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Abstract 
W e  propo.~e (I method for V L S I  interconnect global routing 
that  can optiinize routing congest ion,  de lay  and  number  of 
bends, which nre often compet ing objectives. Rout ing jlexi- 
bilities under tinting constraints are ohtuined and  exploited 
to reduct congestion subject t o  tinting cori.stmints. T h e  wire 
ro ti tes  U re de t e r m  in  ed through ,qrn du a1 refin eni en t according 
t o  probabilistic estiniutioii on conge.stion.s so that  the con- 
gestion i s  minimized while t he  ncrnzber. of bends on zuircs 
( ire limited. ?%e eqierirnenls on both rcrnrlont generated cir- 
ciiits r i n d  bencliinctrk circuits co7zfirrri t he  effectiveness of this 
r r r  et.hor1. 

1 Introdt ic t ion 

Global rontiiig is a n  important stage in VLSI physical clr- 
sign. i r i  which a given set of global 1iet.s is rout.ed coarsely. in 
an area t.liat is concept,nally divided inbo sniall regions called 
routing cells. For each net. a routing t.i-ee is specified only 
in t,ernis of t.he cells t~hrough which it imsses. For a tmii id  
ary het.weeii t \vo neighboring cells, the nuniber of available 
rout,ing tracks arross i t .  called its supply. is limited. One 
funclamerit a l  goal of global routing is to minimize the con- 
gest.ion so (,hat the number of net.s across each houndar 

not. exceed it,s supply. Since mininiizing congest,ion 
Iiard t.o achieve ancl is essential for global rout.ing. it. 

has long been a focus of research in global routing ancl re- 
sult s in various methods inclutling sequential approach [I]. 
rip-"l'-ancl-reroute technique [L']. hierarchical method [3] arid 
iriulticornmodit,y flow hased router [4]. When interconnect 
becomes a performance bot,t,leneck in deep submicron tech- 
nology. rnerely miiiiniizing congest,ion is not enough. In  lat.er 
\vorks [ .5.  61, interconnect. delays are explicitly consiclerecl 
during global routing. Besides congestion and timing, t.he 
number of bends for each \vire needs t,o l i e  lirnit,ed, since wire 
hend usiially implies a switching of layers, which involves a 
v i a  resistaricr t,Iiat. adds to the delay and reduce reliabi1it.y. 
and will cons~inie niore wiring space. In [ 3 ] ,  a hierarchical 
global roiiting algorit,hni is proposed to control t,o nuniber 
of vias for each wire. 

In g l o l d  rout,ing, congestion, delay cor1straint.s and con- 
trol of t,hc number of vias are often competing objectives. I n  
order to avoid congest,ion, some wires must make clet,ours, 
and the signal delay will consecpent~ly suffer. Controlling t2he 
number of vias will reduce t,he capability of a wire to avoid 
congest.ion. ancl a large nuniber of vias will also affect the 
delay performance. Our work is an effort to niininiize t,he 
congestion while sat,isfyiiig biming constraint,s and limit.ing 
t,he number of v ias  for each wire in global routing. Similar 
to the work of [GI. ~ v e  oht.ain routing t,opology flexibilities 
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under bounded delays through deferred decision making and 
trade them into congestion reduction under timing con- 
straints. However, our tradeoff method is a probability- 
based gradual refinement which is different from [6]. More- 
over, we integrate restrictions on wire routes with the refine- 
ment so that the number of bends on wires can be bounded. 
Although our objective is complex, our method is simple 
and the experimental results on both random and bench- 
mark circuits confirm that it is effective in achieving all three 
objectives si mu1 t aneousl y. 

2 Defini t ions and Problem Formula t ion  

We are given a set of nets n/ = {NI, N2, ...}, with each net 
!VI being defined by a source node 21; and a set of sink nodes 

= {c;. U;, ... U ; } .  A routing problem for a net 1V is t,o 
find a set of Steiner nodes &teln,,. = { u p + l  I up+2, 
ancl a set of edges E = ( € 1 ,  e2! ... e P t q }  to construct a tree 
7(\,-! E ) .  where IT = u0 U 1/LtV11; U Vstelner: such that E spans 
all of the nodes in 1,*. The location for a node 21, is specified 
by its coordinates .r, arid y,, and an edge in E is uniquely 
identified by the node pair (U,, i r k ) ,  the notation e,k or e k  
interchangeably. We assume 21, is the upstream end of this 
edge. The edge length 1,k is given by t,he Manhattan dis- 
t.ance between the tn.0 nodes, which is IsJ -%k I + ly, - yl; 1 .  In 
order t.o make our presentation clearer, we define a backbone 
itode t o  be t.he source node, or a sink node, or a Steirier 
node wit,h degree greater than 2 in a rout.ing tree. We also 
define a backbone xiire to be a set of consecutively adjoined 
edges {(L!, ul), ( U ] ,  u 2 )  ...( ti?,,, t u ) } ,  where U, w E V are back- 
bone nodes and none of { u l ,  112, ... U , , , }  E V is a backbone 
node. 

