
Submission under review, please do not distribute!
Design and Scaling of Multi-Core Microprocessors

Weiping Liao, Changbo Long, Lucanus J. Simonson and Lei He
Electrical Engineering Department

University of California, Los Angeles, CA 90095
∗

Abstract
In this paper we study the design and scaling of multi-core micro-
processors, modeled as Chip-level Multi-Processors (CMP) with a
shared bus structure. We develop analytical models to avoid time-
consuming cycle-accurate simulation, and perform quick yet accu-
rate multi-core design space exploration. Experiments show that
our models achieve high fidelity and an average error of 9% com-
pared to cycle accurate simulation, and our optimized CMP design
with a same area has 23% higher throughput compared to a pub-
lished dual-core system based on IBM POWER5-like cores. In ad-
dition, we study the impact of technology and area scaling and scal-
ability of the shared bus structure. We show that technology scaling
has a diminishing or saturated throughput increase for single-core
design, but multi-core design with a same area improve through-
put by 5.58X when scaling the technology from 65nm to 32nm.
Furthermore, as chip area increases, the area efficiency defined as
throughput per unit area decreases, and so does the area efficiency
gap between different technology generations. Both are due to the
growing limitation of the shared bus structure.

1. INTRODUCTION
Multi-core design has become a new trend for the high-performance

microprocessor. Compared to traditional single-core design, which
can only leverage Instruction-Level Parallelism (ILP), multi-core
processor design can explore both ILP and Thread-Level Paral-
lelism (TLP), and therefore provide higher system throughput. A
number of multi-core microprocessors have been available [1, 2]. It
is expected that multi-core microprocessors will become the main-
stream in the near future.

Existing multi-core designs [1, 2] only integrate two cores into
one chip using existing single-core designs. Such approach is sim-
ple. However, there is no guarantee of optimality in terms of to-
tal system throughput. Co-optimization of organization between
cores and microarchitecture inside cores may improve the chip-
level throughput. However, given the large amount of choices for
different computing core architectures (issue width, number of func-
tional units, and etc.) and local cache hierarchies, it is not efficient,
if not totally infeasible to to explore the design space by traditional,
time-consuming cycle-accurate simulations. Instead, an efficient
yet accurate automatic methodology from the CAD point of view
is necessary. Such a requirement places a daunting challenge on
CAD researchers.
∗This paper is partially supported by NSF CAREER award CCR-
0401682, SRC grant 1116, a UC MICRO grant sponsored by Mind-
speed, and a Faculty Partner Award by IBM. We used computers
donated by Intel and SUN Microsystems. Address comments to
lhe@ee.ucla.edu.

In the literature, multi-core microprocessors modeled as Chip
MultiProcessing (CMP) architecture have been studied. Most of
these studies focus on the comparison among CMP, Simultaneous
MultiThreading (SMT), and aggressively wide-issued SuperScalar
architecture [3, 4]. Similarly, [5] studies the performance, energy
and thermal considerations for SMT and CMP architectures based
on IBM POWER4/POWER5-like cores. All these studies assumes
fixed CMP architecture and no automatic method for CMP design
exploration has been proposed.

Besides the throughput-optimal design, the impact of technology
scaling is always an interesting problem for semiconductor tech-
nology. Performance impact of technology scaling for single-core
SuperScalar architecture has been studied [6]. However, there is no
similar study for multi-core microprocessor design.

In this paper, we study the automatic exploration of area-constrained
throughput-optimal multi-core microprocessors. We model the multi-
core microprocessor as Chip MultiProcessing (CMP) architecture
with shared bus structure. We develop quick yet accurate high-level
analytical models to avoid time-consuming cycle-accurate simula-
tion, and perform quick yet accurate multi-core design space ex-
ploration. Experiments show that our models achieve high fidelity
and an average error of 9% compared to cycle accurate simula-
tion, and our optimized CMP design with a same area has 23%
higher throughput compared to a published dual-core system based
on IBM POWER5-like cores.

Leveraging our multi-core design methodology, we further study
the impact of technology and area scaling as well as the scalabil-
ity of shared bus architecture. We show that technology scaling
has a diminishing or saturated throughput increase for single-core
design, but multi-core design with a same area improve through-
put by 5.58X when scaling the technology from 65nm to 32nm.
Furthermore, as chip area increases, the area efficiency defined as
throughput per unit area decreases, and so does the area efficiency
gap between different technology generations. Both are due to the
growing limitation of the shared bus structure. To the best of our
knowledge, this paper is the first in-depth study on automatic ex-
ploration multi-core microprocessors and scaling of area and tech-
nology generations.

The rest of this paper is organized as follows. Section 2 presents
system architecture and problem formulation. Section 3 introduces
our methodology. Section 4 presents the experimental setting and
model validation. Section 5 further discusses the impact of area
and technology scaling, and shared bus structure. We conclude in
Section 6.

