[image: image1.emf]D

Decode and

Fold

[IFU]

R

Fetch

Operands

From Stack

[RCU]

F

Fetch from I-

Cache

[ICU]

W

Write

Results To

Stack

C

Access Data

Cache

E

Execute

Instruction

IU Related

Abstract
This paper reports on our experience in developing and implementing picoJava-II CPU on Xilinx FPGA Vertex-II Pro and interfacing it with DDR SDRAM external memory available on ml310 development board.
Java language is famous for the ease of portability, strong security model, and high code density. Despite this Java technology faces serious performance issues when Java Virtual Machine is employed to translate Java bytecode into binary instructions. To increase performance and facilitate the use of Java in embedded systems, Sun Microsystems designed picoJava-II CPU, which directly executes Java bytecode in its hardware.

We used picoJava-II Verilog RTL, provided by Sun Microsystems, to analyze picoJava-II architecture and implement picoJava-II CPU onto Xilinx FPGA chip. The RTL was adjusted for development with Xilinx ISE 7.1 software environment. A simplified DDR SDRAM memory controller was designed to interface the CPU with the external DIMM connected to the development board.
Introduction
PicoJava-II processor was developed by Sun Microsystems to promote Java Technology by keeping the benefits of bytecode while resolving performance limitations related to execution of Java programs.
One major advantage of Java technology is portability: a program written in Java is stored in the form of Java Virtual Machine instructions (bytecode) rather then translated all the way to machine binary. Bytecode is not machine specific and in principle can be execute on any system regardless of underlying CPU, provided that Java Virtual Machine is functioning in the system. Right before execution Java Virtual Machine has to translate the bytecodes into corresponding machine-specific instructions.
As a result typical execution of Java programs is always a subject to additional overhead introduced by the translation phase of JVM (whether it employs an interpreter or just-in-time compiler as shown in the figure).
There are two ways to bypass extra translation overhead. One is to compile java programs all the way to the machine code instead of storing them in intermediate bytecode format (this is analogous to traditional compilation of other languages, such as C). The problem is that doing so will eliminate all the advantages offered by Java technology. The idea of keeping java programs in bytecode rather than in machine-specific binaries not only allows portability but also enables a strong security model and result to very small program size. Storing programs in bytecode is especially beneficial for embedded systems due to the high code density of Java bytecode. Typically the size of the same program compiled into bytecode is twice smaller than its binary machine-specific version
.
The other approach is to directly execute bytecode in hardware, eliminating translation phase whatsoever. This is the role of picoJava processor. PicoJava-II differs from other CPUs in its goals: while some CPUs (Pentium, SPARC) primarily target performance, picoJava-II’s was developed to be small and inexpensive to make it attractive for embedded systems. Still a range of techniques were employed to speed up picoJava performance (instruction folding, register-like stack and other)..
Figure: Executing Java Programs

(a) Using Interpreter (b) Using Just-in-time compiler

(c) Hardware execution with picoJava CPU

[image: image14.emf]Byte Code

Interpreter

Java OS

Any CPU

Byte Code

Byte Code

Compiler

Any CPU

Java OS

Any OS

Machine

Binary

picJava CPU

PicoJava-II Instruction Set (Bytecode)
PicoJava-II instruction set consists of all instructions supported by JVM plus additionally added instructions (extended bytecode).

