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Abstract

We propose a method for VLSI interconnect global routing
that can optimize routing congestion, delay and number of
bends, which are often competing objectives. Routing flexi-
bilities under timing constraints are obtained and exploited
to reduce congestion subject to timing constraints. The wire
routes are determined through gradual refinement according
to probabiistic estimation on congestions so that the con-
gestion is minimized while the number of bends on wires
are limited. The experiments on both random generated cir-
cuits and benchmark circuits confirm the effectiveness of this
method.

1 Introduction

Global routing is an important stage in VLSI physical de-
sign, in which a given set of global nets is routed coarsely, in
an area that 1s conceptually divided into small regions called
routing cells. For each net, a routing tree is specified only
in terms of the cells through which it passes. For a bound-
ary between two neighboring cells, the number of available
routing tracks across it, called its supply, is limited. One
fundamental goal of global routing is to minimize the con-
gestion so that the number of nets across each boundary
does not. exceed its supply. Since minimizing congestion is
very hard to achieve and is essential for global routing, 1t
has long been a focus of research in global routing and re-
sults in various methods including sequential approach [1],
rip-up-and-reroute technique [2], hierarchical method [3] and
multicommodity flow based router [4]. When interconnect
becomes a performance bottleneck in deep submicron tech-
nology, merely minimizing congestion is not enough. In later
works [5, 6], interconnect delays are explicitly considered
during global routing. Besides congestion and timing, the
number of bends for each wire needs to be limited, since wire
bend usually implies a switching of layers, which involves a
via resistance that adds to the delay and reduce reliability.
and will consume more wiring space. In [3], a hierarchical
global routing algorithm is proposed to control to number
of vias for each wire.

In global routing, congestion, delay constraints and con-
trol of the number of vias are often competing objectives. In
order to avoid congestion, some wires must make detours,
and the signal delay will consequently suffer. Controlling the
number of vias will reduce the capability of a wire to avoid
congestion, and a large number of vias will also affect the
delay performance. Our work is an effort to minimize the
congestion while satisfying timing constraints and limiting
the number of vias for each wire in global routing. Similar
to the work of [6], we obtain routing topology flexibilities
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under bounded delays through deferred decision making and
trade them into congestion reduction under timing con-
straints. However, our tradeoff method is a probability-
based gradual refinement which is different from [6]. More-
over, we integrate restrictions on wire routes with the refine-
ment so that the number of bends on wires can be bounded.
Although our objective is complex, our method is simple
and the experimental results on both random and bench-
mark circuits confirm that it is effective in achieving all three
objectives simultaneously.

2 Definitions and Problem Formulation

We are given a set of nets N = {N', N2, ..}, with each net
N' being defined by a source node v§ and a set of sink nodes
Viiae = {vi,v3,...vp}. A routing problem for a net N Is to
find a set of Steiner nodes Vsiciner = {Upt1,Up42, - Uptq}
and a set of edges F = {€1,e2,...€p14} to construct a tree
T(V, E), where V = vo U Viinx U Vsieiner, such that F spans
all of the nodes in V. The location for a node v; is specified
by its coordinates z, and y,, and an edge in E is uniquely
identified by the node pair (v,,vx), the notation e;xr or ex
interchangeably. We assume v, is the upstream end of this
edge. The edge length I,x is given by the Manhattan dis-
tance between the two nodes, which is |o; —2x|+]|y; —yx|. In
order to make our presentation clearer, we define a backbone
node to be the source node, or a sink node, or a Steiner
node with degree greater than 2 in a routing tree. We also
define a backbone wire to be a set of consecutively adjoined
edges {(v,u1), (u1, u2)...(tm, w)}, where v,w € V are back-
bone nodes and none of {uy,ua,.. um} € V is a backbone
node.

As in conventional global routing, we tessellate the entire
routing region for A into an array of uniform rectangular
cells. We represent this tessellation as a graph called the
grid graph G(Vg, Eg), where Vo = {g1,92,...} corresponds
to the set of grid cells, and a grid edge b:; = (gi,9,) € Ea
corresponds to the boundary between two adjacent grid cells
gi.g9, € Vo. In this work, we also use g(r,c) to represent
a grid cell at row r and column c¢. There are a limited
number of routing tracks across any grid edge, b, called the
supply of the grid edge and expressed as s(b). During the
routing, the number of tracks occupied by wires across a
grid edge b is designated as the demand, d(b). The overflow
fou(b) at grid edge b is defined by f,,u(bg = max(d(b) —
s(b),0). The demand density for a grid edge b is defined as

D(b) = ZA‘%, We use the maximum demand density Dz =

maxsegs {P(b)} and total overflow F,, = ZVbeEG fou(b) to

evaluate the congestions in the final results. In this work, we
use the # RC model for wires, RC switch model for drivers
and Elmore delay model for delay calculation.