2. SYSTEM ARCHITECTURE AND PROB-
LEM FORMULATION

2.1 System Architecture
In this paper we model the multi-core microprocessor as Chip

MultiProcessing (CMP) architecture with shared bus structure. The
overall structure of our CMP is shown in Figure 1. There are mul-
tiple uniprocessor cores on the same chip, each of which is called a
Processing Element (PE). Each PE is a fully functional micropro-
cessor with local caches. Shared bus is the on-chip communication
mechanism connecting the memory controller and PEs. The mem-
ory controller is in charge of off-chip memory accesses. It receives
the memory requests from PEs, performs reads or writes to off-chip
main memory, and returns the data from main memory to PEs.

 L1
icache

Fetch

Decode

Schedule

L
2

c
a
c
h
e

EX EX...

L1 dcache

 L1
icache

Fetch

Decode

Schedule

L
2

c
a
c
h
e

EX EX...

L1 dcache

......

 Memory
controller

Chip boundary

Off-chip main memory

Shared bus

Processing
Element (PE)

Figure 1: CMP architecture with shared bus.

One PE is consisted of two major structures. The first is the com-
puting core, which is referred to as the pipeline of control logic and
datapath. The computing core fetchs, decodes, schedules(issues)
and executes instructions. We focus on SuperScalar architecture
with multi-issue and out-of-order execution, and choose the follow-
ing parameters to specify one computing core: issue width (IW),
issue window (WIN) size, reorder buffer (ROB) size, load/store
queue (LSQ) size, and number of functional units that include inte-
ger ALU (IALU), integer multiplier (IMULT), floating-point ALU
(FPALU) and floating-point multiplier (FPMULT). The second ma-
jor structure is the cache hierarchy. In this paper we assume two
levels of cache hierarchy with level-one instruction cache (IL1),
level-one data cache (DL1), and level-two unified cache (L2) for
both instruction and data.

In this paper we assume homogeneous core design, which means
all PEs have the same configuration of computing core and caches
hierarchy. Although heterogeneous core design has been proposed
in the literature [7], it is beyond the scope of this paper.

2.2 Problem Formulation
We study the throughput-optimal CMP design problem under

given chip area constraint. We focus on instruction throughput,
which is equal to the product of instruction-per-cycle (IPC) and the
clock frequency. The total CMP system throughput is the sum of
throughput of all PEs considering the impact of shared bus, which
is modeled as increased memory latency in the calculation of a PE’s
throughput.

We formulate our CMP optimization problem as follows:

FORMULATION 1. CMP optimization problem: Given a to-
tal chip area constraint TA for a homogeneous CMP system with
shared bus, decide the number of PEs and the configuration of each
PE’s computing core and cache hierarchy, to maximize CMP sys-
tem throughput.

In this problem formulation, we define the the configuration of
the computing core as a data set CORE that include data of IW,
WIN size, ROB size, LSQ size, and the numbers of each type of
functional units. The configuration of the cache hierarchy is an-
other data set CACHE including the design of IL1, DL1 and L2.
Each cache design is identified by three parameter: C for cache
size in kilobyte, B for block size in byte, and A for associativity.
Such terminologies are similar to those in [8].

For each PEi, 1 ≤ i ≤ n, we can select its computing core from
totally T types of different computing core, CORE1, ..., CORET ,
each of which is associated with a clock frequency CKm, 1 ≤

m ≤ T and area CRm, 1 ≤ m ≤ T . The choices of cache hierar-
chy CACHEi in PEi, 1 ≤ i ≤ n include totally I types of level-
one instruction cache IL11, ..., IL1I , D types of level-one data
cache DL11, ..., DL1D , and U types of level-two cache L21, ...,
DL1U . Each type of cache is uniquely identified by their param-
eters of C, B and A. Each cache hierarchy has an area CHRjkl,
where 1 ≤ j ≤ I , 1 ≤ k ≤ D, and 1 ≤ l ≤ U .

For a given workload, we assume there is one benchmark run-
ning on each PE. The details of workload construction is discussed
in Section 4.2. We target the multi-programming environment and
assume all PEs are always busy during the process of a given work-
load. The total throughput of the CMP system is computed as (1):

TP =
N

X

i=1

(IPC(COREi, CACHEi) · CKi) (1)

where IPC is the function to obtain the IPC for given PE consider-
ing the impact of shared bus. The chip area constraint is represented
as (2):

N
X

i=1

(CRi + CHRi) + bus_area < TA (2)

where bus_area is the chip area dedicated to shared bus and mem-
ory controller.

Traditionally in microprocessor design, cycle-accurate simula-
tion is the major method to obtain the IPC. However, cycle-accurate
simulation is extremely time-consuming. In our CMP optimization
problem, the possible solution space is a five-dimensional space on
number of PEs, total types of computing cores, total types of IL1
total types of DL1 and total types of L2. Such space increases expo-
nentially as we increase any design choices. Exploration of such a
large solution space requires large number of iterations. It is not ef-
ficient, if not totally infeasible to to explore the design space by tra-
ditional, time-consuming cycle-accurate simulations. Instead, effi-
cient yet accurate analytical performance models are necessary for
our CMP optimization problem. In Section 3 we will discuss our
systematic approach to solve the CMP optimization problem with
novel analytical performance models.