-4s in conventional global routing. we tessellate the entire 
roiiting region for JV into an array of uniform rectangular 
cells. We represent this t.essellat,ion as a graph called the 
grid graph G( \,&, E G ) .  where VG = {gl, g2, ...} corresponds 
to t.he set of grid cells, and a grid edge b,, = ( g t , g J )  E EG 
corresponds to  the boundary between two adjacent grid cells 
9,.  g, E I,&. In this work, we also use g(r! c) to represent 
a grid cell at row r and column c.  There are a limited 
number of routing tracks across any grid edge, 6, called t,he 
supply  of t,he grid edge and expressed as s (b) .  During t.he 
rout,ing, the number of hacks occupied by wires across a 
grid edge b is designated as the d e m a n d ,  d b) .  The overflow 
f o u ( b )  a t  grid edge b is defined 1iy foUit.\ = max(d(b) - 
.s(6)$ 0) .  The d e m a n d  dens i t y  for a grid edge b is defined as 
D ( 6 )  = $$. We use the maximum demand density Dm,, = 
niax~~EG{D(b)}  and total overflow .Feu = C,,,,, f, , , (b) to 
evaluate the congestions in the final results. In this work, we 
use t,he TT HC model for wires, RC switch model for drivers 
and Elmore delay inodel for delay calculation. 

For a given set of nets J\/ and a grid graph G over the 
area of -k'. our object.ive is to const,ruct rout,ing trees T' for 
every N '  E .U, such that, the delay a t  every sink meets its 
given timing constraint, number of bends on each backbone 
wire is no greater than 5 and t,he congestion is minimized in 
terms of D,,,, and Feu. 
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If the timining constraint is not over-tight, there are usu- 
ally multiple tree topologies that can meet the timing con- 
straint. In 56, 71, the concepts of soft edge and slideable 
Steiner nodetSSN) are proposed to represent certain timing- 
constrained routing flexibilities. In t,his work, we will employ 
both concepts together with the concept of Z-edge and edge 
elongation. When the number of bends along a route con- 
necting two nodes is restricted to be no greater than two 
and its path length to be the Manhattan distance between 
the two nodes, this routre can only be straight, L-shaped or 
Z-shaped. A Z-edge is an edge that can take only such a 
route. Even though the routing flexibility from a Z-edge 
is less than that of a soft edge, this flexibility can preserve 
timing performance with bounded number of bends. Edge 
elongation implies that an edge can be stretched in its length 
as long as no timing violation incurred so that this edge can 
have more flexibilities on the routes it may take. 

Routing Flexibilities under Timing Constraints 

4 Approximated Congestion Estimation 
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Figure 1: Exaniples of primitive demand.  ( a )  each grid edge cor- 
responds t o  a horizontal(vertica1) thickened boundary segment has 
primitive demand of $(+) .  (b )  each grid edge corresponds t o  a thick- 
ened boundary  segment has primitive demand of 1 

In addition to the traditional congestion metrics, we use a 
couple of other approximate estimation methods during clif- 
ferent phases of global routing. For a soft. edge, we define 
a pr imi t ive  d e m a n d  to indicate the possibility t,liat this soft. 
edge will take a route across a grid edge. If the two ends of a 
soft edge ( v t , v J )  locate in grid cell g ( r a , c t )  and g ( r J , c , )  ( as- 
suming r ;  < r 3 ,  cz < c3 )! repectively, each upper horizontal 
grid edge of grid cell {y(r, c)  E Vc;lr, 5 r < r l , c t  5 c 5 c,} 
has a primitive demand 6 from this edge. Similarly! 
each righthand grid edge of grid cell {g(p . ,  c )  E V~.lr~ < r < 
r J ,  ct  5 c < c , }  has a primitive demand & from this 
edge. This is illustrated in the examples in Fig. 1. The total 
primitive demand dprim(b) on grid edge b is the summation 
of primitive demands from all soft edges whose bounding 
box overlapping with it. 

