
1. TIME SLACK ALLOCATION WITH WIRE
SEGMENTS OF DIFFERENT LENGTHS

we use the net-based formulation which partitions the constraints
on path delay into constraints on delay across circuit elements or
routing. Let a(v) be the arrival time for vertex v in G and the timing
constraints for PI and PO are as below,

a(v) ≤ Tspec ∀v ∈ PO (1)

a(v) = 0 ∀v ∈ PI (2)

For the edges corresponding to routing in G, the constraints consid-
ering slack can be expressed as

a(pi0) + d(pi0, pik) + Sik ≤ a(pik)

0 ≤ i < Nr ∧ ∀pik ∈ FOpi0 (3)

where vertex pi0 is the source of Ri in G, vertex pik is kth sink of
Ri in G, Sik is the slack allocated to kth sink in Ri and d(pi0, pik)
is the delay from pi0 to pik in Ri using VddH. For the edges other
than routing in G, the constraints can be expressed as

a(u)+d(u, v) ≤ a(v) ∀u ∈ V ∧u /∈ SRC∧v ∈ FOu (4)

where SRC is a subset of V and gives the set of vertices corre-
sponding to routing tree sources.

There is an upper bound for slack, which is the delay increase
when VddL is assigned to all the switches in a tree. Clearly, slack
more than the upper bound cannot lead to more VddL switches. We
define the useful slack of each routing tree sink as the slack less
than this upper bound. For the rest part of the paper, we use slack to
represent the useful slack. The slack upper bound constraints can
be expressed as

0 ≤ Sik ≤ Dik 0 ≤ i < Nr ∧ 1 ≤ k ≤ Nk(i) (5)

where Nk(i) is the number of sinks in Ri and Dik is the delay
increase of the path from the source to kth sink in Ri when VddL
is assigned to all the switches in that path.

Given a routing tree with arbitrary topology and allocated slack
for each sink, we need to estimate power reduction that can be
achieved. We use lik represent the number of switches in the path
from the source to kth sink in Ri. We first transform slack Sik into
sik, which is expressed in number of switches as follows,

sik =
Sik

Dik

· lik (6)

We then estimate the VddL switch number that can be achieved
using sik. We use Cik to represent the total load capacitance of the
switches in the path from the source to kth sink in Ri. We use cij

to represent the load capacitance of jth switch in Ri. We define
sink list SLij as the set of sinks in the fanout cone of jth switch

in Ri. We then estimate the number of VddL switches that can be
achieved given the allocated slack as

Fn(i) =

Ns(i)−1
X

j=0

min(
sik

Cik

· cij : ∀k ∈ SLij) (7)

To estimate the number of VddL switches that can be achieved in
tree Ri, we first deliberately distribute the slack sik to the switches
in the path from source to kth sink in Ri considering the load
capacitance of each switch. For a switch with multiple sinks in
its fanout cone, we choose the minimum sikcij/Cik as the slack
distributed to the switch. We then add the slack distributed to all the
switches in Ri. and get the estimated number of VddL switches.
The rationale is that we consider kth sink with minimum sikcij/Cik

in sink list SLij as the most critical sink to jth switch in Ri.
We then estimate the power reduction ofRi. The dynamic power

reduction of the tree Ri is estimated as the sum of the dynamic
power reduction of each switch in Ri and can be expressed as,

Pdr(i) = 0.5fclk·∆V dd
2
·fs(i)

Ns(i)−1
X

j=0

[min(
sik

Cik

· cij : ∀k ∈ SLij) · cij ]

(8)

The leakage power reduction of Ri is also the sum of the leakage
power reduction of each switch in Ri and can be expressed as,

Plr(i) =

Ns(i)−1
X

j=0

[min(
sik

Cik

· cij : ∀k ∈ SLij) · ∆Ps(i, j)] (9)

where ∆Ps(i, j) is the leakage power difference of jth switch in
Ri between VddH and VddL. Wire segments with different lengths
might be driven by switches with different sizes. The objective is
to maximize power reduction given by the sum of (8) and (9). To
incorporate (8) and (9) into mathematical programming, we intro-
duce a variable fn(i, j) for jth switch in Ri and some additional
constraints. The new objective function after transformation plus
the additional constraints can be expressed as