JVM instruction set consists of a little over 200 variable length instructions
 [1]. All instructions start with a 1-byte opcode (opcode length is fixed) followed by 0 or more number of bytes (used to specify index, constant, data type, offset, etc.). Majority (62%) of the instructions is encoded into just one byte and most other instructions are either two bytes (20%) or three bytes (25%) long. The idea is to allocate separate opcodes to most frequently used instructions (rather than keeping them in general category)
 and to encode instructions into the least number of bytes possible. Such variable-length schema in conjunction with stack addressing (operations on stack require 0 bytes for addressing) is what makes JVM bytecode extremely compact in contrast with fixed-length RISK ISA’s..
Original JVM instruction set intentionally lacks hardware related instructions to enforce security and support portability since the whole idea of bytecode is that nothing is known about underlying hardware. For example, there is no way to address an arbitrary memory location or with JVM instructions. To achieve a fully functional ISA, an additional group of low-level hardware management instructions (referred to as extended bytecode) was added to comprise a complete picoJava ISA with total of over 300 instructions.
One byte opcode for JVM instructions means that up to 256 different instructions are possible. Some of the opcodes were reserved for internal JVM use. PicoJava-II ISA uses originally reserved opcode 255 to start all extended instructions, with the 2d byte being the actual opcode of the extended operation. Thus any extended instruction would occupy at least two bytes with the first byte merely used to indicate extended type. A total of 98 extended operations are recognized by picoJava-II RTL.
Most of picoJava-II instructions are RISK-like instructions in the sense that they can be directly executed by the hardware in a single clock cycle. About 30 instructions are CISC-like and are microcoded. Yet another group (very small number) of instructions is too complex to be processed by hardware and causes trap (instruction emulation trap) to software routines
.
Comments on Bytecode:
Complete picoJava-II instruction set (obtained from RTL) with instruction lengths and types is attached as an appendix to this paper (useful for simulation purposes). Java Bytecode assembler (JASM) and Java Bytecode Disassembler (JDIS) are distributed by Sun Microsystems alone with picoJava-II RTL and can be found in picoJava-II\tools\ of the distribution.
Description of JVM and/or extended bytecode can be found in:

· picoJava-II™ Programmer’s Reference Manual
· The JavaTM Virtual Machine Specification from Sun Microsystems (available online at http://java.sun.com/docs/books/vmspec/)
PicoJava-II RTL
RTL for picoJava-II CPU (provided by Sun) is hierarchically organized into five major units:
1. IU – Integer Unit
2. ICU – Instruction Cache Unit

3. DCU – Data Cache Unit

4. SMU – Stack Management Unit

5. FPU – Floating Point Unit

6. PCSU – Power-down, Clock, and Scan Unit

Plus and additional unit is provided to interface the CPU with external memory and (optionally) I/O devices
7. BIU – Bus Interface Unit

Not provided but non-optional unit that must be added into the design is the memory controller. Memory controller RTL is not generic (i.e. hardware-specific depending on the memory used) and should be developed specifically for the memory module used. Our memory controller is for DDR SDRAM DIMM:

8. Memory Controller
FPU, DCU, ICU are optional and can by dynamically excluded from the RTL design by modifying picoJava-II\rtl\defines.h. Both data and caches can be chosen to be 16, 8, 4, 2, 1, or 0 (no cache) KB.

[image: image15.emf]The figure on the left shows a hierarchical organization of the CPU RTL. FPU is disconnected from the design. Only some of the units are discussed in this paper.
Two figures on the bottom show utilization of the Virtext-II Pro FPGA after the RTL was synthesized: the whole CPU on the left and IU unit by itself on the right. IU unit is the major unit of CPU RTL by complexity and FPGA utilization.
[image: image16.emf]
[image: image17.png]1Bufer

vy ¥y

vy d

[

'

DEC

DEC | | DEC

DEC

v

3

RS1

RS2

opP

FIGURE 33 Instruction Folding Unit (IFU) Datapath

PicoJava Pipeline:

[image: image24.png]Now:
1000 ns

st
Melk

Melkan
HMiocked

The figure shows a six-stage pipeline of picoJava-II CPU. Five the stage are handle by IU.
IU: Integer Unit
IU is the fundamental unit of picoJava-II CPU which handles execution of all instruction with the exception of floating point instructions.

[image: image18.emf]
IFU: Instruction Folding Unit
Instruction Folding decodes the sequence of upcoming instructions and when appropriate can replace up to four instructions with just one micro-operation. Instruction Folding is one of the key elements allowing picoJava-II to achieve high performance comparable to RISC CPU’s.
[image: image19.png]= B ibuff_0[7:0]

= @ ibuff_1[7:0] (8B (11 (T80 X116 g
= @ ibuff_2(7:0] 17
= @ ibuff_3[7:0]

= B ibuff_4[7:0]

= B ibuff_s[7:0]

= @ ibuff_6[7:0]

= @ accurn_lend[7:0]
= @ accurm_len1[7:0]
= @ accurm_len2[7:0]
® S type_0[5:0]

= B type_1
= &type_2|
® B type_J|

B
B
B
B

0
0
0

The figure on right illustrates how four instruction (two iload operations followed by iadd and istore) are folded into just one.