For a given set of nets N and a grid graph G over the
area of A, our objective is to construct routing trees 7" for
every N' € N, such that the delay at every sink meets its
given timing constraint, number of bends on each backbone
wire is no greater than 5 and the congestion is minimized in
terms of Dy and Foy.
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3 Routing Flexibilities under Timing Constraints

If the timining constraint is not over-tight, there are usu-
ally multiple tree topologies that can meet the timing con-
straint. In [6, 7], the concepts of soft edge and slideable
Steiner node{SSN) are proposed to represent certain timing-
constrained routing flexibilities. In this work, we will employ
both concepts together with the concept of Z-edge and edge
elongation. When the number of bends along a route con-
necting two nodes is restricted to be no greater than two
and its path length to be the Manhattan distance between
the two nodes, this route can only be straight, L-shaped or
Z-shaped. A Z-edge is an edge that can take only such a
route. Even though the routing flexibility from a Z-edge
is less than that of a soft edge, this flexibility can preserve
timing performance with bounded number of bends. Edge
elongation implies that an edge can be stretched in its length
as long as no timing violation incurred so that this edge can
have more flexibilities on the routes it may take.

4 Approximated Congestion Estimation

(b)

Figure 1: Examples of primitive demand. (a) each grid edge cor-
responds to a horizontal(vertical) thickened boundary segment has
primitive demand of +(1). (b) each grid edge corresponds to a thick-
ened boundary segment has primitive demand of 1.

In addition to the traditional congestion metrics, we use a
couple of other approximate estimation methods during dif-
ferent phases of global routing. For a soft edge, we define
a primitive demand to indicate the possibility that this soft
edge will take a route across a grid edge. If the two ends of a
soft edge (vi, v;) locate in grid cell g(ri, c;) and g(r;, ¢;) ( as-
suming r; < ry,¢; < ¢ ), repectively, each upper horizontal
grid edge of grid cell {g(r,c) € Vg|ri <r <r,,ci <c <}

has a primitive demand m from this edge. Similarly,
—c

each righthand grid edge of grid cell {g(r,c) € Vg|ri <r <
rj,ci < ¢ < ¢;} has a primitive demand Ir,—lTll from this
edge. This is illustrated in the examples in Fig. 1. The total
primitive demand dprim(b) on grid edge b is the summation
of primitive demands from all soft edges whose bounding
box overlapping with it.

If the edge (vi, v;) we are considering is a Z-edge, through
an enumeration similar to [9], we can conclude that there
are Z = |ri —rj| + lei — CJE possible routes for a Z-edge
between two grid cell (r;, c;) and (r;,c;) in a grid graph. We
assume a uniform probability distribution for these routes.
i.e., every route has the same chance to be chosen in later
stages. Then, we can obtain the probability that a gnd
edge is crossed by a Z-edge. For each vertical grid edge to
the right of grid cell g(ri,cx),c;i < ¢k < ¢, the probability
is |c; — ck|/Z. The probability at other grid edge can be
counted similarly. Based on these probabilities, we define
the probabilistic demand from a Z-edge e;; to a grid edge b
to be the probability that Z-edge run across this grid edge,
and is denoted as dprob(b, €:5).
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5 Algorithm

Our strategy is to obtain the required timing performance
first and then concentrate on optimizing the congestion and
the number of bends while preserving the timing perfor-
mance obtained. Therefore, we initially route each net in-
dividually through timing driven algorithms without con-
sidering congestion or the number of bends. We use soft
edges and slideable Steiner nodes in this phase so that the
routing result is composed of only backbone nodes and ev-
ery backbone wire is a single edge. In the second phase, we
will try to specify the details for the slideable Steiner nodes
and backbone wires in an effort to minimize congestion and
control the number of bends on each backbone wire. In con-
trast to sequential and rip-up-and-reroute methods, where
nets routed earlier have no or little knowledge on routing
requests from other nets, our method select wire routes in
a gradual refinement manner according to more and more
accurate congestion feedback.

In phase I, we route each net through the MVERT [§]
algorithm using soft edges and slideable Steiner nodes so
that the timing constraints can be satisfied and the result-
ing routing tree consists of only backbone nodes and each
backbone wire is either a solid edge or a soft edge.

(a)

Figure 2: When an SSN slides along its locus, the bounding boxes
of its incident edges change as well as the primitive demands.

After phase I, we can obtain a rough estimation of con-
gestions through the concept of primitive demand. The first
step in phase Il is to fix the position of each SSN (Slideable
Steiner Node) to reduce the peak primitive demand density.
When an SSN slides along a locus of points, the lengths of its
incident edges are not changed, and nor is the delay at any
sink. From the example in Fig. 2, we can see that sliding
an SSN may cause changes on primitive demands. Through
a linear search for all the grid cells that the locus of the
SSN intersects, we can find a grid cell to fix the position of
the SSN such that the maximum demand density among the
grid edges involved is minimized.

