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Abstract—We propose a new global routing area estimation approach Q2 O ' :
for high-performance very large scale integration and multichip modules . T R
(MCM'’s). The objective is to route nets with minimum density of global i;ﬁiinf at<\4 3 :Q 61; o
cells, producing a four-bend routing for each two-terminal net. We propose : : ;

an approximate upper bound on global celldr < 2d, log(m/(2dy)),
in an m X m two-dimensional array, whered,, is the estimated lower-
bound density. The total wirelength is(2ex + B)4m?d, /3, whereor +  Fig. 1. Global routing in a top-down hierarchiz = 1. (a) Top-level routing
B = 1 and « is the percentage of diagonal combinations ang is the  (nets 1 and 2). (b) Second-level routing (nets 3 and 4).

percentage of adjacent combinations of nets. Ix < @3 (this assump-

tion holds since a good placerpent minimizes the longer wires), then the

total wirelength is at most 2m=“d,. By counting on the adjacent and di-

agonal combinations separately in the cost functiondr < [4dq/37 X Il PROBLEM FORMULTAION

log([m/(4do/3)7). We verified that the bound obtained are realistic in . . . . ) .
the worst case. A solution to this problem can be used for quick estimation We adopt the global routing environment involvingwo-terminal

of necessary wiring space (for standard cell array designs) and difficulty of Nets in two-dimensional (2-D) arrays (Fig. 1). A ie€ N consists
routing (for gate array designs) in the early design planning stage. of two terminals. We assume that a path goes from cell to cell, rather
Index Terms—Global routing, routing estimation, VLS| layout. than from grid-point to grid-point. Each plane consists of a @R m
grid, being a square tessellation of the plane, withl being the basic
cell-grid size. Therefore, each cell contains at most one pin. We define
I. INTRODUCTION the global density of the problem as follows.

As physical feature sizes decrease, the time delay of electrical sigP€finition I1.1: (global densityi:) (Fig. 1) Let celli. j) denote a
nals traveling in the interconnect between active devices and gate§§4 at theith row and thejth column of the routing region. In general,
approaching the delay through the devices and gates. Thus, physicaligr€ than 1 net may cross the border of a cell. 4gti, j) denote
terconnections delay will overtake gate delays as a design concerrﬂb?/ ngmber of nets crossing the bord(_er _of céllsy) an'd(z',‘ j+ 1),
the year 2000, mandating a shift in the physical design flow for deep-< ¢ < m andl < j < m — 1. Similarly, letd.(z, j), denote
submicrometer. Therefore, iterations between synthesis and layoutt} number of nets crossing the border of céllsj) and(i + 1. j),
crease dramatically due to timing and routability problems. The key fo< ¢ < m — 1 andl < j < m. dh max = maxi,; du(i, J)is the
solving this problem is knowing more about the physical design, i.&10rizontal density of the problem amd max = max;,; d.(i, j) is
placement and estimated interconnect, early in the design cycle. M&€ Vertical density of the problem. That is, the global density is the
vated by the above, in this paper, we propose a wiring space estimaffgf<imum number of wires crossing a border between two cells in a
scheme that has an important application in quick estimation of ndfuting solutionZ. A it vertical channel, denoted by (j) consists of
essary wiring space and difficulty of routing in the early design plage!IS(i- ), @ = 1, ..., m, and a horizontal channdl (i) consists of
ning stage (e.g., high-level synthesis step). We also propose a uggdis (i» /).J = 1. ..., m, respectively.
bound on total wire length. Therefore, in the early design stage. for ex- V& &M t0 minimize. The minimumdr is referred to as aop-
ample, during high-level synthesis step, we perform a quick placem&fftal density denoted bylop:. o
followed by our quick global wire estimation algorithm introduced in Definition I1.2: (global routing) The problem of global routing i.e.,
this paper. By doing so, we can effectively estimate the cost of the cifpestimate the wiring space) can be defined as follows. Given a netlist
using the quick estimation of wiring space, and also estimate the poéfh @ placement information, find a global routing with a minimum
consumption due to the total wire capacitance by computing the upgPal density of a channel. _ _ _
bound on the total wirelength. This paper is organized as follows. |nQIobaI routing determines, given terminal locations for each n_et(l.e.,
Section I, we define and formulate the problem. In Section Ill, we dé-9iven a placement of cells), a path of global cells through which the
scribe a global routing estimation scheme in top-down hierarchy. it¢ts will be routed. The global analysis of the routing region leads to
Section IV, we obtain a lower-bound density of global cells. In Secuniform” density distribution. Global routing is known to be NP-com-
tion V, we obtain an approximate upper-bounds for the worst case gelete evenin the case of one-bend routing of two-terml_nal nets [4]. For
sity of global cells needed to route nets using at most four bends per 4 routing problem in 2-D arrays, there have been various approaches
The bound is computed based on a top-down recursion using four-w28ped on hierarchical wiring [1], [3], [5], sequential methods [2], [4],
partitioning (i.e., structured as a quad tree). Also a upper bound on tdgl Simulated annealing [10], linear programming [6], and multicom-
wirelength is derived. The verification and conclusion of this paper afa0dity flow [9]. A quick heuristic is necessary for estimation of nec-
given in Sections VI and Section VII, respectively. essary wiring space and difficulty of routing in the early design plan-

