
Floorplan Assisted Data Rate Enhancement through Wire
Pipelining: A Real Assessment

Mario R. Casu
Politecnico di Torino

Dipartimento di Elettronica
C.so Duca degli Abruzzi, 24

I-10129, Torino, ITALY

mario.casu@polito.it

Luca Macchiarulo
University of Hawaii at Manoa

Department of Electrical Engineering
Holmes Hall 437

Honolulu, HI 96822, USA

lucam@hawaii.edu

ABSTRACT
The recent shift towards wire pipelining (WP) mandated by
technological factors has attracted attention towards latency-
controlled floorplanning. However, no systematic study has
been published so far that takes into account block and logic
delay limitations. The present work aims at filling the gap
by showing that block delay can limit and possibly prevent
any real gain WP might promise. Recurring to adaptive WP
schemes, on the other hand, allows relevant gains. We built
a floorplanner that optimizes for maximum data rate, tak-
ing into account various models of block delay, and compares
them to the optimal results obtained when no wire pipelin-
ing is employed. Experiments with suitable floorplanning
benchmarks and case studies are performed to substantiate
theoretical intuitions.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
B.7.2 [Integrated Circuits]: Design Aids—Placement and
Routing

General Terms
Algorithms

Keywords
Systems-on-chip, Floorplanning, Wire pipelining, Through-
put

1. INTRODUCTION
Wire pipelining (WP) is currently used in high-speed de-

sign to break the discrepancy between increasing speed of
logic blocks and global interconnect delays [1]. This new
technique has attracted attention towards latency-controlled
floorplanning (see [2], [3] and [4] for example). However,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISPD’05, April 3–6, 2005, San Francisco, California, USA.
Copyright 2005 ACM 1-59593-021-3/05/0004 ...$5.00.

the latency added in wires and the delay of logic and in-
terconnects within the blocks may jeopardize the frequency
increase guaranteed by this technique by reducing the actual
data rate. To the authors’ knowledge, no systematic study
has been published so far that takes into account block delay
and logic delay limitations, as well as more critical electri-
cal issues related to frequency increase. With this paper we
aim at filling the gap by showing that block delay can limit
and possibly prevent any real high performance gain the
WP technique, if implemented in a too conservative way,
might promise (as measured by data rate increase, rather
than misleading clock period reduction). We also show how
a different WP technique exploiting the locality of compu-
tation of some blocks, which from time to time do not read
data from inputs with added wire latency, can be the key to
fulfill the promise of high data rate of WP. To this aim, we
adopted a floorplan strategy which optimizes the data rate
of systems based on standard and modified WP using suit-
able cost functions. We took into account various models
of block delay, and compared them to the optimal results
obtained when no wire pipelining is employed.
In section 2 we briefly recall the characteristics of a stan-

dard WP technique. Its limits are highlighted through a
mathematical derivation in section 3. Section 4 reports some
results of performance achievable from our floorplanning
strategy employing this WP methodology with and without
limitations imposed by the blocks delays. The foundations
of the alternative WP methodology are described in sections
5 and 6, while the results of its application using a modi-
fied floorplan strategy are outlined in section 7. Finally we
summarize the work achievements in the conclusions.

2. THE PROMISE OF WIRE PIPELINING
Interconnect and gate delays scale differently such that

we observe an increasing gap between always faster logic
and slower wires [1]. The very high clock frequencies al-
lowed by always smaller gate delays cannot be supported
by long global wires spanning the entire die. Wire buffer-
ing alone cannot solve the problem. Clocked buffers can be
then used to segment wires. This technique is called wire
pipelining (WP) and allows connections to run at a very
high frequency at the cost of increased wire latency. From a
theoretical point of view, if we abstract for a moment from
technology and layout limitations, it could be possible to
run wires at any desired frequency by simply increasing the
number of clocked buffers. This is what we call the promise

121

of wire pipelining. Now we are allowed to ask if it is always
worth to increase the wire frequency at the cost of increased
latency. Since in general the answer is very dependent on
the kind of system to which we apply WP, in order to give
a complete answer, we restrict our analysis to the case (as
that of Systems-on-Chip) in which designers connect intel-
lectual properties (IP) taken from libraries and are not al-
lowed to modify their internal structure (we believe most
of the conclusions can be easily extended to other design
cases). Moreover, who designed the IP did not know the en-
vironment in which the SOC designer will insert it and could
not predict a priori the amount of latency added to its I/O
connections. In this type of systems, the designer would like
to resort to WP, if needed, in a transparent way, i.e. without
having to change the blocks he has to connect. In order to
avoid an unpredictable behavior due to the unpredictable
(before the floorplan) wire latency, he has to implement a
communication protocol which aims at making the latent in-
terconnect system transparent to the computational blocks.
An example of this type of protocols are the so-called La-
tency Insensitive Protocols (LIP) that, by means of special
wrappers around the blocks and pipeline elements along the
wires, make a system with added latency functionally equiv-
alent to a system with zero-latency and allow a higher clock
frequency [5]. The equivalence is obtained by making the
blocks “patient” – i.e. suspending their operation by suit-
ably gating their clock – when the input data are not all
ready to be processed because of the latency.
While this technique allows to fulfill the promise of wire

