
612 IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 5, MAY 2000

Short Papers_______________________________________________________________________________

Wiring Space and Length Estimation in Two-Dimensional
Arrays

Jun Dong Cho

Abstract—We propose a new global routing area estimation approach
for high-performance very large scale integration and multichip modules
(MCM’s). The objective is to route nets with minimum density of global
cells, producing a four-bend routing for each two-terminal net. We propose
an approximate upper bound on global cell 2 log( (2 )),
in an two-dimensional array, where is the estimated lower-
bound density. The total wirelength is(2 + )4 3, where +

= 1 and is the percentage of diagonal combinations and is the
percentage of adjacent combinations of nets. If (this assump-
tion holds since a good placement minimizes the longer wires), then the
total wirelength is at most 2 . By counting on the adjacent and di-
agonal combinations separately in the cost function, 4 3
log( (4 3) ). We verified that the bound obtained are realistic in
the worst case. A solution to this problem can be used for quick estimation
of necessary wiring space (for standard cell array designs) and difficulty of
routing (for gate array designs) in the early design planning stage.

Index Terms—Global routing, routing estimation, VLSI layout.

I. INTRODUCTION

As physical feature sizes decrease, the time delay of electrical sig-
nals traveling in the interconnect between active devices and gates is
approaching the delay through the devices and gates. Thus, physical in-
terconnections delay will overtake gate delays as a design concern by
the year 2000, mandating a shift in the physical design flow for deep-
submicrometer. Therefore, iterations between synthesis and layout in-
crease dramatically due to timing and routability problems. The key to
solving this problem is knowing more about the physical design, i.e.,
placement and estimated interconnect, early in the design cycle. Moti-
vated by the above, in this paper, we propose a wiring space estimation
scheme that has an important application in quick estimation of nec-
essary wiring space and difficulty of routing in the early design plan-
ning stage (e.g., high-level synthesis step). We also propose a upper
bound on total wire length. Therefore, in the early design stage. for ex-
ample, during high-level synthesis step, we perform a quick placement
followed by our quick global wire estimation algorithm introduced in
this paper. By doing so, we can effectively estimate the cost of the chip
using the quick estimation of wiring space, and also estimate the power
consumption due to the total wire capacitance by computing the upper
bound on the total wirelength. This paper is organized as follows. In
Section II, we define and formulate the problem. In Section III, we de-
scribe a global routing estimation scheme in top-down hierarchy. In
Section IV, we obtain a lower-bound density of global cells. In Sec-
tion V, we obtain an approximate upper-bounds for the worst case den-
sity of global cells needed to route nets using at most four bends per net.
The bound is computed based on a top-down recursion using four-way
partitioning (i.e., structured as a quad tree). Also a upper bound on total
wirelength is derived. The verification and conclusion of this paper are
given in Sections VI and Section VII, respectively.
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(a) (b)

Fig. 1. Global routing in a top-down hierarchy,d = 1. (a) Top-level routing
(nets 1 and 2). (b) Second-level routing (nets 3 and 4).

II. PROBLEM FORMULTAION

We adopt the global routing environment involvingn two-terminal
nets in two-dimensional (2-D) arrays (Fig. 1). A neti 2 N consists
of two terminals. We assume that a path goes from cell to cell, rather
than from grid-point to grid-point. Each plane consists of a 2-Dm�m

grid, being a square tessellation of the plane, with1�1 being the basic
cell-grid size. Therefore, each cell contains at most one pin. We define
the global density of the problem as follows.

Definition II.1: (global densitydR) (Fig. 1) Let cell(i; j) denote a
cell at theith row and thejth column of the routing region. In general,
more than 1 net may cross the border of a cell. Letdh(i; j) denote
the number of nets crossing the border of cells(i; j) and(i; j + 1),
1 � i � m and1 � j � m � 1. Similarly, let dv(i; j), denote
the number of nets crossing the border of cells(i; j) and(i + 1; j),
1 � i � m � 1 and1 � j � m. dh max = maxi; j dh(i; j) is the
horizontal density of the problem anddv max = maxi; j dv(i; j) is
the vertical density of the problem. That is, the global density is the
maximum number of wires crossing a border between two cells in a
routing solutionR. A it vertical channel, denoted byV (j) consists of
cells(i; j), i = 1; . . . ; m, and a horizontal channelH(i) consists of
cells(i; j),j = 1; . . . ; m, respectively.

We aim to minimizedR. The minimumdR is referred to as anop-
timal density, denoted bydopt.

Definition II.2: (global routing) The problem of global routing (i.e.,
to estimate the wiring space) can be defined as follows. Given a netlist
with a placement information, find a global routing with a minimum
global density of a channel.

Global routing determines, given terminal locations for each net (i.e.,
a given a placement of cells), a path of global cells through which the
nets will be routed. The global analysis of the routing region leads to
“uniform” density distribution. Global routing is known to be NP-com-
plete even in the case of one-bend routing of two-terminal nets [4]. For
the routing problem in 2-D arrays, there have been various approaches
based on hierarchical wiring [1], [3], [5], sequential methods [2], [4],
[8], simulated annealing [10], linear programming [6], and multicom-
modity flow [9]. A quick heuristic is necessary for estimation of nec-
essary wiring space and difficulty of routing in the early design plan-
ning stage. Consider the routing region with uniformly distributed pins.
Then, it is often true that global density will be lower if we route the nets
with less bends (even though there exists cases where the number of
bends is not proportional to the density). Thus, constraining the number
of bends produces a “quick” and a “good” global routing. The global
routing leads to a “good” wiring space estimation.
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Karpet al.[4] proposed an approximate upper bound on global cells
which ism=2 in anm � m arrays. Sarrafzadehet al. [8] proposed
a bottom-up hierarchical global routing with a density of global cells
O(dopt log(s=dopt)),wheres is the span of nets anddopt is the optimal
channel density. In this paper, the bound derived by [8] is improved and
the new wire length upper-bound is derived.

III. QUADRISECTIONMAP TOP-DOWN GLOBAL ROUTING

The hierarchical approach has a great attraction such that each level
of hierarchy has a manageable-size problem that can be solved exactly.
Two top-down partitioning paradigms have been introduced. One is
to partition a routing region into four square subregions successively
(we refer to it as the quad-tree) [3]. The other is to bipartition subre-
gions on the basis of binary cut trees, dividing the routing region ver-
tically or horizontally in a single partition step [5]. The quad-tree ap-
proach is more precise than the approach of binary cut trees. The former
yields a truly 2-D routing paradigm, while the latter results in a one-di-
mensional partitioning procedure to solve the 2-D routing problem.
There are two ways of forming the partitioning size: area-based parti-
tioning (slice or rectangular) and point-based partitioning. The former
with square bucketing is sufficient since in deep-submicrometer layouts
their routing substrates are very dense and pins are usually distributed
evenly over the plane. Therefore, we process the top-down recursion
by first partitioning the top level, representing the whole routing re-
gion into four square subregions as in Fig. 1. That is, a quadrisection
having four quadrants is considered at each node of the quad-tree. For
anm�m grid (without loss of generality, we assume thatm is a power
of 2), there arelog2 m (i.e.,0; 1; . . . ; log2 m� 1) levels of 2-D ar-
rays. That is, level 0 is the top-most level, consisting of a2� 2 array,
while levellog2 m�1 is the bottom-most level, consisting of anm�m
array. We definelog m to belog2 m throughout the paper.

The following preliminary definition provides a property of leveli
of the top-down hierarchy.

Definition III.1: [QM(i)] (Fig. 1) The quadrisection mapQM(i)
consists of four quadrantsQi

k, k 2 (1; 2; 3; 4) (labeled counterclock-
wise from upper–right corner). Each set of unconnected net in a quad-
rant is denoted byU i

k. A common boundary of two adjacent quadrants
is said to be a cutline. Hence, there are two vertical and two horizontal
cutlines inQM(i), denoted byCi

k. The length of each cutline is de-
noted by iL(i) = 2log m�i�1, 0 � i � log m� 1. Each quadrantQi

k

is associated with a set of unconnected terminalsM i
k.

In top-down hierarchical routing, the problem is decomposed into
smaller square subregionsQM(i) that are solved exactly at leveli.

IV. COMPUTING THE WORSTCASE APPROXIMATE LOWER-BOUND

DENSITY

Here, based on the top-down four-way partitioning, we analyze the
worst case lower bound on the global cells.