ning stage. Consider the routing region with uniformly distributed pins.
Then, itis often true that global density will be lower if we route the nets
Manuscript received June 14, 1999; revised November 9, 1999. This paggth |ess bends (even though there exists cases where the number of
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Karpet al.[4] proposed an approximate upper bound on global cel
which ism/2 in anm x m arrays. Sarrafzadeét al. [8] proposed
a bottom-up hierarchical global routing with a density of global cell
O(dopt log(s/dopt)),wheres is the span of nets anld, is the optimal
channel density. In this paper, the bound derived by [8] is improved a
the new wire length upper-bound is derived.

I1l. QUADRISECTION MAP TOP-DOWN GLOBAL ROUTING
Fig. 2. Four-bend routing. (a) Patterns in adjacent combination. (b) Patterns
The hierarchical approach has a great attraction such that each lévelagonal combination.
of hierarchy has a manageable-size problem that can be solved exactly.
Two top-down partitioning paradigms have been introduced. One is
to partition a routing region into four square subregions successively¥: COMPUTING THE WORST CASE APPROXIMATE UPPERBOUND
(we refer to it as the quad-tree) [3]. The other is to bipartition subre- DENSITY
gions on the basis of binary cut trees, dividing the routing region ver- pefinition V.1: (net patterns) As shown in Fig. 3, there are two types
tically or horlzontally in a single partition step [5]. The quad-tree apst nets in our four-bend routing.
p_roach is more prems_ethan the_ approa_ch ofblnarycuttree_s.Theformer. Type 1 (adjacent combination): one terminal is@ and the
yields a truly 2-D routing paradigm, while the latter results in a one-di- other terminal is i (k + 1) 4
mensional partitioning procedure to solve the 2-D routing problem. . L omec —
: e - . » Type 2 (diagonal combination): one terminal is@h. and the