pipelining, it is not always true that a frequency increase cor-
responds to a higher “throughput” (TH). Since the blocks
are made patient, from time to time they are suspended
from operating and, as a result, the number of actual com-
putations per clock cycle is in general < 1.0. This is what
we call throughput reduction. However, througphut and fre-
quency alone are not meaningful. What really counts is the
data rate (DR) that is the product of throughput and fre-
quency. A system without wire latency has TH=1 so that
frequency and data-rate have the same meaning. In the LIP
case, this assumption does not hold anymore.
Now, it is clear from the previous discussion that if a

system with WP allows a frequency increase of N×, in or-
der to have a significant DR improvement, TH should not
be degraded more than 1/N×. It can be shown that the
throughput limitation of systems with latency insensitive-
ness comes from the netlist loops [6]. A loop of m blocks
with a total of n sequential delays (flipflops) along the loop
has the following throughput

TH =
m

m + n
=

m

m +
Pm

1 ni
(1)

where ni is the number of delays added to the i−th branch
of the worst loop. It can also be shown that the system
throughput is bounded by the worst loop, that is the netlist
loop having the minimum ratio m/(m + n) (see, for exam-
ple, [6]). n depends mostly on the physical design, i.e. on
how short we have been able to keep the long wires by an
intelligent floorplan. It is thus possible, and convenient, to
insert this cost in a throughput-driven floorplanning and
obtain better TH figures than using wirelength, area or a
combination of the two cost functions [2]. However, the
question about whether an optimal floorplan is beneficial or
not for the true data rate, not only for the throughput, is

still open. In the following section, we derive a mathemat-
ical framework that helps understanding the requirements
that a physical design step like floorplanning should fulfill
in order to improve the data rate using wire pipelines.

3. MATHEMATICAL FRAMEWORK
The number of delays ni in a single branch of the worst

loop that forces the system throughput is given by

ni = �li/lmax� (2)

where li is the branch length, computed as Manhattan dis-
tance between two pins of two blocks connected by the branch,
and lmax is the maximum distance allowed between two
flipflops so as to respect a frequency constraint Fmax. If
a line of length l is optimally buffered, its delay becomes
proportional to l. We normalize to 1 (here and in the rest
of the paper) this proportionality coefficient in the follow-
ing derivation so that “delay” and “length” become synony-
mous. Therefore frequency Fmax is simply given by 1/lmax.
The data-rate is given by

DR =
m

m +
Pm

1 � li
lmax

� · 1

lmax
. (3)

By using the basic property of the floor function x − 1 ≤
�x� ≤ x, we can easily derive a data-rate upper bound

DRUB =
m

m +
Pm

1 (li
lmax

− 1)
· 1

lmax
=

mPm
1 li

=
1

lm
, (4)

where lm is the average branch length of the loop, and a
lower bound

DRLB =
m

m +
Pm

1
li

lmax

· 1

lmax
=

1

lmax + lm
, (5)

The data rate of a system without wire pipelining DR0 is
simply given by

DR0 = TH0 · F0 = 1.0 · 1
L

(6)

where TH0 = 1 is the unitary throughput for a system with-
out WP and F0 is the maximum allowed frequency which
is limited by L, the longest interconnect delay in the sys-
tem. Using WP for this kind of systems is convenient only if
the speed-up, i.e. the ratio DR/DR0, is significantly higher
than 1.0, in order to compensate for the increasing problems
of high-frequency clocks and related power dissipation and
timing issues. The speed-up SU lays between two bounds

L

lm + lmax
≤ SU ≤ L

lm
(7)

Interestingly, increasing the frequency to ∞ in the wire
pipelining system, and so augmenting indefinitely the wire
pipe depth, reduces lmax to 0 but cannot further increase the
speed-up over L

lm
which merely depends upon the floorplan

strategy used.
If the floorplanner is able to keep close the blocks belong-

ing to the loops, the average length lm would be reduced
and the effectiveness of using WP maximized. If lm ≥ L,
whatever the number of WP stages and so whatever the fre-
quency used, the solution without WP, i.e. a general slow-
down to the maximum allowed frequency 1/L, would be a
better choice.