IFU reads 7 bytes from the I-Buffer (filled by ICU in instruction fetch stage of the pipeline). I-Buffer is FIFO instruction queue. Each byte of the I-Buffer has 5 additional bits associated with it: 1 valid bit to mark if the byte is valid, 1 dirty bit signifying a fetch error in, and 4 bits holding length of the instruction that corresponds to the prospective opcode stored in the byte.
[image: image20.jpg]System lnterface

biu
——f

- wity —
e P
P_eder(29.0) =

_ —feurea

curea p_dela_0ut(310)

pLsize(1) =
PLype0ES]

———fou_s(31:0)
 Fjeutype30)
———feu_siz=(1:0)

———foeu_ader(3t0)
———foeu type30)

J—Em,mm o
poeetEh)

T a1 0
5 cala n31.0)
I o o . so_ock(10)

biu_iou_ack(1:0)

bj_ack(1i0)

=—

System Interface

[image: image21.emf]Byte Code

Interpreter

Java OS

Any CPU

Byte Code

Byte Code

Compiler

Any CPU

Java OS

Any OS

Machine

Binary

picJava CPU

[image: image2.emf]ex_len_dec

length_dec

fold_dec valid_dec

fold_logic

ibuff0,1...6 ; fetch_len0,1...6 ;...

accum_ len0,1,2,3

ex_len_first_inst

Inst_1_type, 2,3,4

main_dec

dec_valid

group_0,1...9

[7:0] type

lv_rs1,_rs2

lvars_acc_rs1,_rs2

memop,’

offset_sel_rs1, _rs2, _rsd1

….

 IFU: Rough RTL flow with modules

comprising IFU

[image: image22.png]705 —Topor stk

[T

ioad1 + load_2 + 1add +stora_3

i3
[e][I3 3
S g _L
i F‘*L. o
= o
- G o o
L TS

@

®

FF

[image: image23.png]Now: i o

1000 ns ons e

wecn UL L

st

Miocked

Wewsoos T TOUUUULILIIIL

 fold_dec is one of the modules used by IFU: it decodes and outputs the types of the four prospective instructions in the buffer based on accumulative lengths calculated by length_dec and ibuffer opcodes .
Accumulative lengths are used as offsets to find the next valid opcode entry in the I-Buffer:
accum_len0 = accumulated length incl. 1st Inst.

accum_len1 = accumulated length incl. 2nd Inst

accum_len2 = accumulated length incl. 3nd Inst

accum_len3 = accumulated length incl. 4nd Inst
For example in the 5th cycle first instruction (opcode 16) is 2 bytes long, 2d instruction (17) is 3 bytes, and 3d instruction (46) is 1 byte. Therefore accum_len0 represents 2, len_1 is 5, and len_2 is 6. Accumulative lengths are encoded by asserting one of the bits in vectors accum_len#[7:0] corresponding to the length such that 0000_0001 means length of zero bytes, 0000_0010 is one byte, etc. Value of 0000_0000 is invalid.
All bytecode instructions are classified into six types. Based on these types certain sequences of instructions can be folded (i.e. replace with one operation) into one of the nice groupings. In the testbench signals type_# are determined instructions type: for instance, opcode 16 corresponds to bipush instruction which is local variable load (LV, type1) and thus output type_0 is binary 0000_0010, or decimal 2.
Types determined by fold_dec are fed to fold_logic which finds which of the folding groups can be applied. Types and groups are summarized in the bellow tables.
	Type in RTL
	MNE
	Description

	type0
	NF
	Non Foldable

	type1
	LV
	Local Variable

	type2
	OP
	Operation

	type3
	BG2
	Break Group2

	type4
	BG1
	Break Group1

	type5
	MEM
	Memory Store

	Group in RTL

(iu/ifu/rtl/ifu.v)
	Instructions sequence

	
	1st
	2d
	3d
	4th

	group_1
	LV
	LV
	MEM
	OP

	group_2
	LV
	LV
	OP
	-

	group_3
	LV
	LV
	BG2
	-

	group_4
	LV
	OP
	MEM
	-

	group_5
	LV
	BG2
	-
	-

	group_6
	LV
	BG1
	-
	-

	group_7
	LV
	OP
	-
	-

	group_8
	LV
	MEM
	-
	-

	group_9
	OP
	MEM
	-
	-

SMU: Stack Management Unit
[image: image3.png]Improving Stack Performance

Problem: Stack architectures typically use two
instructions to move a variable to the top of the
‘stack and then perform an add computation.