There are two ways of forming the partitioning size: area-based parti- AT
o . X A other terminal is i) (k + 2)mod4.
tioning (slice or rectangular) and point-based partitioning. The former ) )
with square bucketing is sufficient since in deep-submicrometer layoutd-6t US denote byF,, (respectively, f,;) the set of nets (re-
their routing substrates are very dense and pins are usually distribitBgCtively, its cardinality) whose one terminal is 1@, and
evenly over the plane. Therefore, we process the top-down recursfSRer terminal in Qq. That is, Iz, Ibs, F34, and Iy, are
by first partitioning the top level, representing the whole routing rd? TyP€ 1, and Fi; and f»4 are in Type 2. Then, the total
gion into four square subregions as in Fig. 1. That is, a quadrisectigimber of netsf = fio + fos + faa + fur + fis + fou.
having four quadrants is considered at each node of the quad-tree |f@r US denote by fumax: = max{fiz. f2s. fsa, fu} and
anm x m grid (without loss of generality, we assume thats apower BY frmax2 = max{{fi2. fas. fas, fu} — fwax 1}, and also
of 2), there ardog, m (i.e.,0, 1, ..., log, m — 1) levels of 2-D ar- fmax 3 = max {{fi2, f23, fsas fut = fwaxt = fumax2}s
rays. That is, level 0 is the top-most level, consisting 8f:a 2 array, fmax 4 = min{ fio, foz, faa, fr}. ] ] )
while levellog, m —1 is the bottom-most level, consisting of anxm Lemma V.1: (worst case lower-bound density) The tightly esti-
array. We defindog m to belog, m throughout the paper. mated upper bound on the number tracks required for connecting a set

The following preliminary definition provides a property of level ©f Nets is
of the top-down hierarchy.

Definition 111.1: [QM(i)] (Fig. 1) The quadrisection mag) M (:) [(fi3 + f24 + finax 1 + funax 2)/2].
consists of four quadran€3;, k € (1, 2, 3, 4) (labeled counterclock-
wise from upper—right corner). Each set of unconnected netin a quad- Proof: To distribute nets evenly over cutlines, for Type 1 nets, we
rant is denoted b¥/; . A common boundary of two adjacent quadrantsieed at Mosf( fmax 1 + fmax 2)/2] tracks to be routed by crossing a
is said to be a cutline. Hence, there are two vertical and two horizongithgle cutline. Type 1 nets can be routed using two pattetemur
cutlines inQM (i), denoted byC';.. The length of each cutline is de- (routed by crossing the three cutlines) atighight(routed by crossing

noted by L(i) = 2'°¢ ™~~! 0 < i < log m — 1. Each quadrar);,  the single cutline) connections. We need at mioft.x 1 — fuax 2)/2]
is associated with a set of unconnected termifidjs nets to be routed witldetour connectionf fiax1 — fmax2 > 2.

In top-down hierarchical routing, the problem is decomposed inteor Type 2 nets, we need at mdstfis + f24)/2] tracks since the
smaller square subregionsl/ (i) that are solved exactly at levél nets are distributed evenly over two cutlines. In all, we need at most

[(fi3 + f24 + fmax 1 + fmax 2)/2] tracks.
For example, in Fig. 2(@)lr = (fmax 1 + fmax 2)/2 = (f1a +
f12)/2 = (34 1)/2 =2, andin Fig. 2(b)dr = (fis + f24)/2 = 2.

IV. COMPUTING THE WORST CASE APPROXIMATE LOWER-BOUND . .
Now, we obtain an upper-bound on the worst case global density as

DENSITY
follows.
Here, based on the top-down four-way partitioning, we analyze theTheorem 1:(worst case upper-bound density) There is an
worst case lower bound on the global cells. approximation algorithm achieving the density of global cells,

Definition IV.1: (worst case lower-bound densify) When we re- 7r < 2do log(m/(2do)), in anm x m 2-D array, wherelo is
cursively partition the square region irt 2 square subregions, therethe estimated Iower—bou‘nd density. The total wiring area is at most
are square subregions of sidBs = 2'°5 ™—i~! where0 < i < (m X 2do log(m/(2do)))*.
log m — 1inanm x m 2-D array. Consider all square subregicpis Proof: The proof of the upper-bourglobal densityin the worst
with sideL’ , where0 < i < log m — 1 and let us denotmaxy, |[M;| Case is done by induction énthe number if times the top-down recur-
asU’, wherel < k < 4™ Consider the best case where all unSion is executed based orzax 2 subdivisions. v
connected nets should leave two cutlines of the square contdiling ~ Inductively, we consider one square subregidpg, 1 < & < 4,
Then, we define the estimated densitydas= max, ([U/(2L7)]), €ach with side'*s ™=~ for leveli, where) < i < log(m/(2do)).
where0 < i < log m — 1. Note thatl < do < m/2. Let us assume that at each level we maintain the following invariants.