122

3.1 Effect of block delay
In our previous derivation we supposed the blocks ideal

and attributed all frequency limits to the interconnects. We
suppose now that the i-th block is characterized by an input
delay di, due to both logic gates and interconnects within the
block, and derive the corresponding system data rates with
and without wire pipelining.
For a zero-latency system, the maximum data rate be-

comes

DR0 = 1.0 · Fmax =
1

maxi(Li + di)
(8)

where, in general, maxi(Li + di) is different from L + dmax

where L was introduced before and dmax is the maximum
delay

dmax = max
i

di. (9)

With WP, the maximum frequency is now given by

Fmax =
1

max(lmax, dmax)
(10)

while the throughput is

TH =
m

m +
Pm

1 � li+di
max(lmax,dmax)

� . (11)

Finally, after a number of easy algebraic steps, we can re-
compute upper and lower bounds for the data rate as follows

1

lm + dm +max(lmax, dmax)
≤ DR ≤ 1

lm + dm
(12)

where dm is the average delay in the worst loop of m blocks

dm =
1

m

mX

i=1

di (13)

Consequently, upper and lower bounds to speed-up SU are

maxi(Li + di)

lm + dm +max(lmax, dmax)
≤ SU ≤ maxi(Li + di)

lm + dm
(14)

The deeper the wire pipelining, the faster is the interconnect,
but, due to the slowest block, the frequency limit is 1/dmax.
Therefore, even when we reduce the WP flipflop distance to
lmax = 0, the maximum speed-up is bounded by

maxi(Li + di)

lm + dm + dmax
≤ SU ≤ maxi(Li + di)

lm + dm
. (15)

In the general case, nothing can be said about whether
the WP system with delays is worse than the previous ideal
case, since it all depends on the delay values di. However,
it is highly “probable” that the real case is worse. Suppose
for instance that all delays are equal to dmax and that the
longest interconnect is also the average length L = lm. In
the ideal case the speed-up is 1.0 while in the real case can
be as low as (L + dmax)/(L + 2dmax) < 1.0.
In the next section, we present some DR results obtained

using a throughput-driven floorplanner [2] with and without
considering the blocks’ delays.

4. TH-DRIVEN FLOORPLAN
We now report some results obtained running the throughput-

driven floorplanner [2] over some of the GSRC and MCNC
benchmarks. We collected the results obtained for the non-
pipelined systems by trying to identify (through successive

floorplans) the maximum frequency for which a non-pipelined
floorplan (t.i. a floorplan whose pin to pin length were
bounded by lmax. For the WP system, we repeated the ex-
periment allowing pipelining and identifying the maximum
data rate, for higher frequency values. The results in table
1 were obtained in the ideal case of no block delay. The
lengths are expressed in percentage of the die edge length,
which is computed as the square root of the sum of the
blocks’ area. Based on L and speed-up SU columns, we can
compute the average length lm of the worst loop branch for
the LIP case, according to equation 7. For the benchmarks
considered, the values, in percentage of the die edge, are also
reported in table 1. They can be suitably compared to the
maximum length L of the case without wire pipelining for a
better understanding of the speed-up figure.

Table 1: GSRC and MCNC benchmarks: ideal case
with no block’s delay.

bench. DR 1 − TH DR0 L(%) SU(%) lm(%)
n10 0.926 0.944 0.885 113 4.6 108
n30 0.709 0.986 0.645 155 10 141
n50 0.877 0.965 0.637 157 38 114
n100 0.847 0.932 0.653 153 30 118
apte 0.700 0.993 0.694 144 0.8 143
xerox 0.658 0.974 0.510 196 27 154
hp 0.610 0.988 0.562 178 9 164
ami33 1.087 0.989 1.031 97 5 92
ami49 1.042 0.958 0.769 130 36 96
DR=data rate with WP, TH= throughput with WP, DR0=data

rate w/out WP, L=maximum unlatched length (as a percentage of

die area), SU=speedup of WP, lm=average length.

We normalized the die edge to 17mm, according to the
ITRS’03 estimations for the high-performance dies in years
’03-’09. As a result, all benchmarks have the same to-
tal area, regardless the blocks’ number and size. It is in-
teresting to notice that the speed-up is negligible for the
benchmarks with less blocks, and instead significant when
the blocks are numerous and smaller (n50, n100 and ami49).
Should a different area normalization be used, the speed-

up factor of the ideal case without delay would not be af-
fected because both L, lm and lmax would be equally scaled
and their ratio be unchanged.

4.1 Effect of block delay
Let us now see what happens when the block delay is taken

into account. We considered two extreme approaches. In the
first case we supposed the delay barely proportional to the
block edge calculated as the square root of the rectangular
block area (i.e. the geometrical average of the two edges).
We assumed the proportionality factor equal to 1.0. The
physical meaning behind that choice is that of attributing
the delay to internal (buffered) interconnect whose typical
length is linearly related to the block edge.
The second choice consisted in choosing a “constant” de-

lay, i.e. independent of the block size. The rationale is that
of attributing all the delay to logic stages whose depth is
independent of the block size and it only relies upon the
designer’s choices. We chose a delay equal to 13 FO4. This
is the value used in the ITRS for computing the estimated
clock frequency of high-performance microprocessors. We
took the values of logic and interconnect delay from the
roadmap in order to define a proportionality factor between
the twos. Again we supposed the wire delays linear with
wire length, i.e. the case of buffered wires.