3. METHODOLOGY
In this section we present our methodology for obtaining throughput-

optimal CMP designs. We first develop analytic performance mod-
els for SuperScalar architectures and shared bus structure, based
on the understanding of pipeline execution in the computing core,
cache miss events and queuing theory. These models are then in-
tegrated into a traditional floorplanning optimization engine. This
combination of expertize from two sides of both micro-architecture
and CAD create a powerful methodology to effectively search the
huge solution space of CMP designs, as well as to reveal the big
picture regarding throughput of CMP systems from the perspective
of area and technology scaling.

3.1 Overall CMP Optimization Flow
Our CMP optimization method include three components: (1) an

analytical IPC model for SuperScalar architecture named SS model;
(2) an analytical model for memory access latency of shared bus
architectures called bus model; and (3) the Simulated Annealing
SA engine to explore the large design space.

In our method, we use our bus model to decide the average mem-
ory access latency, given the number of PEs and the workload char-
acteristics on each PE in current CMP design. Such memory access
latency is fed into the SS model along with other off-line profil-
ing information to calculate the IPC of one PE. The overall system
throughput is then obtained by multiplying such IPC by the clock
frequency and the total number of PEs. The SA engine takes the
throughput results along with the number of PEs and configuration
of each PE, to perform optimization.

3.2 Analytical Performance Model for Super-
Scalar Architecture

[9] proposed an analytical performance model for multi-issue
out-of-order SuperScalar architectures. Hoever, the model in [9]
assumes an unbounded number of arithmetic units and ignore the
variation in pipeline depth introduced by pipelined interconnects.
Extended from that in [9], our SS model achieves these additional
requirements by decoupling all non-ideal aspects of the micro-architecture.
We use off-line profiling to measure the impact of each indepen-
dent source of performance loss and additively construct the per-
formance estimation for a given processor configuration. Our SS
model is suitable for iterative optimization methodologies such as
simulated annealing because generating a performance estimation
is a constant time operation. The full derivation and experimental
validation of our analytical model is presented in [10].

Like [9] our model is formulated as the sum of the cycles per
instruction, CPI, of an ideal processor and the CPI overhead intro-
duced by each non-ideal aspect of the micro-architecture. Unlike
[9] our model includes many additional sources of overlapping per-
formance loss. Branch misprediction penalty, for instance, can be
masked by performance loss due to data dependency stalls in the
back end.

CPI = CPIideal +CPIIL1 +CPIL2 +CPIFront +CPIBack

(3)
The basic form of our model is shown in (3). Micro-architecture

CPI is calculated by adding the CPI of an ideal micro-architecture
(unit latency to memory, perfect branch prediction and minimal
pipeline depth) to a set of sources of performance loss. These in-
clude the performance loss incurred due to instruction level one
cache, CPIIL1, and level two cache, CPIL2. Also included in
the model is the performance loss in the frontend and backend
pipeline. CPIFront includes branch misprediction and prefetch
penalties that vary as a function of branch predictor setting and
pipeline depth. CPIBack includes performance loss due to data de-
pendency stalls for integer and floating point operations that vary
as a function of datapath latency. CPIBack also includes DL1
cache performance loss that varies as a function of the access la-
tency DL1 and L2 cache to determine the penalty of DL1 cache
hits and misses.

We assume that CPIIL1 and CPIL2 do not overlap with the
other sources of performance loss. To compensate for the overlap
of branch prediction penalty, prefetch penalty and data dependen-
cies, we assume that the timing of these events are independent ran-
dom variables and construct a probabilistic overlap model for these
performance loss events where the number and duration of each in-

dividual source of performance loss determines the probability that
it overlaps with any other. The result is a ratio between (1) cycles
during which the processor is considered to be performing useful
work, and performance will suffer if a performance loss event were
to occur; and (2) cycles during which the processor is considered
to be incurring overhead due to some performance loss event that
has already been counted by the model. This ratio is then used to
scale the impact of performance loss in the front end to model the
overlap of the various sources of performance loss.

3.3 Analytical Performance Model for Shared
Bus Structure

We develop a new bus model based on the finite source queuing
theory. We assume the CMP has one shared bus memory controller.
There is only one shared memory module off-chip, but the memory
module can accommodate multiple requests at the same time due
to internal pipelining and subbanking.

 Server
(Memory module)

...

 Queue
(buffer/bus)

 Arrival
(Memory requsts)

 Departure
(Memory responses)

Figure 2: Queuing model for bus and memory structures. The
queue includes the bus and the memory request buffer inside
the memory controller. The server models the memory module.

The bus, memory controller, and memory structures can be mod-
eled as a queuing system as shown in Figure 2, where bus and
memory request buffer in the memory controller are modeled as
the queue and the off-chip main memory module are modeled as the
server. The overall system latency is the average memory latency
Ta observed by each PE. For high-performance microprocessors
running at a few GHz clock frequency, the average memory latency
should be on the order of hundreds of cycles, given the latency of
main memory module in tens of nanoseconds. Such long latency
cannot be covered by out-of-order execution. Therefore, whenever
there is a memory access due to L2 cache miss in any PE, that PE
will eventually halt before the data comes back from the main mem-
ory. In other words, no more memory access can be generated from
that PE. For this reason, we model the queueing system modeled as
a finite source queue such as that in the machine repair problem
[11] instead of a general M/D/1 queue1 . Furthermore, if the main
memory can handle c memory accesses simultaneously (due to in-
ternal pipelining and subbanking), we apply total c servers in our
queueing system.