Local varisble

P [Operands |
Top of stack | 7op of stack
L BN Tor

Top of stack | Local variable -/ |Local varable
(] 2]
Load local Add

variable

PicoJava-II uses stack-based architecture to facilitate small program size: instructions operating on the stack need not extra bytes for addressing, which enables majority of bytecode instructions to fit into just one byte. The downside of the stack architecture is inefficient overall performance since multiple cycles are wasted to move the operands to the top of the stack before a computation can take place.

Approach taken in picoJava-II was to organize the stack into 64 32-bit entries circular register file with the pointer to current top entry. Then both stack-based ISA and random access register-like performance are preserved.
Dribbling mechanism is employed to overcome 64 words limit of the register file: whenever the stack pointer exceeds high-water mark (adjustable parameter), bottom entries are written to the cache (spill) and when the stack shrinks back and hits the low water mark, appropriate cached entries are written back to the register file (fill). Spilling and filling do not slow down execution since separate read and write ports are used by the dribbler to move the data to and from register file. This way stack size can exceed the register file with the dribbler dynamically functioning in the background.

[image: image4.emf]
PicoJava-II CPU External Interface

The figure on the left shows external signals to and from picoJava-II CPU core
. Another RTL core, Bus Interface Unit (BIU), is supplied alone with picoJava-II CPU RTL to implement a dedicated memory bus between the CPU and external memory. ISE Schematic of BIU is shown below
.
Bus Interface Unit (BIU) generates requests to memory and I/O devices. Such requests go through the controller, which maintains an address map of the entire system. In our project system’s interface is restricted to external memory (no other I/O devices): a memory controller is connected to the bus and performs necessary operations on the memory module to carry out biu requests.

During a valid request pj_tv (transaction valid) and pj_ale (address latch enable) are asserted and address is put on pj_addr bus; pj_type indicates whether a read or write is requested
.
Data to be written form CPU to external memory is put on pj_data_out bus, while read data is transferred through pj_data_in ports.

pj_size indicates whether the transaction is on whole word, half-word or 1 byte.

Memory controller provides the status on requested transaction (idle,valid, or error) through pj_ack port.

DDR SDRAM Interface.
We used a DDR SDRAM DIMM module available for Xilinx ml310 board as an external memory for PicoJava-II CPU. Different approaches could be taken to generate an interface for DDR SDRAM DIM. Xilinx offers specialized processor cores for memory interfacing (available in Xilinx EDK/XPS). Also a standalone tool (MIG) is offered by Xilinx: MIG can generate customized RTL for memory controllers
. The decision was to implement memory controller functionality in hardware (rather than using EDK soft/firm cores running on Virtex2p PowerPC) and to limit the design software environment to Xilinx ISE (rather than incorporating EDK). Thus EDK with its Processor IP cores was not considered. Several problems were encountered when generating RTL with MIG tool: this included pin assignments and complications with provided external signals. The decision was to develop from scratch our own memory controller which is also desirable to gain a better control and understanding of memory module. A simplified version of DDR SDRAM controller was designed, testbenched, and synthesized. Further we report on the controller functionality and implementation.
-= DIMM Configuration and Ports =-

Memory module for ml310 board is manufactured with nine Infineon 32Mx8 DDR SDRAM devices of which eight units (U0-U7) provide data ports (DQ, 8bits each) as shown in the figure (Wintec specs). Consequently the whole module operates on 64 bit words transferred to and from memory via DQ[63:0] pins. Data strobes (DQS, one for each byte of data) are used to write and catch read data to/from SDRAM units. Four pins are used to send commands: Chip Select, Row Access Select, Column Access Select, and Write Enable (all commands are barred).
[image: image5.emf]
ML310 board provides a signaling interface for the SDRAM memory module to conform SSTL2 requirements
. A group of pins on the development board are reserved for communication between Virtex2p FPGA and the DIMM.
-= Memory Addressing =-

PicoJava-II core can address up to 1 gigabyte (30 bits) of memory directly. This address space is organized as a flat and linear range. The core does not provide any virtual memory or address translation mechanisms. Any such mechanisms can only exist in logic outside the core and are not added to our project. In other words picoJava-II core address space is directly mapped to the SDRAM DIMM addresses. Since the whole SDRAM DIMM is 256MBytes only 28 out 30 bits are used with the two leftmost bits being ignored.
DIMM addressing scheme is based on 13-bit rows, 10-bit columns and 2-bit bank select – total of 25 address bits are used to select any of the 64-bit words in the memory. Since picoJava-II operates on 32-bit words (or even 16-bit half-words and single bytes) partial selection of memory words must be made internally by the controller. Lower bits are used to select data within the 64-bit memory word.
Figure: picoJava-II memory addressing for 256MB DIMM