The approximate density lower-bounti can be calculated in * Invariant: at most2(i + 1)d, tracks are requires at each channel
O(n log m) time. on the cutline of each square subregion at lével
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TABLE |

O © ), O | O A VERIFICATION RESULT ON SINGLE
LEVEL INSTANCES
O

Ez(m/n/dy) ]2-b[4-b| The 5.1 ] Coro. 5.2
s Exl (4/8/1) | 2 | 2 2 2
Bx2 (8/32/2) | 5 | 4 1 1
o) —O Fx3 (16/198/4) | 9 | 8 8 8

Corollary V.1: The total wirelength required to achieve the bound
o O O |o 0 obtained in Theorem 5.1 {a + 3)4m?do /3, wherea + 3 = 1 and

« is the percentage of diagonal combinations And the percentage
of adjacent combinations.

P oo Q O = Proof: As shown in Theorem 5.1 and Fig. 2, Type 1 nets can be
routed using two patternsgletour (routed by crossing three cutlines)
D—1—0O o o andstraight(routed by crossing single cutline) connections. Type 2 nets
can be routed witlone-bendrouted by crossing two cutlines). That is,
@) '9) we need at mosfs = [(fmax1 — fmax 2)/2] detour connections,

O 0O O

at mostf> = (fis + f24) one-bend connections, and at md@st=
f — fs — f2 straight connections.

The total wirelength required to route nets at levelof the
top-down hierarchyw; = 2'°% ™~"=' x (35 + 22 + f1). Thus,
We want to show that at level, the invariant is main- the total wirelength required to route in an x m 2-D array is

tained so that the bottom of the density of each global cell i¥, = Soosml gles mTitl o (35 + 2f, + f1). As shown in

dr < [2dy x log(m/(2do))]. Theorem 5.1, the total number of nets to be routed imar m 2-D

log m—1 4l 141 _ log m—1
Now, let us consider the set of unconnected nets in four squatéay is> 7% 2987 dy. Thus, we haver = 37 o