For each PE, the average memory access rate λ = M
Cp

, where M

is the total number of L2 misses and Cp is the number of execution
cycles in the CPIideal case defined in the SS model in Subsection
3.2. The average response rate of one server is µ = 1/TM , where
TM is the main memory access latency. For a CMP with n PEs,
assuming all PE runs identical benchmark (such assumption will
be removed later), the utilization rate of the queueing system is
r = λ/µ, and the probability for exactly i memory requests to
reside in the system is given in [11] as

pi =

(

n!/(n−i)!
i!

rip0 (1 ≤ i < c)
n!/(n−i)!

ci−cc!
rip0 (c ≤ i ≤ n)

1Infinite number of sources are assumed in general M/D/1 queues.

where p0 is the probability of the case when no memory request is
in the queueing system, given as (4):

p0 =
1

1 +
Pc−1

i=1
n!/(n−i)!

i!
ri +

P

i=c nn!/(n−i)!

ci−cc!
ri

(4)

The average number of memory requests in the system L is given
by

Pn
k=1 (k ∗ pk). According to Little’s formula [11], the total

system latency, i.e., the total memory access latency Ta, can be
calculated as

Ta =
L

λ ∗ (n − L)
(5)

After the derivation, we remove the restriction that all PE run
identical benchmarks. For different benchmarks, the memory ac-
cess rates may be different. In this case, we make two changes:
(1) assuming each PE has an access rate λi, we use the maximum
rate λmax = maxn

i=1(λi) to replace access ratio λ; and (2) we use
the equivalent total PE number neq =

Pn
i=1

λi

Rmax
to replace the total

PE number n. After that, Ta can be calculated following the same
approach as discussed above.

Because of out-of-order execution, each PE may have multiple
L2 cache misses and send out multiple memory requests before it
halts due to the pending memory requests. Such phenomenon is
called the overlap of L2 cache misses in our SS model. For bench-
marks with a large number of L2 cache misses, such overlap can
not be ignored and will significantly increase the average memory
access latency. To consider this effect we append an empirical term
to the latency calculated by our model. Finally, the average mem-
ory access latency Tlat is shown in (6):

Tlat = Ta + α
n−1

n (6)

where Ta is calculated from (5), n is the total number of PEs, and
α is an empirical constant obtained by profiling.

3.4 Simulated Annealing Engine
To achieve optimal throughput for CMP systems, SA starts with

a random configuration at a high temperature, and gradually de-
creases the temperature while changing the configuration by moves.
The moves involving micro-architecture configurations include 1)
choosing different types of computing cores, 2) choosing a differ-
ent IL1, 3) choosing a different DL1, and 4) choosing a different
L2. Throughput is re-evaluated after moves. Moves to improve
throughput are accepted with no conditions. Otherwise, it can also
be acceptable by a probability decreasing with the temperature.

The throughput of a CMP system depends on the configuration
of each core as well as the number of cores in the system. Given a
total area constraint, a compact floorplan could contain more cores
and have a higher throughput. In this paper, we estimate the area of
a CMP system by the bounding box containing all cores and buses,
and obtain a compact floorplan of the system by employing moves
in the SA engine to change the placement of components. These
moves include changing the position, orientation and aspect ratio
of a component, and are described in detail in the literature[12, 13,
14]. To maximize throughput and reduce the running time, moves
for configuration and floorplanning are alternatively used with a
ratio of around 1:5. As reported in [15, 16], interconnect latencies
significantly impact performance. We extract interconnect latencies
from the floorplanning and feed them into the analytical model.

4. EXPERIMENTAL SETTING AND MODEL
VALIDATION

4.1 Experimental Settings
We collect totally 7 types of computing cores, as shown in Table

1. These types cover three levels of parallelism: 2-issue architec-
ture exploring small ILP, 4-issue architecture for medium ILP, and
8-issue architecture for aggressive ILP. The numbers of functional
units in each type are also listed in Table 1, where the functional
unit is presented as a vector containing number of IALU, number
of IMULT, number of FPALU, and number of FPMULT, respec-
tively.

Clock frequency for each type of computing core is determined
by the following approach: first we identify the integer ALUs and
their bypass interconnects as the critical path. We require the ex-
ecution of one integer ALU operation and the bypass of such data
should be finished within one clock cycle. Therefore, the clock cy-
cle time should be no shorter than the total latency of the integer
ALU and associated bypass interconnects. We estimate the latency
of one integer adder as (log2(bits) + 1) FO4, where bits is the bit-
width of data path and FO4 is the Fan-Out-4 delay. We assume
64-bit datapath and 65nm technology. The FO4 delay is obtained
by SPICE simulation for the 65nm technology. For data bypass in-
terconnects, we calculate the total interconnect length based on the
estimation in [17]. By multiplying this interconnect length with the
interconnect delay per unit length (67.4 ps for the 65 nm technology
according to [18]), we obtain the total delay on the bypass intercon-
nects. Finally the clock period is equal to the sum of ALU delay
and the bypass interconnect delay. The results of clock frequency
for each computing core is shown in Table 1.