	27
	26
	25
	24
	23
	22
	21
	20
	19
	18
	17
	16
	15
	14
	13
	12
	11
	10
	9
	8
	7
	6
	5
	4
	3
	2
	1
	0

	Bank Address
	Row Address
	Column Address
	
	pj-II word

	
	
	
	DIMM word

Only 13 address pins (plus 2 pins for bank select) are used by SDRAM since a word is selected in two phases reusing the same address pins: first 13 bits for row select and then 10 bits to select a column within previously activated row.
-= DDR SDRAM Performance And Clocking =-
200MHz memory clock was used in our project (choice of either 166MHz or 200MHz is possible
). DDR (Dual Data Rate) memory transfers data on both rising and falling clock edges resulting in overall data throughput double the frequency, i.e. 400M in our case.
Standard Virtex2p clock is 100MHz and thus clock must be multiplied to drive memory controller. To obtain a stable 200MHz clock without skew and jitter Xilinx Digital Clock Manager (DCM) core with was used
. The testbench shows generation of 200MHz clock (clk_ with output being after DCM gets locked: DCM locked output signal must go high before the clock can be used. Also 90 degrees shifted clock must be generated to drive input to DDR SDRAM.

DDR SDRAM StateMachine
-= State Machine description=-
DDR SDRAM state machine proposed in Infineon specs is shown in the figure. First memory must undergo a sequence of operations upon power-on before it can enter Idle state where it stays ready, waiting for either read or write command (ACT in the fig).
Dynamic RAM requires periodic refreshment to preserve its data contents (i.e. capacitors must be recharged). SDRAM controller is responsible for issuing periodic Auto Refresh commands to memory module. This corresponds to the transition from Idle to Auto Refresh state and back on the state diagram. According to Infineon specs the absolute interval between any Auto Refresh command and the next Auto Refresh command 9 × 7.8 μs (70.2 μs). Internal Infineon memory controller handles addressing during refresh operation so that no address needs to be supplied with Auto Refresh command.
If read or write is requested (external request from picoJava-II CPU) the controller must first activate the row: transition from Idle to Row Active state. After meeting delay requirements (CAS Latency) the controller can issue an actual read or write command (together with column address) which moves the state machine from Row active to Read or Write states.
In the simplest scenario the controller writes/reads from memory, issues a Precharge command (deactivates previously open raw making it available for subsequent accesses) and returns to the idle state. But other transitions are also possible: for example controller might continue putting multiple write/read commands for the same (kept active) row by transitioning from Read/Write states back Row Active state.
DDR SDRAM Commands
Memory actions are entirely controlled by 4bit commands issued to: nine strictly distinguished commands are possible
[image: image6.emf]
Memory Initialization
Before the memory can be used (i.e. before the state machine enters Idle state) it must be initialized properly. First memory controller waits idle until internal clocks stabilize: testbench marker 161.3ns in the fig. indicates when that dcm_lock signal became asserted meaning that all clocks generated by DCMs got locked (stable)
.
Then nine sequential actions are taken by the controller:

1. 200µs delay is required with data and data strobe being set to high impedance. In the testbench only 4 cycles delay (rather than necessary 40,000 cycles with 200MHz) is shown
: only pre-synthesis simulation purposes. Marker 181.3 indicates the end of the initial delay.
2. Deselect NOP command (cmd = 1xxx) is applied: at 181.3ns marker
3. Precharge All command (cmd = 0010; ddr_addr[10] = 1 for All) is applied: 186.3ns marker
4. Extended Mode Register command (cmd = 0000, ddr_ba = 2’b01 for Extended) is issued to enable DLL (ddr_addr[0]=0): 191.3ns marker
5. Mode Register command (cmd = 0000; ddr_ba=2’b00 for normal, not extended register set) to reset DLL and program burst length, butst type, CAS latency parameters (ddr_addr[2:0]=3’b001 for burst of 2, ddr_adddr[3] = 0 for sequential type, ddr_addr[6:4] = 3’b011 for CAS latency of 3, ddr_addr[8] = 1 for DLL reset): 196.3ns marker
6. Deselect NOP applied for 200 cycles. This delay is required after resetting DLL to lock it: NOP’s are sent starting at 201.3 marker