subregion with each side'** ™~'~' at level i. There are at lon m =11 (2a 4 8) x 298 ™y = (2a + §) x 4m>do/3,
most U' = 2'°8™~ig, unconnectedterminals (by definition Provided that we are given a good placement, i@ 1 is similar
of do such thatU’/(2 x 2'°# ™=~y < d,) leaving the half 0 fmax2 (i.€., f3 term is removed) (this assumption holds since a
perimeter of eachi,l < k < 4. That is, there are at most900d placement distributes nets evenly over the cutlines). # 3
Ut = 28 m—i+1 7 unconnected nets. We distribute iz m—#+!4,  (this assumption holds since a good placement minimizes the longer
nets arbitrarily over the cutlines with at most four bends, usm‘@j'res) thenw < 2m*do.
at most[[(fis + foa + fmax1 + fmax2)/2]/[2°92 7] < Now we further improve the bound derived in Theorem 5.1
[[(2'°s ™= *1dy)/2]/[2'°# ™ ~"~']] tracks (i.e., 2d, tracks) per Dy counting on the adjacent and diagonal combinations sepa-
channel on each cutline with sid®°® ™=='. Thus, invariant is rately in the cost function, in the most of cases, it is true that
maintained for level. fiz + foa + fmax1 + fmax2 < 2f/3. This is true based on the
Next, let us consider the set of unconnected nets in four square s@sumption  thatfis, fos fmax 15 fmax 2, fmax s @Nd fmax 4 are
region with each sid2'°s ™ ~*~2 at level(i + 1). Consider routing the Of approximately same value, since a good placement attempts to
set of yet unconnected nets insié¥%, Q, Qé” andQ}, respectively. distribute nets evenly over the cutlines. Thus, we have the following.
Consider for exampl@; . The nets insid€);, each of whose terminals ~_ Corollary V.22 1 fis + fa4 + fuax 1 + fuax 2 < 2f/3, then we
leaving cutlines with side'*s ™~"=" at leveli also contribute to den- 0btain a global routing withl . < [4do/3] x log([m/(4do/3)]).
sity increase on the cutline at levgH- 1). Thus2'°8 ™4, terminals
at leveli are propagated to levél + 1) to be routed at leveli + 1).
At level (i + 1), there were originally at mos2'*s ™~"='d, VI. VERIFICATION
unconnected terminals leaving the half perimeter of each
Okl +1),1 < k < 4, € QM@ + 1) (by definition of do To verify the approximation scheme, we tested with two types of in-
such thatU‘“/ o 9log m—i— %) < do). That is, there are at most stances: single-level instances and multiple-level instances as follows.
Ut = (2lsm—i-1g, x 4)/2 = 2!°5 ™', unconnected nets at  For single-level instances, as we see in Table I, the approximation
Qi(= QM(i + 1)). bound derived in this paper was same as the optimal case in most of
Thus, in total there are at mos?'°s "~iT'd, nets to be instances.Here, B{respectively —b) represents an optimal solution
routed in QM (i + 1). We distribute all2'°s ™~*+1q, nets ar- Wwith allowing at most two bends (respectively, four bends) per net for
bitrarily over the cutlines with at most four bends, using aihe worstcase instances. In this table, “The. 5.1" (respectively, “Corol-
most [[(fis + for + famx1 + fmax2)/2/[2'9¢ 7721 < lary 5.2") represents the results of applying the bound derived in The-
[[(2k8 ™=+ gy /2]/[2%°8 ™~i=2]] tracks (| e., 4d, tracks) per orem 5.1 (respectively, Corollary 5.2).
channel on each cutline with sid#°¢ ™~~2, Thus, invariant is Next we observe the multiple-level instances. For the well-dis-
maintained for leved + 1. Invariant for levek + 2 can also be obtained tributed and localized two-level instances, e.g., as in Fig. 3, where
from the relation between levels+ 1 andi 4+ 2 which has the same dr < 2dy log s/(2dy), wheres is the span of nets. In Fig. 3, the

Fig. 3. Well-distributed instance.

structure between levelsandi + 1. wires depicts the global routes for two-terminal nets.

Therefore, we obtain a upper-bourglobal density dp < The more general multiple-level instances such that density-centric
2do log(m/2dy) at the bottom of the recursion. Therefore, the totadpots exists are shown in Fig. 4. The filled region in Fig. 4 represents
wiring area is at mostm x 2dy log(m/2do))>. the wire congestion spots. The darker the region filled, the denser the

The time complexity of computing the upper-bound only depends oouting congestion in the region.
computing time of the lower-bound density, thus, the upper-bound In the density-centric spots, the routing density is increaseziiby
can be achieved in tim@(n log m). in the worst case at each level of the top-down hierarchy. Therefore,



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 5, MAY 2000 615

[9] E. Shargowitz and J. Keel, “A global router based on multicommodity
flow model,” Integration: The VLSI Journakol. 5, pp. 3—-16, 1987.
[10] M. P. Vecchi and S. Kirkpatrick, “Global wiring by simulated an-
nealing,” IEEE Trans. Computer-Aided Desigvol. CAD-2, pp.
215-222, 1983.

dens spot

A Practical Approach to the Synthesis of Arithmetic
Circuits Using Carry-Save-Adders