123

Tables 2 and 3 report the results for these two choices.
From table 2 we observe that the delay proportional to

Table 2: Block delay proportional to block’s edge
bench DR 1 − TH lmax DR0 L SU
n10 0.463 0.78 48% 0.500 200% -7.0%
n30 0.625 0.8 32% 0.585 171% +7.0%
n50 0.833 0.75 30% 0.578 173% +44%
n100 0.868 0.72 32% 0.625 160% +39%
apte 0.496 0.722 56% 0.448 223% +11.0%
hp 0.521 0.667 64% 0.529 189% -2.0%
xerox 0.463 0.778 48% 0.467 214% -1.0%
ami33 0.833 0.75 31% 0.840 119% -1.0%
ami49 0.595 0.67 56% 0.610 164% -2.0%

DR=data rate with WP, TH= throughput with WP, lmax=max

unlatched length for WP, DR0=data rate w/out WP, L=maximum

unlatched length w/out WP, SU=speedup of WP.

Table 3: Block delay equal to 13 FO4
bench DR 1 − TH lmax DR0 L SU
n10 0.521 0.500 96% 0.588 172% -11.4%
n30 0.446 0.570 96% 0.398 251% +12.0%
n50 0.446 0.500 112% 0.452 221% -2%
n100 0.473 0.545 96% 0.435 230% +8%
apte 0.446 0.5 112% 0.465 215% -4.0%
hp 0.417 0.67 80% 0.476 210% -12.4%
xerox 0.391 0.0 256% 0.395 253% -1.0%
ami33 0.521 0.5 96% 0.529 189% -2.0%
ami49 0.521 0.5 96% 0.535 187% -3.0%

DR=data rate with WP, TH= throughput with WP, lmax=max

unlatched length for WP, DR0=data rate w/out WP, L=maximum

unlatched length w/out WP, SU=speedup of WP.

the block’s edge leads to results that are not univocal for
all benchmarks. While the GSRC suite (n10, n30, n50 and
n100) shows a similar if worse behavior than the ideal case,
the MCNC suite experiences a degradation – except for apte
–.
From table 3 we observe that the impact of a constant

block delay is disastrous and there is no more evidence of
the effectiveness of using wire pipes. In practice, it seems
impossible to obtain a significant advantage w.r.t. the tradi-
tional solution (only n30 and n100 show moderate speedups
of 12% for a frequency which is around 2.5 times the origi-
nal!)
What we observe is a trend toward a generalized reduc-

tion of the speed-up when the delay becomes more and more
relevant, even if there are exceptions for given values of FO4
or block/edge proportion. From this set of experiments, we
can draw the conclusion that increasing the data rate for
this type of transparent WP systems with respect to a gen-
eralized slowdown solution without added wire latency, is
certainly not an easy task. If the block’s delay is negligible
compared with the maximum delay between pipeline ele-
ments lmax, the speed-up is in general > 1 but the amount
of actual data-rate increase depends on the circuit geometric
and netlist characteristics. For higher delay values, obtain-
ing a significant speed-up may be a hopeless task.

Until now, we have analyzed a class of systems using WP
in a totally transparent way. Blocks are encapsulated within
wrappers that make them patient when latent signals have
not arrived yet. This is the very reason of the throughput
reduction expressed by equation (1) and in the end of the
speed-up results reported above. We can now ask how we

can break this very strict constraint. In the next section we
introduce a new class of WP systems where a modification
to the protocol breaks this TH limitation.

5. EXPLOITING THE LOCALITY
The underlying assumption of our previous derivation of

the mathematical background for the data rate computa-
tion and the consequent results obtained after floorplanning
is that every block reads all its inputs in every clock cycle.
Therefore, when one or more of its inputs are not ready
yet because of the added latency, the clock is gated and the
block’s operation suspended. This is surely the most conser-
vative and also the easiest “plug and play” approach because
the wrappers around the blocks, which make then compliant
with a WP protocol, do not have to know the actual behav-
ior of the blocks themselves. However it is likely that the
computation within the blocks has some degree of locality,
or, in other words, there certainly exist some states where
the blocks do not read one or all of their inputs and execute
some local computation. This is certainly peculiar to blocks
of a relevant complexity. As an example, a microprocessor
with a local L1 cache accesses to a L2 memory only in case
of a miss. In other words, the content of some input con-
nections is ignored from time to time. This property can
be exploited in order to break the throughput limitation of
equation (1) as noticed in [7]. If we are able to build a wrap-
per that is aware of the states where the block executes a
local computation or ignores some of its inputs, we are also
able to increase the throughput. From a macroscopic per-
spective, everything works like if we were able to open the
loops from time to time. However, this cannot be true for
the whole operating time – referring to the previous exam-
ple, the microprocessor accesses to the L2 memory and reads
data from time to time – and in general we can express the
average throughput of a loop of m blocks as such