After fixing the SSN, we will make two sweeps of all the
backbone wires in a constant order to specify their routes.
Instead of specifying the complete route immediately in one
step, we first only specify one grid cell that we force the
backbone wire to to pass through. Note that neither of the
end nodes of this backbone wire can be within this grid
cell. We insert a pseudo node, which we call the post node
in the backbone wire within this selected grid cell. Before
choosing the grid cell for the post node, we need to choose
the candidate grid cells that will be considered. A candidate
grid cell is any grid cell where we can force the backbone
wire passing through without causing timing violation, i.e.,
a backbone wire might be elongated to pass through it under
timing constraint. Similarly, a formerly solid edge can also
be elongated to reduce congestion.

After the post node is inserted, the former backbone wire
is split into two subedges. We specify that each sub-edge can
be only a Z-edge so that we can bound the number of bends
for each backbone wire. Different choices on the location
of the post node and the routes of its two Z-edges usually
provide us with plenty of routing flexibilities under restric-



tions on timing and number of bends on wires. Moreover, by
using Z-edges we can obtain a better estimation of the con-
gestion through the probabilistic demand. We choose the
post node so as to minimize the congestion cost for the two
sub-edges. The congestion cost of a subedge e; is defined

as: cost(e;) = ), intersecting B(e;) D(b)? X dpros(b, €5),
where B(e;) represents the bounding box of e;. Recall
that D(b) = 3:—((% is the demand density at boundary b and

dprob(b, €5) is the probability that the Z-edge e; runs across
boundary b. After finding the post node, we generate the
probabilistic demands from the two new Z-edges. The pro-
cess of setting the post node is performed for each backbone
wire in every routing tree, which is the first sweep. During
this sweep, the backbone wires that have been processed are
in Z-edges while those have not been processed are still soft
edges. Thus, the demand density D(b) includes primitive
demands from other soft edges and probabilistic demands
from other Z-edges.

After post nodes have been selected for all of the back-
bone wires, all of the demands become probabilistic de-
mands. Based on this improved congestion estimation, we
start the second sweep for all backbone wires to specify
their routes in the same order as in previous sweep. For
each backbone wire, we recompute its post node before fix-
ing the routes of its two Z-edges. A backbone wire ap-
pears early in the order list may have a poor post node
location in the previous sweep, since this location is cho-
sen according to mostly primitive demands. In this sec-
ond sweep, this backbone wire has a chance to adjust its
post node location from a more accurate congestion infor-
mation. The procedure of recomputing the post node is the
same as in previous sweep. We choose the route for a Z-
edge e; to minimize congestion in term of a cost defined as:

—_ . . 2 . .-
cost(e;) = 3 v, intersecting route of «; D(b)". The mini
mum cost route can be found through simple enumeration
in a manner similar to calculating the probabilistic demand.

After fixing the routes for each backbone wire, its proba-
bilistic demand is replaced by determined demand.

6 Experimental results

backbone wire in the region with wire overflow, and reroute
them through maze routing to minimize congestion cost
which is same as for Z-edges except that the demand is de-
termined. Three variations are: RR+B (RR with bends con-
trol), RR+T (timing-constrained RR) and RR+B+T (timing-
constrained RR with bends control). In order to control the
number of bends in RR, we replace the cost in maze routing
with a weighted sum of congestion and number of bends. We
run the RR+B with several different values of weight and
choose the result that provides the least congestion, while
assuring that the number of bends for each backbone wire
is no greater than five, which is same as our method. In
RR+T and RR+B+T, the timing constraints are imposed
on the wirelength for each backbone wire in rerouting.

The experimental results. are shown in Table 2. There
is no timing violations from RR+T, RR+B+T and our
method. The maximal number of bends on a backbone wire
is five in RR+-B, RR+B+T and our method. The rightmost
column lists the CPU time in seconds. Since a circuit may
include many multi-pin nets, it would be more interesting
to evaluate the CPU time for each 2-pin net as a normalized
comparison. Column 3 lists the number of backbone wires
in each circuits. It is easy to regard these backbone edges
as a decomposition into 2-pin nets. Therefore, we can get
that the average CPU time for a 2-pin net is 0.2 seconds.

7 Conclusion

We propose a new approach to improve the quality of global
routing. In addition to exploiting timing constrained routing
flexibilities, we apply a simple gradual refinement method
based on probabilistic congestion estimation, which leads to
simultaneous optimization on congestion, timing and num-

ber of bends.
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