If the edge (U,, U]) we are considering is a Z-edge, t,hrough 
an enumeration similar to [9 ,  we can conclude that there 
are 2 = lrc - rJ l  + Ict - c3/  possible routes for a Z-edge 
between two grid cell ( r t  , c,) and ( r J ,  c,), in a grid graph. We 
assume a uniform probability dist,ribution for these routes. 
i.e., every route has the same chance to be chosen in later 
stages. Then, we can obtain the probability that a grid 
edge is crossed by a Z-edge. For each vertical grid edge to 
the right of grid cell g(rz , ck) , c t  5 c k  < c j ,  the probability 
is IcJ - c k l / Z .  The probability a t  other grid edge can he 
counted similarly. Based on these probabilities, we define 
the probabilistic d e m a n d  from a Z-edge e t3  to a grid edge b 
to be the probability that Z-edge run across this grid edge. 
and is denoted as dp,,b(b,  e c j ) .  

5 Algorithm 

Our strategy is to obtain t.he required timing performance 
first and then concentrate on optimizing t,he congestion and 
the number of bends while preserving the timing perfor- 
mance obtained. Therefore, we initially route each net in- 
dividually through timing driven algorithms without con- 
sidering congestion or the number of bends. We use soft, 
edges and slideable Steiner nodes in this phase so t,hat the 
routing result is composed of only backbone nodes and ev- 
ery backbone wire is a single edge. In the second phase, we 
will try to specify the det,ails for t.he slideable Steiner nodes 
and backbone wires in an effort to minimize congestion and 
control the number of bends on each backbone wire. In con- 
t,rast to sequential and rip-up-and-reroute met,hods, where 
nets routed earlier have no or little knowledge on rout,ing 
requests from other nets, our method select wire routes in 
a gradual refinement, manner according to more and more 
accurate congestion feedback. 

In phase I ,  we route each net through the MVERT [8] 
algorit,hm using soft. edges and slideable St,einer nodes so 
that the timing constraints can be satisfied and the result,- 
ing routing tree consists of only backbone nodes and each 
backbone wire is either a solid edge or a soft edge. 
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Figure 2: \.$'hen an  SSN slides along its locus, the  bounding boxes 
of its incident edges change as wcll as t h r  primitive deimands. 

jlfter phase I ,  we can obtain a roiigh estimation of COII- 

gestions through the concept of primi!iz?e tlerncind. The first 
step in phase I 1  is to fix the position of each SSN (Slicleable 
Steiner Node) to reduce the peak primitive demand densit 
When an SSN slides along a locus of points, the lengths of i 
incident edges are not changed. a n c l  nor is the delay a t  any 
sink. From the example in Fig. 2. we can see t,liat. sliding 
an SSN may cause changes on primitive demands. Through 
a linear search for all the grid cells that the locus of the 
SSN intersects, we can find a grid cell to fix h e  position of 
the SSN such that the maximum demand density among the 
grid edges involved is minimized. 

After fixing the SSN, we will make two sweeps of all the 
backbone wires in a constant order to specify their routes. 
Instead of specifying the complete r0ut.e immecliately in one 
step, we first only specify o n e  grid cell that we force the 
backbone wire to to pass through. Note that neither of the 
end nodes of this backbone wire can be within this grid 
cell. We insert a pseudo node, which we call the pos t  72ode 
in the backbone wire wit.hin this selected grid cell. Before 
choosing the grid cell for the post node, we need to choose 
the candidat,e grid cells that will be considered. A candic1at.e 
grid cell is any grid cell where we can force the backbonc 
wire passing through without causing timing violation, i.e.. 
a hackbone wire might be elongated to pass through it under 
timing constraint. Similarly, a formerly solid edge can also 
be elongated to reduce congestion. 

After the post node is inserted, the former backbone wire 
is split into two suheclges. We specify that each sub-edge can 
be only a Z-edge so that we can bound the number of I~entls 
for each backbone wire. Different choices on the location 
of the post node and the routes of its two Z-edges usually 
provide us with plenty of rout,ing flexibilities under restric- 

482 



tions on timing and number of bends on wires. Moreover, by 
using Z-edges we can obtain a better estimation of the con- 
gestion through the probabilistic demand. We choose the 
post node so as to minimize the congestion cost for the two 
sub-edges. The congestion cost of a subedge e3 is defined 

where B ( e 2 )  represents the bounding box of e3 .  Recall 
that 'D(b) = % is the demand density a t  boundary b and 
dprOb(b, e 3 )  is the probability that the Z-edge e3 runs across 
boundary b. After finding the post node, we generate the 
probabilistic demands from the two new Z-edges. The pro- 
cess of setting the post node is performed for each backbone 
wire in every routing tree, which is the first sweep. During 
this sweep, the backbone wires that have been processed are 
in Z-edges while those have not been processed are still soft 
edges. Thus, the demand density D(b) includes primitive 
demands from other soft edges and probabilistic demands 
from other Z-edges. 