TH = α · m

m + n
+ (1− α) · 1 (16)

where α is the fraction of operating time when the loop is
active. For α = 1, Th is the same of (1) while for α < 1 is
higher. This might mean that, for a period of a few system’s
clock cycles, a potentially limiting loop is actually open, so
that the overall performance of the system is related to the
most critical active loop, rather than the most critical loop
altogether. This increases the potentiality for higher overall
performance (that, as underlined in the previous sections,
needs to be computed in terms of data rate rather than
pure clock cycle and/or throughput).
It is possible to show, though not in the scope of this

paper, that a modified wire pipelining could allow such a
flexibility at a minimal cost. We implemented a suitable
protocol in a VHDL model which proved to be completely
compliant with the adaptive requirements. Even if the de-
tails of the scheme are immaterial, we will use the model
to validate the cost schemes that we will present in next
section, and the final case study of the paper.
In a system, to be general, there will be blocks for which

it is possible to exploit this information and build an ad
hoc wrapper and some for which, for lack of knowledge or
because of intrinsic behavior, it is not allowed. If we are
able to exploit this information as much as possible within a
floorplanning environment, we believe that the WP system
will experience a higher speed-up with respect to the zero-

124

latency system than in the previous examples. Of course,
this improvement does not come for free because the wrap-
pers are more complex and have to interact with the intel-
lectual properties to a larger extent.
The next section details the modification we made to the

floorplan framework in order to take these facts into account.

6. DYNAMICALLY ADAPTIVE COMMUNI-
CATIONS

If you take the case, hinted at in the previous section,
of a CPU to cache communication system, it is clear that
the overall performance (measured by valid data that are
processed or output by the system in a time unit) depends
on the details of the communication between the two blocks:
the fraction of time in which the CPU is writing (as opposed
to the time in which it is reading) from the memory dynam-
ically dissolves (for the relative period) a limiting cycle in
the system. In order to take advantage from this situation,
we therefore must have a minimal information about the
statistical properties of the signals involved. Even if a full
profile information would be necessary to completely exploit
such an advantage, as it is made clear by the huge profiling
costs of processor-based floorplanning system [3] a solution
that makes minimal use of detailed data simulations is wel-
come. We will try here to develop a physical design system
that takes into account of minimal information in this re-
spect, namely the average channel occupation, to increase
the possible throughput of a heavily wire pipelined system
beyond the theoretical limits described and analyzed in the
previous sections. We will proceed to deduce some basic
cost functions in this section.
Formula (16) relates the final throughput of the system to

the single loop’s timing behavior (the constant α represents
the fraction in which the CPU is reading data, in terms of
CPU active periods), while we are interested in a measure
related to the real timing of the system. A simple formula
can be derived on the basis of an assumption:

Assumption 1: The blocks communicate in such a way
that no physical time is lost in switching between the condi-
tion in which a channel is used and that in which the channel
is idle.
The practical consequences of such an assumption are that

some information about the context switching need to be
available to every related block of the system that uses the
signals: Even if practical communication protocols don’t al-
low an instantaneous dispatching of such information in the
general case, it can be shown that certain typical situations
in real systems approximate it closely: In particular, if the
communication occurs in bursts, the potential overhead of
context switching will be amortized and made negligible.
We will work under this hypothesis, and back it up with
experimental data in the following sections.
Under the assumption, the system in each moment will

work at a maximum throughput given by the most crit-
ical active loop present. This means the most critical
loop whose branches are all active at the same time. Let’s
suppose we are analyzing an entire session of the system
behavior: We can, at least in principle, identify periods of
time in which the system’s throughput is dominated by a
single loop, that is, its performance is limited by a certain
fraction m/(m+ n) , where all the connections between the
blocks in the loop are active at the same time. In the case

where all the communication channels are active, this value
is equal to the static throughput computation outlined in
[2], while in general, due to the presence of idle communi-
cation, such throughput will be larger. In order to quantify
the performance of the system, let’s suppose that Wi rep-
resents the logical period of time in which the loop li, with
associated throughput Ti, dominates the system’s through-
put. Then, the physical period of interval i is given by the
formula Wi/Ti, because each data calculation in such con-
ditions implies a number of clock periods equal to 1/Ti. So,
the overall physical time spent by the system to complete
its computations is equal to