WIN ROB LSQ Functional Clock
IW size size size units (GHz)
2 32 32 16 (2, 1, 1, 1) 4.68
4 64 64 32 (2, 1, 1, 1) 4.31
4 64 64 32 (4, 1, 2, 1) 4.31
8 128 128 64 (6, 1, 2, 1) 3.99
8 128 128 64 (8, 2, 4, 1) 3.72
8 256 256 128 (6, 1, 2, 1) 3.99
8 256 256 128 (8, 2, 4, 1) 3.72

Table 1: Choices of computing core. The functional unit is
presented as a vector containing number of IALU, number of
IMULT, number of FPALU, and number of FPMULT, respec-
tively.

The area of issue window, ROB and LSQ are estimated by CACTI
3.0 toolset [8]. The area of functional units is based on the area of
those in DEC ALPHA 21264 [19], and scale from 350nm technol-
ogy down to 65nm technology. The detailed area results are omitted
due to page limit but will be presented in our technical report.

We explore totally 21 types of IL1, 21 types of DL1, and 19 types
of L2. The configuration of all these types are listed in Table 2,
where each cache configuration is present in the format (C/B/A).
The area and access latency (in ns) of these configurations are ob-
tained using the CACTI 3.0 toolset. During SA optimization, such
access latency is converted to clock cycles, depending on the clock
frequency of the individual computing core. The detailed area re-
sults are omitted due to page limit but will be presented in our tech-
nical report.

We assume the main memory latency is 40ns, which is converted
to clock cycles during SA optimization. The main memory can
simultaneously handle up to four requests due to internal pipelining
and subbanking. The area for shared bus is determined by (7):

bus_area = TA ∗ (0.0001 ∗ n2 + 0.0021 ∗ n + 0.0613)(7)

IL1 or DL1 L2
8/16/1 16/16/1 128/64/4 256/64/4

32/16/1 8/32/1 512/64/8 1024/64/8
16/32/1 32/32/1 2048/64/8 512/128/8
8/16/2 16/16/2 1024/128/8 2048/128/8

32/16/2 64/16/2 4096/128/8 512/256/8
16/32/2 32/32/2 1024/256/8 2048/256/8
64/32/2 32/64/2 4096/256/8 1024/128/16
64/64/2 32/16/4 2048/128/16 4096/128/16
64/16/4 32/32/4 1024/256/16 2048/256/16
64/32/4 32/64/4 4096/256/16
64/64/4

Table 2: Design freedom for caches. each cache configuration
is present in the format C/B/A, where C is the cache size in
kilobyte, B is the block size in byte, and A is the associativity.

where TA is the total chip area and n is the total number of PEs.
This formula is obtained by curve fitting based on the results pre-
sented in [20].

We use SimpleScalar 3.0 [21] toolset for ALPHA ISA as the
PE simulator, and develop additional programs to simulate the bus,
memory controller, and memory module. During simulation, we
create multiple instances of PE simulators and all of them com-
municate with the bus-memory simulator via UNIX interprocedure
calls.

We implement our SA engine based on the parquet package [14].
We start the SA optimization engine with a high temperature of
50,000 and end it at a low temperature of 0.05. As observed in our
experiment, the ratio of accepted moves decrease from over 90.0%
at the high temperature to below 10.0%2 at the low temperature,
indicating that the solution space is freely accessed at the high tem-
perature and the solution is frozen at the low temperature.

4.2 Workload Construction
We choose eight benchmarks from the SPEC 2000 benchmark

set. Five of them are integer benchmarks: bzip2, gcc, gzip, mcf,
and parser. The rest are floating-point benchmarks: art, equake,
and mesa. For each benchmark, we first fastforward 400 million
instructions and then simulate for 200 million instructions. We as-
sume each benchmark has independent address space when running
on each individual cores and there is no direct communication be-
tween different cores.

For any CMP with n cores we use workload to represent the
group of n benchmarks running on it simultaneously. We construct
the workload as follows: first, we consider workloads contain-
ing only identical benchmarks. Since we have eight benchmarks,
we have eight such workloads. Then, we generate a benchmark
list where each item on the list is a random selection of one of
the eight benchmarks. After that, we use a sliding window (with
wraparound) of size n to select n benchmarks on the list, and com-
pose one workload. We compose multiple workloads by repeat-
edly shifting the window right by one. This method of workload
construction with sliding window is similar to that used in [7]. In
our experiment, we construct eight workloads by sliding window.
Therefore, for any CMP system, we use sixteen workloads to evalu-
ate its throughput. The final CMP throughput metric is the average
throughput over all sixteen workloads. Although this number of
workloads may not cover all possible workloads on the CMP sys-
tem, we believe it is sufficient to statistically represent the average

2includes moves keep throughput the same.

performance in a realistic computing environment.

4.3 Model Validation
We validate our model by cycle-accurate simulation. We eval-

uate three different situations: (1) the single core configuration is
fixed and the number of cores is varied. All cores run identical
benchmarks. In this case, no total area constraint is enforced. (2)
the total area is fixed, but the single core configuration is varied
(the core number changes accordingly). All cores still run identical
benchmarks. And (3) the same setting as the second case, except
that different benchmarks are applied on different cores. The first
situation validates the model fidelity as core number changes. The
second and third situations approximately cover most of realistic
situations during our optimization.