[image: image7.jpg]' Fie simuation

<[[B]x)

52 b e

TanAa

Now:
629 ns 14305

221

B B stable_siocki2.. |

M stable_sloe

A stable_slos

M stable_cloc
3 dem_lock

ek T

M adr_clkio 0 o I A
M _elc LT
M dr_elkan T

Aacr_csh

Addr_rash

Hddr_cash

Hadr_wen

Aadr_oke

= B ddr_balt 0]

3 ar_balr]

3 dar_balo)

6 X dor_dasi7 0]

4 @ dor_dal63:01

= B dor_addl1 20

305

M aor_adat12)

M ar_adat1 1]

M aar_adts]

3 dar_adate]

M aar_adeitr)

M ar_adarte]

M aar_adts]

M dar_adits]

M aar_adeita]

M aar_adeitz)

M aar_adat1]

3 ar_adeto]

& B pi_adur26:0]

= B cyele(31:0]

10

@ X emorsizti0]

[
[
[
[
[
[
[
[
[
[
[
[
[
N ddr_adariio] [
[
[
[
[
[
[
[
[
[
[
[
[
[

IP— 2lile]
Ready

M

7. Precharge All command (cmd = 0010; ddr_addr[10] = 1 for All) is applied: 208th clock cycle, 1201ns marker
8. Two Auto Refresh command cycles (cmd = 0001): cycles 209 and 210
9. Mode Register command without resetting DLL (cmd = 0000; ddr_ba=2’b0 for normal mode, ddr_addr[2:0] =3’b001 for burst of 2; ddr_addr[3]=0 for sequential burst type; ddr_addr[6:4]=3’b001 for CL of 3; ddr_addr[12:7] = 6’b0 for normal mode with DLL bit deactivated): cycle 211.
After performing this sequence of operation the memory is ready for operation; state machine transitions to Idle state.
[image: image8.jpg]Fle Simuation

5z b %

Tana

Now:
518072 ns

Melk
M adr_cko
el
M aar_ekao
Magr_esh
M adr_rash
M ar_cash
M e weh
Madr_cke

& B ddr_balt 0]

M r_balr]
3 dar_balo]

oK adr_dosirol | |

= B ddr_adal1 20
M aor_adat12)
M aar_adart11]
M or_adat1o]
3 ar_adte]
M ar_adte]
M aar_aditr]
M ar_adte]
M ar_adts]
M ar_adits]
M aar_adita]
M aar_adeitz]
M a1}
M ar_adto]

® B oyelefat]

& B erorsi21:0]

.
Ready

305

49

M

While being in idle state waiting for the read or write command memory controller applies NOP operations and keeps track of cycles passed since last memory refresh. It applies and Auto Refresh command (cmd = 1) whenever maximum refresh period is exceeded. The following testbench shows an automatic Auto Refresh command applied at cycle 1770 while the controller stayed idle: maximum refresh period set to 1560 cycles ; last auto refresh occurred at cycle 210.
[image: image9.jpg]Fle Simuation

A Talalt

Now:
58708 ns 8981 ns 8997 an12ns 9028 9044 ns 9059
[A (R [T
SemdEn]] | 7 1 7
oyeleld10] 3 (171785 17681767 17681768 177041771 {1772 H1TT3H1TT4 \1TTEHITTBHITTT {1778)1779
M aer_ck
Mo ciko

M aar_ekan TLT LT LT LT LT LT LT LT LT LT LT LT LT LT LT1
Madr_esh

BN dd_rash
Addr_cash T
: ek o .

Ready M

Simplified Write.