Taewhan Kim and Junhyung Um

SEgpE-

Abstract—Carry-save-adder (CSA) is one of the most widely used types
of operation in implementing a fast computation of arithmetics. An in-
herent limitation of the conventional CSA applications is that the applica-
tions are confined to the sections of arithmetic circuit that can be directly
translated into addition expressions. To overcome this limitation, from the
analysis of the structures of arithmetic circuits found in industry, we derive
a set of simple, but effective CSA transformation techniques other than the
existing ones. Those are 19ptimization across multiplexor2) optimization
across design boundariesind 3) optimization across multiplicationsBased
on the techniques, we develop a new timing-driven CSA transformation al-
gorithm that is able to utilize CSA's extensively throughout the whole cir-
cuits. Experimental data for practical testcases are provided to show the
effectiveness of our algorithm.

Fig. 4. An instance where dense spots exist.

due to the density-centric spots, i.e., the darkest four sgptss close
to 2dy log(m/(2dy)), as shown in Theorem 5.1.
Index Terms—Circuit optimization, timing, arithmetic circuit, RTL syn-
thesis.

VIl. CONCLUSION

In this paper, by incorporating the flat approximation into routing of I. INTRODUCTION

each level of top-down recursion, we obtairthin log m) timeanew  iming of circuit is one of the mostimportant design criteria to be op-
and tight approximate lower and upper-bound on the worst case dengjfyi; o in several phases of synthesis process. In behavioral synthesis
of global cells. We observed t.hMo < dr < 2dg log(m/(2do)), N phase [1], timing refers to two factors, namelymber of control steps
anm x m 2-D array, wherel, is the worst case lower-bound densityy; ¢  |atency andcycle time Scheduling step optimizes the timing fac-
We showed the total w;relength required to route nets imam m  yo15 ynder resource constraint or optimizes the amount of resources
2-D array is at mostm”d,. By counting on the adjacent and diag-gqired under the timing constraint. Hardware allocation/binding step
onal combinations separately in the cost function, < [4do/3] X then allocates and binds implementations to realize a circuit for the
log([m/(4do/3)1). We verified that the bound obtained are realistiqcpeqyled control and data flow graph (CDFG) of design while satis-
in the worst case. We noted that placement congestion is necessany;iy the required timing constraint. Ideally, to derive not only fully
find a more tight bound since s depends on the net distribution and Bﬁ[imized but also “feasible” timing it is necessary to take into ac-
span, wherél < 2do log(s/(2do)). count the problem of implementation selection for operations during
scheduling because mapping an operation to differentimplementations
leads to different timings in CDFG, thereby resulting in schedules with
different latencies. Practically, however, due to a huge computational
complexity it is assumed that each operation was bound to a partic-
ular implementation during the scheduling step and the possibility of
Steiner min-max trees[EEE Trans. Computer-Aided Desigvol. 9, OC?e)impIementaFio.ns Is cor?sidered in the allocqtion/binding .Ste.p' (;on-
pp. 1315-1325, Dec. 1990. sequently, the timing obtained from the behavioral synthesis is either
J. D. Cho and M. Sarrafzadeh, “Four-bend top-down global routing;'underestimated” or “overestimated.” By overestimated, we mean the
IEEE Trans. Computer-Aided Desigrol. 17, pp. 793-802, Sept. 1998. situation that the scheduler assumed too slow implementations, thereby

R.M.Karp, F.T. Leighton, R. L. Rivest, C. D. Thompson, U. V. Vaziraniyyasting performance unnecessarily. By underestimated, we mean the
and V. V. Vazirani, “Global wire routing in two-dimensional arrays,”

Algorithmica vol. 2, no. 1, pp. 113-129, 1987.

M. Marek-Sadowska, “Route planner for custom chip designpPrioc.

Int. Conf. Computer-Aided DesigNov. 1986, pp. 246-249. Manuscript received July 1, 1999; revised December 16, 1999. This work was
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