Maximize

Nr−1
X

i=0

0.5fclk∆V dd2

Ns(i)−1
X

j=0

fn(i, j)fs(i, j)cij

+

Nr−1
X

i=0

Ns(i)−1
X

j=0

fn(i, j)∆Ps(i, j) (10)

s.t.

fn(i, j) ≤
sik

Cik

cij 0 ≤ i < Nr ∧ 0 ≤ j < Ns(i) ∧ ∀k ∈ SLij(11)

We formulate the time slack allocation problem using objec-
tive function (10), additional constraints (11), slack upper bound
constraints (5), plus timing constraints (1), (2), (3) and (4). It is



easy to verify that (1), (2), (5) ∼ (4) and (11) are linear, and the
objective function (10) is linear too. Hence we have the following
theorem.

Theorem 1. The time slack allocation problem is a linear
programming (LP) problem.

Therefore, we can first solve the extended time slack allocation
problem and then perform net-level assignment and refinement for
the interconnects using wire segments of different lengths.

2. STATISTICAL DELAY AND POWER
MODELS

We consider the variation in threshold voltage (Vth), effective
channel length (Leff ), and gate oxide thickness (Tox). Similar to
[1] where ASIC is assumed, each variation (∆P ) is decomposed
into global (die-to-die) variation (∆Pg) and local (within-die) varia-
tion (∆Pl). Both global and local variations are modeled as normal
random variables. To make presentation simple, we denote ∆Leff ,
∆Vth and ∆Tox as L, V and T , respectively. L, V and T can be
decomposed into local (Ll, Vl, Tl) and global (Lg , Vg , Tg) compo-
nents.

Power reduction of an interconnect switch by changing the Vdd-
level from VddH to VddL considering process variation is presented
as below,

∆P = ∆P0e
−c1Le−c2V e−c3T (12)

∆E = ∆E0 +
∂∆E

∂V
∆V = ∆E0 + c4∆V (13)

∆P is leakage power reduction, ∆E is dynamic energy per signal
switch reduction when driving unit load capacitance. c1, c2, c3 and
c4 are curve fit parameters. ∆P0 and ∆E0 are the nominal values.
∆P exponentially depends on L, V and T , and it can be modeled as
a lognormal (LN) random variable. We assume a first-order Taylor
expansion of dynamic energy reduction ∆E is adequate, which
therefore can be modeled as a normal random variable. A first-
order Taylor expansion of circuit element delay is also assumed as
adequate,

d = d0 +
∂d

∂L
∆L +

∂d

∂V
∆V = d0 + c5L + c6V (14)

where d0 is the nominal value of circuit element delay, c4 and c5

are curve fit parameters. Delay d is a normal random variable under
this model.

3. STATISTICAL POWER OPTIMIZATION

3.1 Chip-level Time Slack Allocation
To handle the variability of process parameters, we reformu-

late the time slack allocation problem as a robust linear program
problem which can be solved efficiently using interior-point convex
methods [2]. We first the objective function (10) into an equivalent
formulation as below, which places the power reduction into the
constraint set

Miminize

Nr−1
X

i=0

Nk(i)−1
X

k=0

Sik (15)

s.t.
Nr−1
X

i=0

Ns(i)−1
X

j=0

∆Pd(i, j)fn(i, j) ≥ ˆ∆Pdyn

∆Pd(i, j) = ∆Ecijfclkfsi, j (16)

Nr−1
X

i=0

Ns(i)−1
X

j=0

∆Ps(i, j)fn(i, j) ≥ ˆ∆Pleak (17)

where ˆ∆Pdyn and ˆ∆Pleak are the optimal dynamic and leakage
power reduction achieved by the time slack allocation problem
without considering process variation.

3.2 Net-level Bottom-up Assignment
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