Fast Floorplanning by L ook-Ahead Enabled Recur sive Bipartitioning

Jason Cong, Michail Romesis, and Joseph R. Shinnerl
UCLA Computer Science Department
{cong,michail,shinnerl } @cs.ucla.edu *

ABSTRACT

A new paradigm is introduced for floorplanning any
combination of fixed-shape and variable-shape blocks un-
der tight fixed-outline area constraints and a wirelength
objective. Dramatic improvement over traditional floor-
planning methods is achieved by explicit construction of
strictly legal layouts for every partition block at every level
of a cutsize-driven, top-down hierarchy. By scalably incor-
porating legalization into the hierarchical flow, post-hoc le-
galization is successfully eliminated. For large floorplan-
ning benchmarks, an implementation, called PATOMA,
generates solutions with half the wirelength of state-of-the-
art floorplanners in orders of magnitude less run time.

I. INTRODUCTION

Fast floorplanning is critical in the hierarchical physical de-
sign of VLSI circuits, for two reasons. First, system design-
ers require a means of rapidly estimating the variation in per-
formance of alternative architectures and logic designs. Sec-
ond, multiscale and mixed-size placement algorithms typically
solve some form of floorplanning problem at the coarsest level
of approximation, in order to generate an initial coarse place-
ment for subsequent iterative refinement. With the reuse of IP
blocks for multi-million-gate ASICs and SOC designs, most
modern IC designs consist of a very large number of standard
cells mixed with many big macros, such as ROMs, RAMs and
IP blocks. When clusters of standard cells are placed simulta-
neously with macros, the clusters may be treated as soft blocks.

Many floorplanning algorithms have been developed in re-
cent years, varying mostly in the representation of geometric
relationships among modules. They can be divided into two
major categories: slicing and non-slicing algorithms. The first
slicing algorithms were developed in the 1980’s (e.g. [13],
[16]). In the 1990’s, non-slicing algorithms became more pop-
ular, especially after the introduction of the BSG [12] and Se-
quence Pair [11] representations. Other non-slicing representa-
tions include TCG [10], B*-tree [3], CBL [8], O-tree [6], and
so on. Simulated annealing (SA) has been used to minimize
area and/or wirelength under each of these representations.

Until a few years ago, the inherent slowness of SA was par-
tially hidden by the lack of any need to floorplan more than

*Financial supports from Semiconductor Research Consortium Contracts
2001-TJ-910 and 2003-TJ-1019 and National Science Foundation Grant CCR-
0096383 are gratefully acknowledged.

100 blocks at a time. Recently, however, growing numbers
of IP blocks have increased the sizes of most floorplanning
instances, prompting researchers to seek non-stochastic ap-
proaches. Ranjan et al. [14] proposed a two-stage fast floor-
planning algorithm. In the first stage, a hierarchy is gener-
ated by top-down recursive bipartitioning. Cutline orientations
are selected from the bottom up in a way that keeps subre-
gion aspect ratios close to one. In the second stage, low-
temperature SA improves wirelength by reshaping blocks to
produce a more compact layout. Final, total wirelength was
comparable to or better than that obtained by an SA-based al-
gorithm [16], with speed-up of over 1000x in predictor mode
(high-speed) and 20x in constructor mode (high-effort). More
recently, a fast algorithm called Traffic [15] has been used to
generate high-quality floorplans without simulated annealing.
Traffic also uses two stages. In the first stage, the blocks are
divided into layers by linear multi-way partitioning. In the sec-
ond stage, every layer is optimized individually; the blocks in
each layer are separately arranged into rows and then moved
among the rows to balance row widths and reduce wirelength.
In the end, pairs of rows are squeezed tightly after being trans-
formed into trapezoids. This final step leads to very compact
floorplans, but it also increases wirelength, because the cells
are ordered according to their heights.

The impressive speedups obtained by the last two algorithms
raise the question of whether a fast deterministic approach can
be used to replace the widely used SA engine with the same or
better solution quality. As commonly practiced, floorplanning
by recursive bipartitioning makes no guarantee that the blocks
assigned to a subregion can actually be shaped and arranged
there without overlap. In this scenario, defining base cases may
be difficult, as many base cases may fail to have legal solutions.
The work presented here is the first, as far as we know, to define
a floorplanning flow driven by recursive cutsize-driven bisec-
tion in which the satisfiability of all constraints is explicitly en-
forced at every step, so that the need for post-hoc legalization
is completely removed. Legal, a.k.a. feasible solutions, strictly
satisfying all non-overlapping, area, and shape constraints, are
explicitly constructed for every subproblem at each interme-
diate level. Their feedback to the recursive bisection enables
it to proceed significantly longer, deepening the partitioning
hierarchy and thereby improving wirelength quality. Our im-
plementation of this flow beats a leading SA-based engine on
the GSRC benchmarks by 10-20% in average wirelength and
by orders of magnitude in run time.

The paper is organized as follows. Section Il gives an



overview of our implementation, called PATOMA.* Section I11
describes a zero-dead-space floorplanning algorithm (ZDS)
and its adaptation to wirelength minimization in PATOMA.
Section 1V describes the ROB (Row-Oriented Block Pack-
ing) heuristic for floorplanning a combination of hard and soft
blocks. Section V compares PATOMA'’s performance with that
of Parquet-2 [1]. The paper is concluded in Section VI.

Il. OVERVIEW OF THE PATOMA ALGORITHM

PATOMA attempts to minimize total wirelength under a
fixed-outline area constraint. It couples top-down, cutsize-
driven, recursive bipartitioning with fast, area-driven floor-
planning on all subproblems. The flow is outlined in Figure 1.
At every level of the cutsize-driven, area-bipartitioning hierar-
chy, each node corresponds to a subset of blocks assigned by
terminal propagation to a specific rectangular subregion of the
chip. Before each application of cutsize-driven bipartitioning,
however, one of two separate fast, area-driven floorplanners
is used to check whether the given subproblem can be legal-
ized. The fast floorplanner determines by a slicing construc-
tion whether the blocks assigned to each given subregion can
in fact be shaped and laid out within that subregion without
overlap. If so, then recursive cutsize-driven area bipartition-
ing continues in both subregions at the current level. If not,
then the cutsize-driven solution at that level is discarded, and
a wirelength-reducing symmetry of the previously computed,
legal, “look-ahead” solution to the parent subproblem is used
instead.? Because ZDS and ROB both produce slicing struc-
tures, their top-level cuts define floorplanning subproblems
with known legal solutions. Cutsize-driven partitioning cou-
pled with subproblem legalization then resumes recursively on
these subproblems, until single-block base cases are reached.

The area-driven look-ahead floorplanners determine
whether a legal solution exists for a given fixed-shape subre-
gion and block subset. These algorithms must be fast and must
usually find legal solutions if they exist. The first area-driven
floorplanner, ZDS, is based on a recent study [4] of sufficient
conditions for zero-dead-space floorplanning of soft blocks.
ZDS is used only when all the blocks in the subregion are
soft. Otherwise, a second area-driven floorplanner based on
row-oriented block packing (ROB) is used. ROB is somewhat
similar to Traffic [15]; however, it handles both soft and
hard blocks under a fixed-outline constraint. Both algorithms
perform well in reasonable run time. They are reviewed in
Sections 111 and IV below.

PATOMA uses the well-known multilevel partitioning pack-
age hMetis [9]. Neither of the two block subsets produced is
allowed to hold more than 60% of the total area of all blocks
in both subsets. This choice of area balance produced the best
results in our experiments. Terminal propagation is used to
account for connections between partitions.

1an acronym for “Partitioning To Optimize Module Arrangement.” Pronounced
PAH-toh-ma, from the Greek for “floor.”

2Failure of ZDS (Section I11) or ROB (Section 1V) to find a legal initial solution, prior
to recursive bipartitioning, is highly unlikely. We have not observed any such failure on
any circuit.

Algorithm 1.1 PATOMA Floorplanning Algorithm
input: Set of blocks § = {r1,...,rx}; netlist; aspect ratio
constraints for each block, rectangle R of fixed shape.

Each node of the partitioning tree is a set of blocks paired with a
subregion. Generate the root node (S, R) atlevel ¢ = 1, and a
legal floorplan for the root.

whilethere are still blocks to be placed
while there are unvisited nodes at level 4
Select unvisited node n = (Sn, Ry ) of level 4.
Use terminal propagation to model connections
between b; € S, and b; & Sx.
Call hMetis to partition S,, into disjoint subsets S,,; and
Sna2, resp. assigned subregions R,1, Ry2 of R,,.
done := false.
repeat
remark Binary search for cutline position.
fori=1,2
if (all blocks in S,; are soft)
flt[z] = ZDS(Sn“ Rm,)
elsefit[i] := ROB(Sni, Rni).
end if
end for
if (fit[5] and not fit[k], 5, k € {1, 2})
slide the cutline toward R.;
elsedone :=true.
end if
until (done or cutline search limit reached)
if (fit[1] and fit[2])
Create child nodes n1 and n2 of n.
Store the solutions from or ZDS or ROB for possible
future use.
else replace the hMetis bipartitioning of (S,., R») with
a bipartitioning derived from earlier application
of ZDS or ROB.
end if
end while
i: =1+ 1.
end while
output: A floorplan of S in R satisfying all area and aspect-
ratio constraints.