To write to the DDR SDRAM memory controller activates a row, then applies Write command and puts data to be written on DQ bus. For each byte of the data (DQ) a strobe signal DQS must be driven for the memory units to sample the data on both rising and falling edges of the strobe. The strobe ports must be set to high impedance when the data is not being written. The first rising edge of a data strobe must fall within tDQSmin and tDQSmax parameters (write preamble): tDQSmin is 3/4 of one clock cycle and tDQSmax is 11/4 of a cycle. With the choice of tDQSmin the clock used to generate the strobe must be shifted by 270 degrees.
Figure: write with burst length = 4, sequential burst mode, minimum tDQS write preamble
[image: image10.emf]
 The figure bellow show the testbench for the module WR_Channel generating a write strobe signal. Digital clock manager is instantiated in the module to generate 270 clock. Tri-state port wr_strobe is high impedance when enable is low and is driven by the 270degrees DCM output clock whenever enable is asserted. Memory controller must instantiate four wr_channel modules to write picoJava-II words (picoJava-II words are 32-bit). The testbench shows that if the enable signal is asserted on the rising edge of the memory controller clock then wire preamble is 1.25 of a clock with the 1st rising edge falling 90 degrees after the rising edge of inverted clk: inverted clock (clkb) is not shown but used by the controller to put the data such that the write strobe DQS is center-aligned to the corresponding DQ.
Figure: generating write strobe

[image: image11.jpg]~ B RCHERI Ry £5 v

Fle Simulation

1I%E b HE
tanaaax
: 62 SBT6
Now:
122 ns ‘n ns 2‘5 4B‘ns 7‘4 BE‘ns 12
I I | I
aek 0 MU UL UL A A U
MMiocked Tl
sl Ll e T
HMenable i Lo 1|
Hdata_in[7:0] 0 o
Mrst 0 -
! welie] ool i 1
Ready [o |

4

Memory Reads
The controller reads the data from the memory by first activating the row, then issuing a read command with column address, and sampling the data using the strobe driven by the memory module. Data strobe driven by SRAM is edge-aligned with the data meaning that the strobe should be delayed: 90 degrees shift will put the rising and falling edges at the center of the data signals to allow accurate sampling.
Figure: read burst 4; CAS latency 2 (add extra cycle for CL=3)

[image: image12.emf]
When DCM is used to produce 90 degrees shift, the DCM must first be trained. The Testbench bellow shows that dqs signal is initially driven by the internal clock until the DMC gets locked (locked signal goes high) when it becomes ready for operation at about 50ns. At 60ns marker stimulus drives 8-bit data (8’d6) and a strobe dqs signal. The strobe is shifted (dqs90) and it’s rising edge is used to catch the data into local registers (data_out). The data in goes to zero at 70ns (on the falling edge) but data_out keeps saved the value.
Figure: catching read data
[image: image13.jpg]rabchEnne b sy By

Fle Simulation

[NS

tanakax

Now:
1000 ns 18 s

MMlacked

| ® BCda[7:0]

BN dgs

References
-= References related to PicoJava-II =-
Harlan McGhan Mike O’Connor (Sun Microsystems), “PicoJava: A Direct Execution Engine For Java Bytecode”
Structured Computer Organization, Andrew S.Tanenbaum

picoJava-II™ Microarchitecture Guide, Sun Microsystems

picoJava-II™ Programmer’s Reference Manual, Sun Microsystems, March1999
picoJava-II™ Verification Guide, Sun Microsystems, March 1999
The JavaTM Virtual Machine Specification, Second Edition, Tim Lindholm Frank Yellin, Sun Microsystems
online version at http://java.sun.com/docs/books/vmspec/2nd-edition/html/VMSpecTOC.doc.html
-= References Related To Xilinx FPGAs and Memory Module =-
Infenion Data Sheet 256 Mbit DDR SDRAM , Rev July 2004:
Wintec DIMM Specifications, part w4f232726ha-5q (low profile), Rev May 2002
(file W4F232726HA-5Q.pdf for ml310 board provided by Xilinx)
Xilinx ML310 User Guide, Jan 2005
Xilinx Memory Interface Generator (MIG 007) User Guide, March 2005
Xilinx System Clock Management Simplified with Virtex-II Pro FPGAs, Feb 2003
Xilinx ISE Libraries Guide,
Figure: Simplified Testbench for fold_dec fold_dec

IFU Datapath (pj-II User Architecture Guide)

NOP

 Reset DLL

ExtMode

PreAll

PreAll

NOP

Refresh

NormMode

Ready

Figure: ISE Schematic of BIU

Figure: External picoJava-II signals (from pj2 User Architecture Guide)

� EMBED Visio.Drawing.6 ���

UCLA Undergraduate Research Program

Electrical Engineering, Summer 2005

Implementing picoJava-II System on Xilinx FPGA (Virtex2p, board ml310)