P
i Wi/Ti, while the number of

logical time steps is just
P

i Wi. This gives a value for the

overall throughput of the computation of
P

i WiP
i Wi/Ti

. This

can be written as 1P
i wi/Ti

, where wi is the time fraction in

which the most critical throughput is Ti. Even if this formu-
lation allows us to estimate the performance of an adaptive
system, it is still impossible to use it as a cost function for
any optimization purpose for two reasons:

• the number of loops is potentially exponential in the
graph dimension

• each loops’ activation depends on the activation of
each of its channels

In order to render the analysis of such a system manage-
able, we propose to define a quantity which defines each
channel’s activity independently of the rest of the system:
the channel activation ratio. Such quantity represents
the time fraction in which a channel is active. It is im-
possible to know such quantity without any detail of the
system’s behavior, and an exact evaluation still requires a
complete profiling of the overall system, but the great ad-
vantage with respect to loop quantities is that their number
is bounded by the system graph edge size. In order to ex-
ploit such quantities in a computation, we need to make the
additional assumption

Assumption 2: the channels’ activation ratios can be con-
sidered statistically independent.
This assumption is of course far from being true in real

cases, as communication channels tend to be strictly corre-
lated from the functional point of view. However, the inde-
pendence needed for our purposes does not imply a complete
functional independence, but rather a single cycle decou-
pling, which is normally true at the hierarchical level we are
considering. Blocks with high complexity will normally ex-
ecute complex tasks internally before communicating with
each other. An example of such cycle-level independence will
be shown in the case of an MPEG decoder whose communi-
cation infrastructure is analyzed as a case study in section
7.
Under the independence assumption, together with as-

sumption 1 that states that communication always occurs
in bursts, it is easy to compute the values wi for each loop.
In fact, given a loop with n edges ej , its weight wi is sim-
ply the product of the single edge’s activation actji, that
is wi = Πjactji. This property is valid also under the less
restrictive set of assumptions that allow for non-bursty com-
munication.
Therefore, we can compute an average throughput as:

THtot =
1

P
i

Πjactji

Ti

125

Such computation depends on simple static profiling in-
formation on the single communication channels:
The formulation is clear, but it allows the computation

of the overall throughput only by analyzing an exponential
number of loops. If this were the case, no advantage could
be drawn from the last assumption. However, it is possible
to see that the same scheme used in [2] could be extended
to such a computation, with minimal added complexity.
Differently from [2], though, such an algorithm is only use-

ful to obtain the throughput contribution of the worst loop,
rather than the complete throughput, and has therefore the
rather limited application of giving an upper bound for the
systems’ throughput.
Given the previous discussion, the necessity for an heuris-

tic computation to embed in existing physical design envi-
ronments is more pressing than ever; in order to perform
some technology explorations, we tried to introduce an ap-
proximate calculation of the throughput that could be eas-
ily embedded in a floorplanning environment. We decided
to use the function described in [2], modified in order to
include the effect of channel activity. In detail:

1. For each pin to pin connection we evaluate the Man-
hattan distance between the pins.

2. The distance is divided by the maximum length ad-
missible between clocked elements.

3. This last number is divided by the length of the small-
est loop to which the connection belong.

4. The number is multiplied by the activity of the
channel.

5. All such values are summed.

The algorithm differs substantially from the old one only
by the presence of the additional weighting step that takes
into account the channel communication properties summa-
rized in the activity value. The rationale of such a choice is
that a channel will be contributing to the overall throughput
degradation of the system at most up to its activation time.
Other minor modifications have been introduced in order to
take into account the blocks’ delays.

7. RESULTS AND COMPARISONS
In this section we will try to assess the pros and cons of

wire pipelining and illustrate the advantage derived by em-
ploying an adaptive scheme. Such advantage, however, will
have to be tested against the greater complexity of design
and verification, faster clock distribution, process variations,
which have not entered in the discussion. We believe that
the importance of the issue justifies our approach, especially
in light of the promising results shown.
In order to obtain some meaningful figures, we followed

a twofold experimental evaluation: we first considered the
MCNC and GSRC benchmarks of the rest of the paper,
and try to settle the question as to whether adaptive wire
pipelining can provide acceptable advantages under the most

adverse model of delay (13 FO4) discussed previously; then,
we analyzed the performance of two well-defined systems, an
MPEG decoder and a pipelined CPU, and used real profiling
information to simulate the systems.