WIN ROB LSQ Functional Clock
IW size size size units (GHz)
4 64 64 32 (4, 1, 2, 1) 4.31

IL1 DL1 L2
32/16/2 32/16/2 1024/128/8

Table 3: PE configuration for our first validation case.

Table 3 lists the configuration of PEs used for the first case. We
adjust the core number from one to eight. Figure 3 plots the curves
for performance with different number of cores. The results from
two benchmarks art and mcf are shown. For benchmark art, the
configuration of single core results in a large number of L2 cache
misses, which put a heavy burden on the shared bus. Therefore, the
performance is not linearly scalable with respect to the number of
cores. Instead, it tends to saturate as core number approaches to
eight. On the contrary, benchmark mcf with such configuration of
single core presents little memory-boundness due to a small num-
ber of L2 cache misses. Therefore, the performance scales almost
linearly when the core number increases.

From Figure 3 we can see that results from our analytical model
closely match the performance change, and correctly present the
two different performance trends. For mcf, although the gap be-
tween estimation and simulation increases as we increase the core
number, the relative error is constant at around 10%. These results
clearly domenstrate the high fidelity of our analytical model.

WIN ROB LSQ Functional Clock
IW size size size units (GHz)

CMP1 2 32 32 16 (2, 1, 1, 1) 4.68
(8 PEs) IL1 DL1 L2

16/16/1 16/16/1 512/64/8
WIN ROB LSQ Functional Clock

IW size size size units (GHz)
CMP2 4 64 64 32 (4, 1, 2, 1) 4.31
(4 PEs) IL1 DL1 L2

32/16/2 32/16/2 1024/128/8
WIN ROB LSQ Functional Clock

IW size size size units (GHz)
CMP3 8 128 128 64 (8, 2, 4, 1) 3.72
(2 PEs) IL1 DL1 L2

64/32/2 64/32/2 2048/128/8

Table 4: Three CMPs with PE number and per-PE setting in
our second validation case.

For the second case, we fix the total chip area at 250 mm2, and

(A) Benchmark art (B) Benchmark mcf.

Figure 3: CMP performance with identical benchmarks. All cores have the same configuration.

(A) Benchmark bzip2 (B) Benchmark equake.

Figure 4: CMP performance with identical benchmarks. All three configurations have the same total area constraint.

select three different CMP systems as listed in Table 4. Figure 4
compares the results from cycle-accurate simulation and our ana-
lytical model. The results from two benchmarks bzip2 and equake
are shown. Again, our analytical method provides high Fidelity and
accurate estimation compared to cycle-accurate simulation.

In the third case, we keep all the three CMP systems in Table
4 unchanged, but apply workload with mixed benchmarks. For
CMP1, we apply all eight benchmarks we choose. For CMP2,
we apply these four benchmarks: gcc, gzip, equake, and mesa. For
CMP3, we apply the two benchmarks: gzip and mesa. All the
mixes of benchmark include both integer and floating-point bench-
marks. Figure 5 compares the results from our analytical estimation
against those from cycle-accurate simulation. Overall, our analyt-
ical estimation closely keeps track of the performance change for
different CMP design with high fidelity. The average error is 9%.

4.4 Throughput Comparison between Opti-
mal CMP and Existing Design

We demonstrate the effectiveness of our CMP optimization method-
ology by comparing the throughput of our optimal CMP design
against the dual-core system based on an IBM POWER5-like core
used in [5], under the same area constraint. According to [5], we
configure the POWER5-like core to be a 5-issue out-of-order Su-
perScalar processor with 2 IALUs, 1 IMULTs, 2 FPALUs, 1 FP-
MULTs, 32/128/2 IL1, 64/128/2 DL1. In [5] the two POWER5-like
cores share a 2MB L2 cache. We do not consider shared cache, in-

Figure 5: CMP performance with mix benchmarks.

stead, we apply one 1MB L2 cache to each core and make the total
L2 cache for the whole dual-core system match the setting in [5].

We calculate the total area of the POWER5-like dual-core sys-
tem according to our method, and design the throughput-optimal
CMP by our optimization methodology with the same chip area
constraint, which we named optimal design. Figure 6 compares
the throughput of POWER5-like dual-core system and the optimal
design. Approximately the optimal design achieves 23% higher
throughput than the POWER5-like dual-core system. Given the
significant throughput difference between the optimal design and

Figure 6: CMP throughput comparison. The optimal design is
the CMP designed by our throughput-optimal methodology.

POWER5-like dual-core system, we believe the assumption to use
split L2 cache instead of shared L2 cache is unlikely to affect the
conclusion that our methodology can achieve better CMP design
than simply putting existing single-core designs together. This re-
sult clearly illustrates the effectiveness of our CMP optimization
methodology.

5. SCALING OF CMP DESIGN
In this section, we leverage our CMP optimization method to

study the impact of area and technology scaling, and shared bus
structure in the current state-of-the-art CMP design. All CMPs in
this section refer to the throughput optimal CMP obtained by our
methodology.