Student: Nika Kolomentseva

Advisor: Lei He

CPU Synthesis Final Report Utilization (No FPU)

==

Device utilization summary:

Selected Device : 2vp30ff896-5

 Number of Slices: 	11664	out of 13696 85%

 Number of Slice Flip Flops:	3219 	out of 27392 11%

 Number of 4 input LUTs:	19796	out of 27392 72%

 Number of bonded IOBs: 	178	out of 556 32%

 Number of GCLKs: 5	out of 16 31%

cpu|-------------------iu	|-----------------ex	

 |			 	|-----------------ucode [microcode]

 |		 		|-----------------rcu [register ctrl unit]

 |			 	|-----------------ifu	 [instr folding unit]

 |			 	|-----------------pipe [pipeline]	

 |			 	|-----------------trap	

 |			 	|-----------------hold_logic

 |-------------------icu		[fetch instructions]

 |-------------------dcu	[exec load, store instructions]

 |-------------------smu	[dribbling, stack cache]

 |-------------------pcsu	[low power management,…]

 |-------------------(fpu)	[exec float point instructions]

biu

Synthesis if IU alone

===

Device utilization summary:

Selected Device : 2vp30ff896-5

 Number of Slices: 	10873 out of 13696 79%

 Number of Slice Flip Flops: 	4480 	out of 27392 16%

 Number of 4 input LUTs: 	18862 out of 27392 68%

 Number of bonded IOBs: 	845 	out of 556 151%

 Number of GCLKs: 	2 	out of 16 12%

Classification of instructions into Types

Folding Groups

� Harlan McGhan, Mike O’Connor

� 226 JVM instructions according to McGhan and O’Connor; 246 non-extended instructions are found to be supported in RTL code for picoJava-II (file picoJava-II\design\iu\ifu\rtl\fdec.v)

� For example, JVM has a 2-byte instruction ILOAD which loads a specified (0th to 15th) local variable onto the stack. Yet specialized 1-byte instructions ILOAD_0, ILOAD_1, ILOAD_2, ILOAD_3 were added. Both ILOAD 0 and ILOAD_0 will perform exactly the same action (loading local variable 0). The idea here is that loading first four variables is far more frequent that other locals thus making it worthwhile to add additional but shorter instructions.

� For example, instruction new which handles creation of a new object would be executed in software

� See pj2 User Architecture Guide (Chapter 7) for more details on interface signals

pj_data_in the figure must have a reverse direction

� see top.sch in the pj2 project for complete interconnect between BIU and CPU

� More detailed classification of types can be found in pj2 User Architecture Guide, Chapter 9

� Memory Interface Generator tool (MIG) can be downloaded by registered customers at http://www.xilinx.com/products/design_resources/mem_corner/

� See ML310 User Guide: DDR for more details on SSTL2 DIMM interface and pins configuration.

� See Wintec DIMM Specifications for operational frequencies and corresponding delays

� Problems were detected when using DCM CLK2X outputs and instead DCM Digital Frequency Synthesizer outputs CLKFX CLKCFX180 were used.

� Controller design project: [4]CoreSim; Verilog RTL nk_mem_ctrl.v

� ‘INITIAL_DELAY = 16'd40000 must be set before synthesis

PAGE
19

_1186596657.vsd
D
Decode and Fold
[IFU]�

F
Fetch from I-Cache
[ICU]�

W
Write Results To Stack�

C
Access Data Cache
�

E
Execute Instruction
�

R
Fetch Operands From Stack
[RCU]�

�

IU Related�

_1186600821.vsd
�

�

ex_len_dec�

length_dec�

fold_dec�

valid_dec�

fold_logic�

ibuff0,1...6 ; fetch_len0,1...6 ;...�

ex_len_first_inst�

accum_ len0,1,2,3�

Inst_1_type, 2,3,4�

main_dec�

�

�

dec_valid�

group_0,1...9�

[7:0] type
lv_rs1,_rs2
lvars_acc_rs1,_rs2
memop,�
offset_sel_rs1, _rs2, _rsd1
�.�

 IFU: Rough RTL flow with modules comprising IFU �

_1186584592.vsd
Byte Code�

Interpreter�

Java OS�

Any CPU�

Byte Code�

Byte Code�

Compiler�

Any CPU�

Java OS�

Any OS�

Machine Binary�

picJava CPU�

