we 

construct a set of mi(mi≥1) subtrees, each of which 

connects a subset vertices Vk
i⊆Vi, k={1, …, mi}. These 

subtrees are constructed under following three 
constraints.  

Constraint 1: they must be MSTST’s. 

Constraint 2: all the terminals in Vi must be in at 

least one of the subtrees, i.e. i
m

k

i
k VV

i

=
=1

.

Constraint 3: they should not have bad wire-lengths. 

Here, we do not strictly constrain wire-lengths of 
subtrees, because a subtree with not very good wire-

length may probably be part of a good routing tree. 

More strict and exact constraint about wire-length of a 

whole tree will be in Step 4. This constraint helps to 
reduce the number of the subtrees in the early step, so 

as to improve the efficiency of the algorithm. 

3.2.2. Step 2, pre-estimate the congestion map. We
calculate the pre-estimated congestion map by the 

subtrees and the soft paths constructed in Step 1. We 

calculate the probabilistic demand (PD) of every soft 

path in subtrees and 2-terminal nets using the similar 
method as [14]. Besides, we calculate probabilistic 

usage (PU) of every subtree for every multi-terminal 

net. Then, we get the pre-estimated congestion map by 

adding up the demand of edges of all the nets. The 
concrete method is described below.  

For a soft path p, we calculate probabilistic demand 

similarly as in [14] as below. In order to limit the 

number of bends, we only allow the path to be a "Z"-
path. For each soft path p, we define a probabilistic 

demand PDp(e) to indicate the possibility that the soft 

path p will take a route across the edge e∈EG. Suppose 
the two ends of p are vi(xi,yi) and vj(xj,yj), we can 

conclude that there are totally T=|xi-xj|+|yi-yj| "Z"-

paths between the two ends. We assume the soft path p
has the uniform probability to take any one of "Z"-

paths. So an edge has a probabilistic demand 

PDp(e)=C(e)/T from this path p, where C(e) is the 

number of the "Z"-paths that passing through the edge. 
Then we can calculate the total probabilistic demand of 

an edge e from a subtree st by 
∈∀

=
stp

pst ePDePD )()( . 

For every multi-terminal net Ni∈N, which has a set 
STSeti of subtrees constructed in Step1, we calculate 

approximate probabilistic usage of each subtree st 

∈STSeti by the equations below, where TC(st) is the 
terminal count of st, and t stands for a terminal. 

)
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Finally, the congestion map can be described by the 

demand of every edge e∈EG as )(edemand
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where Nm= {Ni | Ni
is multi-terminal net, Ni∈N}, Nt = { 

Nj | Nj
 is 2-terminal net, Nl∈N }; STSeti

is the set of 

subtrees constructed for the multi-terminal net Ni
 , and 

pj
 is the path constructed for the 2-terminal net Nj

constructed in Step 1. 

3.2.3. Step 4, route multi-terminal nets by subtree 

concatenation. Geo-Steiner algorithm [19] constructs 

the Steiner minimal tree by FST generation and FST 

concatenation. We borrow its idea in some parts of our 

algorithm. But we use the idea in a different way, 

because our objective is quite distinct from Geo-

Steiner: rather than constructing a Steiner tree with 

minimal wire-length for one net, we focus on routing a 

large number of nets in a routing region, considering 

the performance of all the nets as a whole. We 

construct MSTST’s in Step 1, which are a particular 

kind of FST’s, for the sake of reducing bends; 

moreover, we make the MSTST’s with soft paths, 

slidable trunks and Steiner points so as to have more 

flexibility. Then in Step 4, we first fix the MSTST’s 

according to congestion and wire-length constraints, 

and then concatenate them under the objective function 

about the number of bends and the constraints of 

congestion and wire-length.   

Details of the subtree concatenation method in Step 

4 are described below.  

In order to do subtree concatenation for every multi-

terminal net Ni∈N, we solve the corresponding 

MSTHG in the hypergraph Hi
 according to Theorem 4. 

The MSTHG is solved by setting up an integer 

programming (IP) formulation in our algorithm.  

A |EH
i|-dimensional binary vector is denoted by x:

each element xe has value 1 if the hyperedge e∈EH
i

(corresponding to a subtree in the induced subgraph) is 

chosen to be part of the MST in the hypergraph Hi
 and 

0 otherwise. The IP formulation is firstly formulated as 

follows. 

min Txb ⋅                                               (1) 

s.t.   

∈
−=−

i
HEe

e Vxe 1||)1|(|                (2) 

≥∩∈
−≤−∩

1|:|

1||)1|(|

SeEe
e

i
H

SxSe ,

2||, ≥⊂∀ SVS i         (3) 

      0)1( wxw T α+≤⋅                       (4) 
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The b and w are both |EH
i|-dimensional binary 

vectors: each element be equals to the number of bends 

in the subtree corresponding to the hyperedge e∈EH
i
;

each element we equals to the weight of the subtree 

corresponding to the hyperedge e∈EH
i
; (1+α)w0 is the 

weighted constraint of the net, where w0 is the weight 

of the routing tree got by SSTT [7], and α is an 

adjustable parameter. 

The major difficulty in solving the IP is the 

exponential number of constrains in (3). We take full 

advantage of the special properties of the subtrees, and 

finally cut down the number of constraints to only 

O(|EH
i|2). The IP formulation used in our algorithm is:  

min Txb ⋅                      (5) 

s.t.   

∈
−=−

i
HEe

e Vxe 1||)1|(|                (6) 

pqpqp xyyyy )maxmaxmin(min +

qqpqp xyyyy )maxmaxmin(min ++

)maxmaxmin(min qpqp yyyy +≤

)maxminmax(min qqpp yyyy ++ ,               

i
HEqp ≤<≤1     (7) 

  1≤+ qp xx , i
HEqp ≤<≤1 & p , q overlap (8) 

0)1( Wxw T α+≤⋅                                       (9) 

The maxyk and minyk (k=p, q) in (7) respectively 

stand for the maximum y value and the minimum y

value of the corresponding subtree in the subgraph.  
The objective (5) is to minimize the total bends of 

the chosen hyperedges subjecting to four constraints. 

Equation (6) enforces the correct number and 

cardinality of hyperedges to construct a spanning tree. 
Constraints (7) and (8) have the same effect in our 

algorithm as (3), which is to eliminate cycles in every 

subset of Vi. Constraints (6), (7) and (8) operate 

together to ensure that the chosen hyperedges can 
construct a corresponding Steiner tree in the subgraph, 

while (9) is the weighted constraint. 

There are totally |EH
i|(|EH

i|-1)/2 constrains in (7) 

and m constraints in (8), where m is the number of 
overlapping pairs of hyperedges and is O(|EH

i|2).

The IP solving progress in our algorithm cost short 

running time, because we not only restrict the number 

of subtrees (equal to the dimension of x in IP formula) 
in Step 1, but also cut down the number of constraints 

in IP formula as explained above.  

4. Experimental results 

The SCGR algorithm has been implemented in C 

language. We compare it with SSTT [7]. For fair 

comparison, both programs are compiled and run on a 

SUN V880 workstation. MCNC and IBM benchmarks 
are used as the test cases in Table 1. Besides, we 

randomly generate two more test cases, by setting the 

percentage of multi-terminal nets and large nets.  

Table 1. Description of test circuits 
Test 

circuit 

Grid size Net 

count 

Multi-

terminal net 

count 

(percentage) 

Large net

count 

(percent-

age)  

test1 30 ×30 5000 2500 (50%) 1500 (30%) 

test2 30 ×30 5000 3500 (70%) 2500 (50%) 

c2 9×11 745 198 (26.6%) 4 (0.5%) 

c5 16×18 1764 250 (14.2%) 95 (4.8%) 

c7 16×18 2356 626 (26.6%) 23 (0.97%) 

ibm01 134×135 11753 5481  
(46.6%) 

1751 
(14.9%) 

ibm02 79×78 18688 7865  

(66.9%) 

2776 

(14.9%) 

ibm07 234×235 44681 19272 

(43.1%) 

6694 

(15.0%) 

ibm08 245×245 48230 19002 
(39.4%) 

6251 
(13.0%) 

Table 2. Comparing SCGR with SSTT  
α = 10% α = 20%Test 

circuit Wire-

length

Bend 

count

Wire-

length 

Bend 

count  

test1 102.5% 79.3% 105.1% 72.8% 

test2 104.8% 63.4% 109.5% 56.0% 

c2 98.1% 96.0% 98.7% 95.3% 

c5 98.3% 94.2% 99.3% 92.8% 

c7 99.9% 93.8% 102.9% 89.1% 

ibm01 105.7% 91.7% 112.5% 88.5% 

ibm02 103.4% 86.5% 107.1% 83.9% 

ibm07 104.4% 94.8% 114.8% 89.3% 

ibm08 104.6% 93.2% 110.5% 90.5% 

Table 2 shows the comparison of routing result 
between SCGR and SSTT. It should be noted that both 

SCGR and SSTT completely eliminate over-congested 

edges. We constrain the wire-length of SCGR to be not 

more than 110% and 120% of SSTT, by setting the 

adjustable parameter α (explained in Section 2.1). 
Table 2 shows that SCGR greatly reduces the number 

of bends while meets this wire-length constraint: when 

α=0.1, the number of bends decreases for 11.9% on the 
average while the wire-length increasing 2.4%; when 

α=0.2, the number of bends decreases for 15.7% on the 
average while the wire-length increasing 6.8%. We 

also notice that, generally, more decreasing can be got 

                                                          
 The number of nets with more than 5 terminals in every test case 

α is a parameter used to constrain the ratio of wire-length of  

SCGR to SSTT (explained in Section 2.1) 
 The ratio of total wire-length by SCGR to total wire-length by 

SSTT 
 The ratio of total number of bends by SCGR to total number of 

bends by SSTT 
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for test cases with larger portion of multi-terminal nets 

and large nets. 
Table 3 shows the running time of SCGR. It is 

shown that our algorithm is efficient enough 

considering the effective results and the scale of test 

cases. From experiments, we notice that the IP step 
takes the major portion of running time. So far, our 

program applies an existing IP solver called GLPK 

[20]. A shorter running time could be achieved when 

more efficient solver is used. 

Table 3. CPU time  
Test 

circuit 

SSTT (s) SCGR (s) Percentage of IP 

process in SCGR  

test1 21.84 75.210 89.1% 

test2 26.20 98.580 92.3% 

c2 0.52 1. 56 74.5% 

c5 1.20 3. 37  78.9% 

c7 1.77 3. 59 71.7% 

ibm01 35.54 110.13 84.5% 

ibm02 22.17 114.64 83.2% 

ibm07 215.72 948.32 84.1% 

ibm08 463.61 1207.86 82.9% 

5. Conclusions and further work 

We propose a general bend minimization global 

routing algorithm in this paper. This algorithm focuses 
on the competing objectives of minimizing number of 

bends, eliminating congestion and satisfying wire-

length constraint simultaneously. We apply flexible 

single-trunk Steiner trees, soft paths, pre-estimated and 
updated congestion map in our algorithm to approach a 

good global routing result. The experimental results 

show that this algorithm can greatly reduce the number 

of bends, especially for the nets with relatively more 
terminals. 

We will continue studying on the performance-

driven global routing in the future. We plan to integrate 

the consideration of interconnect delay in our SCGR 
algorithm. 
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