5.1 Impact of Area and Technology Scaling
We study the impact of technology scaling from 65nm down to

45nm and 32nm. For 45nm technology, we modify our experi-
mental settings for area and clock frequency, following the same
methodology as in 65nm technology, and repeat the CMP optimiza-
tion. For 32nm technology, we are not able to obtain SPICE model
file to determine the FO4 delay. Alternatively, we make two as-
sumptions: (1) the FO4 delay scales down linearly with respective
to the feature size. Such relationship matches our results when scal-
ing down from 65nm to 45nm technology. And (2) wire delay per
unit length for the bypass interconnects stays constant. This as-
sumption is based on the results of wire delay per unit length in
65nm and 45nm technologies presented in [18]. With these two
assumptions we can estimate the clock frequencies for all types of
computing cores in 32nm technology. The clock frequencies in dif-
ferent technology generations are shown in Table 5.

IALU number 2 4 6 8
Clock 65nm technology 4.68 4.31 3.99 3.72

frequency 45nm technology 7.13 6.54 6.04 5.61
(GHz) 32nm technology 10.16 9.31 8.59 7.97

Table 5: Clock frequencies in GHz for different generations
and types of computing cores. Note we estimate the clock fre-
quency based on the latency of execution and bypass intercon-
nects. So the clock frequency only depends on the number of
integer ALU.

We scale the total chip area constraint from 100mm2 to 300
mm2 with step 50mm2. Such range is within the reasonable chip
area specified by International Technology Roadmap for Semicon-
ductors (ITRS) [22]. Figure 7 shows the CMP throughput and area

(A) CMP throughput.

(B) Area efficiency as throughput per unit area.

Figure 7: Impact of technology scaling.

efficiency defined as throughput per unit area for different total
area constraints in 65, 45 and 32nm technologies. For all three
technologies, similar trends are observed for throughput and area
efficiency with respect to total chip area. Overall, CMP through-
put increases with larger total area or more advanced technology.
From Figure 7 (A) we can see the throughput difference between
technology generations increases when the chip area increases from
100mm2 to 300mm2. Such results indicate that technology scal-
ing has stronger impact on CMP with larger total area. The reason
is that in more advanced technology, we can explore more design
choices with larger total area. As shown in 7 (B). different from
CMP throughput, the area efficiency is larger with more advanced
technology, but decreases as the total area increases. Similarly, the
area efficiency gap between different tecnologies decreases as total
area increases. More importantly, it is easy to observe that in more
advanced technologies, the area efficiency decreases more quickly
as we increase total area. In other words, the area efficiency ad-
vantage at small chip area is more significant in more advanced
technology. The reason will be discuss in Subsection 5.2. Clearly,
as semiconductor technology keeps scaling down, small chip area
may become more and more preferred in terms of area efficiency.

From Figure 7 we can also see that there are significant gaps
between the throughput of different technology generations. This
result indicates that technology scaling can be every effective in in-
creasing CMP throughput. For better illustration, Figure 8 shows
the normalized throughput of CMP and single-core design for the
three technologies. It is easy to see that CMP throughput scales
linearly with respect to technology generation, but the throughput
from single-core design tends to saturate after 45nm technology.

Clearly, unlike the single-core design where technology scaling has
been rewarded with diminishing performance increases, CMP de-
sign can significantly benefit from technology scaling. By scaling
from 65nm to 32nm technology, we can increase the CMP through-
put by 5.58X , under the same chip area constraint.

Figure 8 also shows that the throughput gap between CMP and
single-core design keeps increasing. Such trends convincingly point
out that CMP will become the prevailing architecture in the future
high-performance microprocessor design.

Figure 8: Normalized throughput for 65, 45, and 32nm tech-
nologies. The chip area is limited to 100mm2.

An interesting observation by comparing Figures 4 and Figure
7 (A) is that the maximum CMP throughput with 250mm2 chip
area shown in Figure 7 (A) for 65nm technology is smaller than the
throughput from CMP2 configuration with the same chip area in
our validation experiment shown in Figure 4. The reason is that in
validation (Figure 4) the results are only for one individual bench-
mark, while the results from optimization (Figure 7 (A) for 65nm
technology) are based on mixed-benchmark workloads. This re-
sults indicate the importance of our workload construction.

5.2 Impact of Shared Bus Structure
In this paper we assume shared bus structure for CMP design

due to its simplicity and low design cost. However, such structure
may lack of scalability when the core number is large. We believe
such in-scalability is part of the reason for the fact that, as chip
area increases, both area efficiency and the area efficiency gap be-
tween different technology generations decrease. Table 6 summa-
rizes the core number for each optimal CMP design under different
area constraints in all three technologies we study. From Table 6
we can see the number of cores in a CMP increases by 2X when
the total area increases from 100mm2 to 300mm2. Large numbers
of cores increase the bus contention and reduce the overall area ef-
ficiency of our CMP system. Furthermore, the impact of shared
bus may be relieved with SPEC2000 benchmark due to its lack of
memory-bound benchmarks [5], and is expected to be more severe
in workloads with large numbers of memory-bound benchmarks.
Above all, we believe that as multi-core design becomes aggres-
sive (i.e., with cores numbering thirty or more), alternative on-chip
communication mechanisms such as Network-on-Chip (NoC), may
be a better design choice for area efficiency.