After post nodes have been selected for all of the back- 
bone wires, all of the demands become probabilistic de- 
mands. Based on this improved congestion estimation, we 
start the second sweep for all backbone wires to specify 
their routes in the same order as in previous sweep. For 
each backbone wire, we recompute its post node before fix- 
ing the routes of its two Z-edges. A backbone wire ap- 
pears early in the order list may have a poor post node 
location in the previous sweep, since this location is cho- 
sen according to mostly primitive demands. In this sec- 
ond sweep, this backbone wire has a chance to adjust its 
post node location from a more accurate congestion infor- 
mation. The procedure of recomputing the post node is the 
same as in previous sweep. We choose the route for a Z- 
edge e3 to minimize congestion in term of a cost defined as: 

mum cost route can be found through simple enumeration 
in a manner similar to calculating the probabilistic demand. 
After fixing the routes for each backbone wire, its proba- 
bilistic demand is replaced by determined demand. 

6 Exper imen ta l  resu l t s  

as: cost(e2) = E,, intersecting B ( e J )  D(bI2 x dprob(ble3), 

cost(e2) = E,, intersecting route of e, '('I2. The mini- 

Circuit 
ami33 
Xerox 

ami49.1 
ami49.2 

t e s t l  
tes t2  

Table 1: Description of Test Circuits. 

a m i 3 3  
Xerox 
a m i 4 9  

t e s t l  
t e s t 2  

RR+B RR+T RR+B+T Ours 
Grid size (El F,, V,,, v i o  30u 'D,,, ben 30u 'D,,, 3,," V,,, C P U ( $ )  

22 x 36 489 0 1.00 5 1 1.20 12 1 1.20 0 1.00 15 .8  
54 x 55 587 0 1.00 6 5 1.14 14 5 1.14 0 0.86 16.1 
40 x 41  594 1 1.10 34 0 1.00 18 5 1.10 0 1.00 29.8 
52 x 5 3  593 0 1.00 38 0 1.00 14 51 1.80 2 1.10 25.9 
5 3  x 5 3  2648 5 1.13 28 0 1.00 1 7  107 1.12 0 1.00 562 
52 x 52 3992 4 1.16 3 5  0 1.00 20 6 3  1 1 4  0 1 0 0  1013 

Table 1: Description of Test Circuits. 
I Circuit I f modules I f nets  I Jt Dins 1 

a m i 3 3  
Xerox 
am149 

t e s t l  
t e s t 2  

The circuits that we tested includes benchmark suite 
ami33, ami49 and Xerox and two sets of randomly gen- 
erated nets, whose statistics are shown in Table 1. 

For comparisons, we also implemented three variations 
of rip-up-and-reroute (RR) global routing algorithm. In the 
base version of RR, we initially route each net separately in 
MVERT but using only solid edges. Then, we rip up every 

Table 2: Experimental results, vi0 is number of nets  with timing 
violations and ben is t he  maximum number of bends on a backbone 
wire. 

backbone wire in the region with wire overflow, and reroute 
them through maze routing to minimize congestion cost 
which is same as for Z-edges except that the demand is de- 
termined. Three variations are: RR+B (RR with bends con- 
trol), RR+T (timing-constrained RR) and RR+B+T (timing- 
constrained RR with bends control). In order to control the 
number of bends in RR, we replace the cost in maze routing 
with a weighted sum of congestion and number of bends. We 
run the RR+B with several different values of weight and 
choose the result that provides the least congestion, while 
assuring that the number of bends for each backbone wire 
is no greater than five, which is same as our method. In 
RR+T and RR+B+T, the timing constraints are imposed 
on the wirelength for each backbone wire in rerouting. 

The experimental results are shown in Table 2. There 
is no timing violations from RR+T, RR+B+T and our 
method. The maximal number of bends on a backbone wire 
is five in RR+B, RR+B+T and our method. The rightmost 
column lists the CPU time in seconds. Since a circuit may 
include many multi-pin nets, it would be more interesting 
to evaluate the CPU time for each 2-pin net as a normalized 
comparison. Column 3 lists the number of backbone wires 
in each circuits. It is easy to regard these backbone edges 
as a decomposition into 2-pin nets. Therefore, we can get 
that the average CPU time for a 3-pin net is 0.2 seconds. 

7 Conclusion 

We propose a new approach to improve the quality of global 
routing. In addition to exploiting timing constrained routing 
flexibilities, we apply a simple gradual refinement method 
based on probabilistic congestion estimation, which leads to 
simultaneous optimization on congestion, timing and nurn- 
ber of bends. 
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