Fig. 1. The PATOMA floorplanning algorithm.

Using feedback from the look-ahead floorplanners,
PATOMA redistributes white space in order to make the result
of cutsize-driven partitioning legalizable as often as possible.
The exact location of the cutline is initially set in direct
proportion to the total areas of the blocks in every partition. If
a legal solution is found initially for R, but not for its sibling
R, it may still be possible to find a legal solution for both
partitions by moving white space from R; to R», i.e., by
moving the cutline away from R, and toward R;. Candidate
cutline positions can be generated by binary search, as long as
each cutline position results in a legal solution in at least one
of the partitions.



I1l. WIRELENGTH-AWARE ZDS FLOORPLANNING

Zero-dead-space (ZDS) floorplanning is used in PATOMA
only when all blocks are soft. The ZDS algorithm ignores
wirelength. Under conditions reviewed below, its result is a
ZDS floorplan with the aspect ratios of all blocks bounded be-
tween 1/3 and 3. Both the original ZDS algorithm [4] and
PATOMA’s extensions to it are reviewed here.

Let the blocks be sorted by nonincreasing areas, a; >

. > ap, and let g be the maximum ratio of the areas
of any two consecutive blocks; # = max;{a;/a;+1}. Let
~v = max{2,8}. An analysis shows that, if all block aspect
ratios p; are allowed to range freely in [1/(y + 1), v + 1], then
a zero-dead-space floorplan for this set of blocks can be found
for any given region with area equal to the sum of the areas of
the blocks and any fixed aspect ratio in [1/(y + 1), v + 1].

The ZDS algorithm proceeds as follows. At each step, the
blocks are sorted according to their area, and the largest block
is examined. If it fills up at least 1/~ of the area of its enclos-
ing subregion, it is shaped and placed flush against one side
of that subregion. A cut is made for the remaining unplaced
sorted blocks such that the resulting subsets’ total areas are as
nearly equal as possible. The subregion is then cut parallel
to its shorter side so that the areas of the resulting subregions
equal those of the two partitioned block sets. Cutting parallel
to the shorter side keeps aspect ratios of subregions bounded
in terms of the area variation among the blocks.

The ZDS algorithm is very fast, both asymptotically
(O(nlogmn)) and in practice (it floorplans 300 blocks in a few
seconds). All the GSRC soft-block-packing benchmarks can
be solved optimally by this algorithm; i.e., all blocks can be
shaped and placed with zero dead space and with all blocks’
aspect ratio constraints 1/3 < p; < 3 satisfied. Thus, its re-
quired conditions are not very restrictive.

PATOMA extends the original ZDS algorithm in two ways.
First, available dead space is used to increase the frequency
with which ZDS satisfies all aspect-ratio constraints. Let pmax
denote the maximum aspect ratio allowed for any block. When
v+ 1 < pmax, SUccess of ZDS is guaranteed, because the as-
pect ratios of the subregions for which ZDS is called are also
in the range [1/pmax, Pmax), DY the partitioning and cutline
decisions made at the higher levels of the hierarchy. When
v+ 1 > pmax, the effective value of -+ can be reduced by
padding some of the blocks by dead space. If the reduction in
~ is not enough to guarantee success, the ZDS algorithm is ap-
plied anyway, because its conditions for the creation of a legal
solution are sufficient but not necessary. Second, in the origi-
nal ZDS algorithm, the side of a subregion in which a block
or block subset is placed is left unspecified. In PATOMA,
when ZDS must be used instead of cutsize-driven bipartition-
ing to guarantee legalizability of the resulting subproblems,
each block subset is placed in the subregion side that reduces
the total lengths of connections between blocks in the subset
and other blocks.