6. CONCLUSION
We have studied the design and scaling of multi-core micro-

processor modeled as Chip-level Multi-Processors (CMP) with a
shared bus structure. We develop analytical models to avoid time-
consuming cycle-accurate simulation, and perform quick yet accu-
rate multi-core design space exploration. Experiments show that

Area (mm2)
Technology 100 150 200 250 300

65 nm 4 6 8 7 12
45nm 9 13 13 21 24
32nm 17 25 22 27 33

Table 6: Core number in optimal CMP design.

our models achieve high fidelity and an average error of 9% com-
pared to cycle accurate simulation, and our optimized CMP design
with a same area has 23% higher throughput compared to a pub-
lished dual-core system based on IBM POWER5-like cores. In ad-
dition, we study the impact of technology and area scaling and scal-
ability of the shared bus structure. We show that technology scaling
has a diminishing or saturated throughput increase for single-core
design, but multi-core design with the same area improve through-
put by 5.58X when scaling the technology from 65nm to 32nm.
Furthermore, as chip area increases, the area efficiency defined as
throughput per unit area decreases, and so does the area efficiency
gap between different technology generations. Both are due to the
growing limitation of the shared bus structure.

7. REFERENCES
[1] J. Clabes and et al, “Design and implementation of the POWER5

microprocessor,” in ISSCC, 2004.
[2] T. Takayanagi, J. L. Shin, B. Petrick, J. Su, and A. S. Leon, “A dual

core 64b UltraSPARC microprocessor for dense server applications,”
in DAC, 2004.

[3] L. Hammond, B. A. Nayfeh, and K. Olukotun, “A single-chip
multiprocessor,” IEEE Computer, vol. 30, pp. 79–85, Sept. 1997.

[4] J. Burns and J.-L. Gaudiot, “Area and system clock effects on
SMT/CMP throughput,” IEEE Transactions on Computers, vol. 54,
pp. 141–152, Feb. 2005.

[5] Y. Li and et al, “Performance, energy, and thermal considerations for
SMT and CMP architectures,” in HPCA, 2005.

[6] V. Agarwal, M. S. Hrishikesh, S. W. Keckler, and D. Burger, “Clock
rate versus ipc: The end of the road for conventional
microarchitectures,” in ISCA, 2000.

[7] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and K. I.
Farkas, “Single-ISA heterogeneous multi-core architectures for
multithreaded workload performance,” in Proceedings of 31st

Annual International Symposium on Computer Architecture, Jun
2004.

[8] P. Shivakumar and N. P. Jouppi, “Cacti 3.0: An integrated cache
timing, power, and area model,” in WRL Research Report 2001/2,
2001.

[9] T. Karkhanis and J. Smith, “A first-order superscalar processor
model,” in ISCA, 2004.

[10] L. J. Simonson and L. He, “Micro-architecture performance
estimation by formula,” in Embedded Computer Systems:
Architectures, MOdeling, and Simulation, 2005.

[11] D. Gross and C. M. Harris, Fundamentals of Queueing Theory. John
Wiley & Sons, Inc, 1998.

[12] N. Sherwani, Algorithms For VLSI Design Automation. Kluwer, 3rd
ed., 1999.

[13] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani, “VLSI module
placement based on rectangle-packing by the sequence pair,” IEEE
Trans. on Computer-Aided Design of Integrated Circuits and
Systems, pp. 1518–1524, 1996.

[14] S. N. Adya and I. L. Markov, “Fixed-outline floorplanning through
better local search,” in Proc. IEEE Int. Conf. on Computer Design,
pp. 328–334, 2001.

[15] C. Long, L. Simonson, W. Liao, and L. He, “Floorplanning
optimization with trajectory piecewise-linear model for pipelined
interconnects,” in Proc. Design Automation Conf, pp. 640 – 645,
June 2004.

[16] M. Ekpanyapong, J. R. Minz, T. Watewai, H.-H. S. Lee, and S. K.
Lim, “Profile-guided microarchitectural floorplanning for deep

submicron processor design,” in Proc. Design Automation Conf,
pp. 634 – 639, June 2004.

[17] N. S. Palacharla and J.E.Smith, “Quantifying the complexity of
superscalar processors.,” in Technology Report CSTR-96-1328, Univ.
of Wisconsin-Madison, November 1996.

[18] K. Banerjee and A. Mehrotra, “Power dissipation issues in
interconnect performance optimization for sub-180 nm designs,” in
Proceedings of 2002 Symposium on VLSI Circitus, 2002.

[19] B. A. Gieseke and et al, “A 600MHz superscalar RISC
microprocessor with out-of-order execution,” in Proc. IEEE Int.
Solid-State Circuits Conf., pp. 176–177, 1997.

[20] R. Kumar, V. Zyuban, and D. M. Tullsen, “Interconnections in
multi-core architectures: Understanding mechanisms, overheads and
scaling,” in (to appear) Proceedings of 32n

d Annual International
Symposium on Computer Architecture, June 2005.

[21] S. LLC, “The simplescalar tool set,” in http://www.simplescalar.com.
[22] The International Technology Roadmap for Semiconductors.

http://public.itrs.net/, 2004.