7.1 GSRC benchmarks
The experiments described in this subsection use the same

benchmarks of section 4, with a substantial difference: we
introduced a number describing the activity of each channel
between blocks, so as to make it possible to take advantage
of adaptive schemes. As no functional information is given
with the benchmarks (at the point that even the all impor-
tant directionality of the pins had to be guessed or arbitrar-
ily assigned), we decided to describe the channels as being
used in a burst mode with lengths and relative phases uni-
formly distributed (coherently with the assumptions of the
previous section). The next subsection will show how the
basic conclusions hold for more general cases of temporally
related channels.
After generating (in a suitable format) the “new” bench-

marks, we proceeded to compute two values: an optimized
non-pipelined solution and an adaptive wire pipelined one.
The first is generated in a similar way to section 4. As we
were interested in the most critical case of fixed block de-
lay of 13 FO4 (which proved to be untractable - at least for
the technological parameters we considered - by the non-
adaptive pipelining), all the results shown here refer to such
a case. The adaptive solution is generated by employing a
floorplanner which optimizes the heuristic cost function de-
scribed in previous section (we modified the publicly avail-
able tool PARQUET [8] in such a way that loop compu-
tation and channel activity annotation is possible). The
result is then automatically translated into a VHDL netlist
which mimics the behavior of the real system by allowing
the adaptive communication between blocks. Each block
functionality is simply that of a counter which allows track-
ing the evolution of the system without the necessity of a
full scale simulation. Of course, each channel is represented
by the appropriate pipelining delays, derived from the floor-
planner. The bursty behavior of the channel is emulated
by a simple function which generates a bit of information
per block input using the activity values derived from their
description. The detailed implementation of the adaptive
protocol is outside the scope of this paper; it is important
to note, however, that it represents a real RTL design which
can be easily turned into a synthesizable description. An
incidental result is therefore that of giving an opportunity
to validate such an implementation. This VHDL model is
then simulated and its real performance is compared to that
of the non-adaptive design. Various choices for the systems’
frequencies are chosen and simulated in order to obtain a
good approximation of the optimum. However, due to the
impossibility of simulating a large number of different so-
lutions, we used a binary procedure to find a suitable fre-
quency before running the simulations. Such procedure is
guided by the most critical loop cost described in the previ-
ous section. The results are shown in table 4. Please note
that here and in the following tables the data rate are the
result of a simulation of the VHDL system and not estimates
from the floorplanner, thus representing real improvements
w.r.t. the non pipelined case. The previous table could
give a precise estimation because of the static limitations to
performance.

126

Table 4: Block delay equal to 13 FO4, adaptive case
bench DR TH lmax DR0 L SU
n10 0.831 0.5820 70% 0.588 172% 29%
n30 0.718 0.4668 65% 0.398 251% 44%
n50 0.722 0.4693 65% 0.452 221% 37%
n100 0.713 0.4636 65% 0.435 230% 39%
ami33 0.63 0.4125 65% 0.529 189% 16%
xerox 0.47 0.3055 65% 0.395 253% 16%

DR=data rate with WP, TH= throughput with WP, lmax=max

unlatched length for WP, DR0=data rate w/out WP, L=maximum

unlatched length w/out WP, SU=speedup of WP.

As the table shows, but for the case of the benchmark xe-
rox, use of adaptive schemes is always beneficial in data rate,
while the corresponding table 3 showed the extreme disad-
vantage of the non-adaptive scheme with respect to a main-
stream high performance design. This has to be weighted
against the increase in frequency that, as it is apparent from
the ratios of lengths (remember that in our units, lengths are
proportionally correlated to delays, in this case to the clock
period). While this could, in some cases, be useful to adapt
the frequency of the designed block to other high-frequency
part of the system, it does not come for free: Clock tree
synthesis and tightened skew control might be impossible
to achieve. For this reason, it is interesting to see the be-
havior of the suboptimal solutions, that is the solutions for
different (and smaller) target frequencies. Figure 1 shows
the trend for the case of benchmark n100. It is apparent
that there is space for optimization between the optimal
case (length=65%) and the maximum non-pipelined case,
and the designer can choose the appropriate trade-off be-
tween frequency and data-rate. Another interesting result
that can be shown in the figure (but is apparent from the fig-
ures in table 4) is that the maximum throughput is reached
at the limit length of 65% that corresponds to the inverse
of 13 FO4 delay. Were it possible to decrease such a delay,
the gains could be even greater. In fact, as shown before,
the 13 FO4 delay model is the most stringent in terms of
performance. Looking at the case shown in figure 2 helps
understanding the difference. In this case, n10 has been op-
timized considering null delay blocks (or, equivalently, sup-
posing the signals are latched both at the input and at the
output of a block). The trend towards better data rates for
larger frequencies is apparent.

7.2 Case Study: MPEG
In this subsection, we will try to validate the methodology

with a real-life example that is the typical (though small) ex-
ample for which heavy wire pipelining might be appropriate:
an MPEG decoder. We follow in this example the implemen-
tation of the decoder described in [9] and used as case study
also in [6] for the case of latency insensitive protocols, where
it is possible to understand the main quality of the case that
makes it suitable for our purposes: the various blocks of
the system, communicate with each other in bursts followed
by channel idle periods. It is also possible to quantify ex-
actly the duration of the activity periods, thus formulating
a floorplanning problem which is completely compliant with
our description as of section 4. The only difference is that
the system enforces a strict data communication dependency
that contradicts the randomness hypothesis: However, the
experimental results show that the optimization potential of
a pipelined solution is substantial.