Definition IV.1: (worst case lower-bound densityd0) When we re-
cursively partition the square region into2�2 square subregions, there
are square subregions of sidesLi = 2log m�i�1, where0 � i �
log m� 1 in anm�m 2-D array. Consider all square subregionsQi

k

with sideLi , where0 � i � log m� 1 and let us denotemaxk jM
i
kj

asU i, where1 � k � 4i+1 Consider the best case where all un-
connected nets should leave two cutlines of the square containingU i,
Then, we define the estimated density asd0 = maxi(dU

i=(2Li)e),
where0 � i � log m� 1. Note that1 � d0 � m=2.

The approximate density lower-boundd0 can be calculated in
O(n log m) time.

(a) (b)

Fig. 2. Four-bend routing. (a) Patterns in adjacent combination. (b) Patterns
in diagonal combination.

V. COMPUTING THE WORSTCASE APPROXIMATE UPPER-BOUND

DENSITY

Definition V.1: (net patterns) As shown in Fig. 3, there are two types
of nets in our four-bend routing.

• Type 1 (adjacent combination): one terminal is inQk and the
other terminal is inQ(k + 1)mod 4.

• Type 2 (diagonal combination): one terminal is inQk and the
other terminal is inQ(k + 2)mod4.

Let us denote byFpq (respectively,fpq) the set of nets (re-
spectively, its cardinality) whose one terminal is inQp and
other terminal in Qq. That is, F12; F23; F34, and F4; 1 are
in Type 1, andF13 and F24 are in Type 2. Then, the total
number of netsf = f12 + f23 + f34 + f41 + f13 + f24.
Let us denote byfmax 1 = max ff12; f23; f34; f41g and
by fmax 2 = maxfff12; f23; f34; f41g � fmax 1g, and also
fmax 3 = max fff12; f23; f34; f41g � fmax 1 � fmax 2g,
fmax 4 = minff12; f23; f34; f41g.

Lemma V.1: (worst case lower-bound densityd0) The tightly esti-
mated upper bound on the number tracks required for connecting a set
of nets is

d(f13 + f24 + fmax 1 + fmax 2)=2e:

Proof: To distribute nets evenly over cutlines, for Type 1 nets, we
need at mostd(fmax 1 + fmax 2)=2e tracks to be routed by crossing a
single cutline. Type 1 nets can be routed using two patterns,detour
(routed by crossing the three cutlines) andstraight(routed by crossing
the single cutline) connections. We need at mostd(fmax 1�fmax 2)=2e
nets to be routed withdetour connectionif fmax 1 � fmax 2 � 2.
For Type 2 nets, we need at mostd(f13 + f24)=2e tracks since the
nets are distributed evenly over two cutlines. In all, we need at most
d(f13 + f24 + fmax 1 + fmax 2)=2e tracks.

For example, in Fig. 2(a),dR = (fmax 1 + fmax 2)=2 = (f14 +
f12)=2 = (3 + 1)=2 = 2, and in Fig. 2(b),dR = (f13 + f24)=2 = 2.
Now, we obtain an upper-bound on the worst case global density as
follows.

Theorem 1: (worst case upper-bound density) There is an
approximation algorithm achieving the density of global cells,
dR � 2d0 log(m=(2d0)), in an m � m 2-D array, whered0 is
the estimated lower-bound density. The total wiring area is at most
(m � 2d0 log(m=(2d0)))

2.
Proof: The proof of the upper-boundglobal densityin the worst

case is done by induction oni, the number if times the top-down recur-
sion is executed based on a2 � 2 subdivisions.

Inductively, we consider one square subregions,Qi
k; 1 � k � 4,

each with side2log m�i�1, for level i, where0 � i � log(m=(2d0)).
Let us assume that at each level we maintain the following invariants.

• Invariant: at most2(i+1)d0 tracks are requires at each channel
on the cutline of each square subregion at leveli.
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Fig. 3. Well-distributed instance.

We want to show that at leveli, the invariant is main-
tained so that the bottom of the density of each global cell is,
dR � d2d0 � log(m=(2d0))e.

Now, let us consider the set of unconnected nets in four square
subregion with each side2log m�i�1 at level i. There are at
most U i = 2log m�id0 unconnectedterminals (by definition
of d0 such thatU i=(2 � 2log m�i�1) < d0) leaving the half
perimeter of eachQi

k,1 � k � 4. That is, there are at most
U i = 2log m�i+1d0 unconnected nets. We distribute all2log m�i+1d0
nets arbitrarily over the cutlines with at most four bends, using
at most d[(f13 + f24 + fmax 1 + fmax 2)=2]=[2

log m�i�1]e �
d[(2log m�i+1d0)=2]=[2

log m�i�1]e tracks (i.e., 2d0 tracks) per
channel on each cutline with side2log m�i�1. Thus, invariant is
maintained for leveli.

Next, let us consider the set of unconnected nets in four square sub-
region with each side2log m�i�2 at level(i+1). Consider routing the
set of yet unconnected nets insideQi

1, Qi

2, Qi

3, andQi

4, respectively.
Consider for exampleQi

1. The nets insideQi

1, each of whose terminals
leaving cutlines with side2log m�i�1 at leveli also contribute to den-
sity increase on the cutline at level(i+1). Thus,2log m�id0 terminals
at leveli are propagated to level(i+ 1) to be routed at level(i+ 1).

At level (i + 1), there were originally at most2log m�i�1d0
unconnected terminals leaving the half perimeter of each
Q1k

(i + 1); 1 � k � 4; 2 QM(i + 1) (by definition of d0
such thatU i+1=(2 � 2log m�i�2) < d0). That is, there are at most
U i+1 = (2log m�i�1d0 � 4)=2 = 2log m�id0 unconnected nets at
Qi

1(= QM(i + 1)).
Thus, in total there are at most2log m�i+1d0 nets to be

routed in QM(i + 1). We distribute all2log m�i+1d0 nets ar-
bitrarily over the cutlines with at most four bends, using at
most d[(f13 + f24 + fmax 1 + fmax 2)=2]=[2

log m�i�2]e �
d[(2log m�i+1d0)=2]=[2

log m�i�2]e tracks (i.e., 4d0 tracks) per
channel on each cutline with side2log m�i�2. Thus, invariant is
maintained for leveli+1. Invariant for leveli+2 can also be obtained
from the relation between levelsi + 1 andi + 2 which has the same
structure between levelsi andi + 1.

Therefore, we obtain a upper-boundglobal density, dR �
2d0 log(m=2d0) at the bottom of the recursion. Therefore, the total
wiring area is at most(m� 2d0 log(m=2d0))

2.
The time complexity of computing the upper-bound only depends on

computing time of the lower-bound densityd0, thus, the upper-bound
can be achieved in timeO(n log m).

TABLE I
A VERIFICATION RESULT ON SINGLE

LEVEL INSTANCES

Corollary V.1: The total wirelength required to achieve the bound
obtained in Theorem 5.1 is(2�+ �)4m2d0=3, where�+ � = 1 and
� is the percentage of diagonal combinations and� is the percentage
of adjacent combinations.

Proof: As shown in Theorem 5.1 and Fig. 2, Type 1 nets can be
routed using two patterns,detour (routed by crossing three cutlines)
andstraight(routed by crossing single cutline) connections. Type 2 nets
can be routed withone-bend(routed by crossing two cutlines). That is,
we need at mostf3 = d(fmax 1 � fmax 2)=2e detour connections,
at mostf2 = (f13 + f24) one-bend connections, and at mostf1 =
f � f3 � f2 straight connections.

The total wirelength required to route nets at leveli of the
top-down hierarchy,wi = 2log m�i�1 � (3f3 + 2f2 + f1): Thus,
the total wirelength required to route in anm � m 2-D array is
w = log m�1

i=0 2log m�i�1 � (3f3 + 2f2 + f1). As shown in
Theorem 5.1, the total number of nets to be routed in anm �m 2-D
array is log m�1

i=0 2log m�i+1d0. Thus, we havew = log m�1
i=0

2log m�i�1 � (2� + �) � 2log m�i+1d0 = (2� + �) � 4m2d0=3,
provided that we are given a good placement, i.e.,fmax 1 is similar
to fmax 2 (i.e., f3 term is removed) (this assumption holds since a
good placement distributes nets evenly over the cutlines). If� � �
(this assumption holds since a good placement minimizes the longer
wires), thenw � 2m2d0.

Now we further improve the bound derived in Theorem 5.1
by counting on the adjacent and diagonal combinations sepa-
rately in the cost function, in the most of cases, it is true that
f13 + f24 + fmax 1 + fmax 2 � 2f=3. This is true based on the
assumption thatf13; f24fmax 1; fmax 2; fmax 3 and fmax 4 are
of approximately same value, since a good placement attempts to
distribute nets evenly over the cutlines. Thus, we have the following.

Corollary V.2: If f13 + f24 + fmax 1 + fmax 2 � 2f=3, then we
obtain a global routing withdR � d4d0=3e � log(dm=(4d0=3)e).

VI. V ERIFICATION

To verify the approximation scheme, we tested with two types of in-
stances: single-level instances and multiple-level instances as follows.

For single-level instances, as we see in Table I, the approximation
bound derived in this paper was same as the optimal case in most of
instances. Here, 2-b (respectively,4�b) represents an optimal solution
with allowing at most two bends (respectively, four bends) per net for
the worst case instances. In this table, “The. 5.1” (respectively, “Corol-
lary 5.2”) represents the results of applying the bound derived in The-
orem 5.1 (respectively, Corollary 5.2).

Next we observe the multiple-level instances. For the well-dis-
tributed and localized two-level instances, e.g., as in Fig. 3, where
dR � 2d0 log s=(2d0), wheres is the span of nets. In Fig. 3, the
wires depicts the global routes for two-terminal nets.

The more general multiple-level instances such that density-centric
spots exists are shown in Fig. 4. The filled region in Fig. 4 represents
the wire congestion spots. The darker the region filled, the denser the
routing congestion in the region.

In the density-centric spots, the routing density is increased by2d0
in the worst case at each level of the top-down hierarchy. Therefore,
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Fig. 4. An instance where dense spots exist.

due to the density-centric spots, i.e., the darkest four spots,dR is close
to 2d0 log(m=(2d0)), as shown in Theorem 5.1.

VII. CONCLUSION

In this paper, by incorporating the flat approximation into routing of
each level of top-down recursion, we obtain inO(n log m) time a new
and tight approximate lower and upper-bound on the worst case density
of global cells. We observed that2d0 � dR � 2d0 log(m=(2d0)), in
anm�m 2-D array, whered0 is the worst case lower-bound density.
We showed the total wirelength required to route nets in anm � m
2-D array is at most2m2d0. By counting on the adjacent and diag-
onal combinations separately in the cost function,dR � d4d0=3e �
log(dm=(4d0=3)e). We verified that the bound obtained are realistic
in the worst case. We noted that placement congestion is necessary to
find a more tight bound since s depends on the net distribution and net
span, wheredR � 2d0 log(s=(2d0)).
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A Practical Approach to the Synthesis of Arithmetic
Circuits Using Carry-Save-Adders

Taewhan Kim and Junhyung Um

Abstract—Carry-save-adder (CSA) is one of the most widely used types
of operation in implementing a fast computation of arithmetics. An in-
herent limitation of the conventional CSA applications is that the applica-
tions are confined to the sections of arithmetic circuit that can be directly
translated into addition expressions. To overcome this limitation, from the
analysis of the structures of arithmetic circuits found in industry, we derive
a set of simple, but effective CSA transformation techniques other than the
existing ones. Those are 1)optimization across multiplexors, 2) optimization
across design boundaries, and 3)optimization across multiplications. Based
on the techniques, we develop a new timing-driven CSA transformation al-
gorithm that is able to utilize CSA’s extensively throughout the whole cir-
cuits. Experimental data for practical testcases are provided to show the
effectiveness of our algorithm.

Index Terms—Circuit optimization, timing, arithmetic circuit, RTL syn-
thesis.

I. INTRODUCTION

Timing of circuit is one of the most important design criteria to be op-
timized in several phases of synthesis process. In behavioral synthesis
phase [1], timing refers to two factors, namely,number of control steps
(i.e., latency) andcycle time. Scheduling step optimizes the timing fac-
tors under resource constraint or optimizes the amount of resources
required under the timing constraint. Hardware allocation/binding step
then allocates and binds implementations to realize a circuit for the
scheduled control and data flow graph (CDFG) of design while satis-
fying the required timing constraint. Ideally, to derive not only fully
optimized but also “feasible” timing it is necessary to take into ac-
count the problem of implementation selection for operations during
scheduling because mapping an operation to different implementations
leads to different timings in CDFG, thereby resulting in schedules with
different latencies. Practically, however, due to a huge computational
complexity it is assumed that each operation was bound to a partic-
ular implementation during the scheduling step and the possibility of
(re)implementations is considered in the allocation/binding step. Con-
sequently, the timing obtained from the behavioral synthesis is either
“underestimated” or “overestimated.” By overestimated, we mean the
situation that the scheduler assumed too slow implementations, thereby
wasting performance unnecessarily. By underestimated, we mean the
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