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 65 70 75 80 85 90 95 100 105 110

da
ta

 r
at

e

max length(%)

n100 data rate (pipelined)
n100: max unpipelined data rate

Figure 1: n100 : Variation of data rate with fre-
quency

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 0 20 40 60 80 100 120

da
ta

 r
at

e

max length(%)

n10 data rate (pipelined)
n10: max unpipelined data rate

Figure 2: n10 : Optimization of data rate in the
ideal case (no block delay)

We first described the system in standard format, together
with channel annotations with activities extracted from the
real behavior. Then, as a first phase, we optimized the sys-
tem as detailed for the other benchmarks. This gave us a
series of solutions detailed in figure 3: the block 13 FO4 op-
timization potential is around 42%, while for the unbound
optimization (at the same frequency) we reach 76% (this oc-
curs in the graph at length 65%; the graph shows a much
larger speedup at very high frequencies, but such speedup
would presuppose an higher block frequency than the one
fixed by 13FO4).
In a second phase, we used the optimal floorplan thus

obtained (case 13 FO4) and simulated the communication
channel with the real system timing rather than random
bursts. This gave us a final throughput of 0.65, at a length of
66%, or in short a data rate of 31% in excess of the maximal
non-pipelined frequency, for a doubling of the operating fre-
quency. The degradation in performance can be expleined
by the non-random correlation between data bursts. It is
likely that more sophisticated cost functions will be able
to approximate better the real performance of the system,
possibly giving higher final speedups.

127

0.5

1

1.5

2

2.5

3

3.5

4

0 20 40 60 80 100 120

da
ta

 r
at

e

length (%)

MPEG data rate
MPEG data rate (non-pipelined)
MPEG data rate (13 FO4 delay)

Figure 3: MPEG : Optimization of data rate with
13 FO4 and no block delay

We believe that this example shows the usefulness of the
technique in practical cases, and prompts the investigation
of more sophisticated schemes to further optimize and in-
vestigate the frequency/data rate trade off.

8. CONCLUSIONS
In this paper we first showed how the application of the

wire pipelining technique to the design of systems-on-chip,
which on the one hand increases the clock frequency other-
wise limited by long slow interconnect, may not be able on
the other hand to increase the actual data rate, that is the
product of frequency and throughput. As a result, a general-
ized slowdown of the system clock to fit the longest intercon-
nect delay, without wire pipes, may be a better choice. This
occurs even using a floorplanning approach which is able
to minimize the throughput degradation that a standard la-
tency insensitive wire pipelining technique might imply. The
reasons are the added latency in wires and the delay of logic
and local wires within the blocks whose global interconnec-
tions have to be pipelined, as it is first shown formally and
secondly demonstrated by means of experiments.
Then we showed how an enhanced wire pipelining tech-

nique in conjunction with a floorplan tool with a suitable
cost function is able to increase the data-rate such that the
convenience of using interconnect pipelines become evident.
Besides standard floorplan benchmarks, we used a MPEG
decoder as a case study to make more evident the efficiency
of our approach, and at the same time to demonstrate how
this methodology can be practically and successfully applied
to a real-life example.

9. REFERENCES
[1] The International Technology Roadmap for
Semiconductors (ITRS), 2003, SIA.

[2] M.R. Casu and L. Macchiarulo, “Floorplanning for
Throughput,” Proc. ISPD’04.

[3] M. Ekpanyapong et al., “Profile-Guided
Microarchitectural Floorplanning for Deep Submicron
Processor Design,” Proc. DAC 04, June 2004, San Diego
CA.

[4] C. Long et al., “Floorplanning Optimization with
Trajectory Piecewise-Linear Model for Pipelined
Interconnects,” Proc. DAC 04, June 2004, San Diego
CA.

[5] L.P. Carloni et alii, A Methodology for
“Correct-by-Construction” Latency Insensitive Design”,
Proc. ICCAD 99, pp. 309-315.

[6] L.P. Carloni and A.L. Sangiovanni-Vincentelli,
Performance Analysis and Optimization of Latency
Insensitive Protocols, Proc. DAC 00, pp. 361-367.

[7] M. Singh and M. Theobald, Generalized Latency
Insensitive Systems for Single-Clock and Multi-Clock
Architectures, Proc. DATE 2004, Paris.

[8] http://vlsicad.eecs.umich.edu/BK/parquet/

[9] M. Ikeda et. al., A Hardware/Software Concurrent
Design for Real-Time SP@ML MPEG2 Video-Encoder
Chip Set, Proc. European Design and Test Conf.,
pp. 320326, March 1996.

128

	Main Page
	ISPD'05
	Front Matter
	Table of Contents
	Author Index