1V. ROW-BASED FLOORPLANNING

The ROB (Row-Oriented Block Packing) heuristic is used
by PATOMA for floorplanning a combination of fixed- and
variable-dimension blocks. It is similar to Traffic [15] in that
it organizes the blocks by rows according to their dimensions;
however, it satisfies a a fixed-outline constraint and handles
both hard and soft blocks. Assume given a set of blocks to
be placed in a region with fixed height H and fixed width W.
If H > W, the blocks will be organized in rows; otherwise,
in columns. By organizing blocks in rows along the shorter
subregion dimension, there is room to pack more rows, and
therefore a wider variety of block heights can be efficiently
supported. For the rest of this section, we assume, for simplic-
ity, that the blocks are packed in rows.

ROB ignores connectivity. It consists of two stages. In the
first stage, the blocks are grouped into rows according to their
dimensions. In the second stage, emptier rows are merged with
fuller rows until all rows fit inside the given, fixed-shape re-
gion. During the first stage, blocks are considered one by one
and either added to existing rows or used to create new ones.
Hard blocks are considered first. For every block, if one of its
dimensions matches the height of an existing row and its ad-
dition to that row does not create overflow, it is placed there.
Otherwise, a new row is generated with height equal to the
smaller dimension of the block. Soft blocks are considered
next. As they can be reshaped, they are more likely to match
the height of an existing row. When a block can fit in multi-
ple rows, the shortest one is preferred. If no such row can be
found, a new one is generated with height equal to the smallest
possible dimension of the block.

At the end of the first stage, a set of rows has been generated.
Each row width is less than the fixed width W of the region, but
it is possible that the sum of the row heights is larger than the
fixed height H of the region. In the second stage, some rows
are eliminated by redistributing blocks one by one. The rows
are scanned in a decreasing height order. Blocks from rows
shorter than the currently selected one are added to the selected
row where possible. Priority is given to rows of smallest width.
When a block is moved to another row, it is allowed to be ro-
tated or reshaped for the purpose of matching the height of its
new row as closely as possible without exceeding it. The pro-
cedure is repeated until either all the rows have been scanned,
or enough rows have been eliminated such that the sum of the
heights of the remaining rows is less than H. In the first case,
the algorithm ends without finding a legal solution, while in
the second it reports a success.

When legalizability of a cutsize-driven partition of a given
subproblem cannot be ensured, ROB’s solution to that sub-
problem is employed instead, by interpreting it as a partition.
Since the solution of ROB is organized in rows (columns), it is
guaranteed to have at least one slicing horizontal or vertical cut
that can be used as the cutline for a bipartitioning of the blocks.
The bipartitionings generated by these cuts are compared with
their symmetric ones for wirelength, and the best bipartitioning
is selected to replace the infeasible hMetis solution.



V. EXPERIMENTS AND RESULTS

We compare PATOMA to to Parquet-2 [1], a state-of-the-
art SA-based floorplanner using the Sequence Pair geometric
representation, Traffic [15] and FFPC, the fast floorplanner of
Ranjan et al. [14]. For a fair comparison, all experiments were
performed on the same machine, a 2.4GHz Pentium IV run-
ning RedHat Linux 8.0. Due to the page limit, result tables
are omitted; they can be found in a technical report [5]. We
compared on four sets of benchmarks. For all the experiments,
the floorplanners are trying to minimize the wirelength in a
fixed outline. The first set of benchmarks includes the 4 largest
GSRC ciruits (size 200 - 300 blocks), where all the blocks are
soft. For this set we compare only to Parquet-2, because in
addition to the high-quality floorplans it produces, it is, as far
as we know, the only freely available package online that can
consider both fixed-outline constraints and soft blocks. We
run Parquet-2 in two modes. The first mode is the default
and is very fast, due to a shorter simulated-annealing sched-
ule that hurts the wirelength quality. The second mode is a
high-effort mode, where we impose a time limit of one hour to
allow SA to attain a better solution. In the all-soft-block ex-
amples, PATOMA uses only the ZDS algorithm and not ROB
to enforce the legalizability of all floorplanning subproblems.
All blocks are allowed to be reshaped with any aspect ratios in
[1/3,3]. The default mode of Parquet-2 produces results that
are 19% higher in wirelength than PATOMA, while its run-
time is 37 x slower. The high-effort mode of Parquet-2 is 11%
worse in wirelength and 824 x slower than PATOMA.

The second set of experiments includes the same GSRC
benchmarks, but with all blocks of given, fixed dimensions. In
these examples, PATOMA uses only ROB and not ZDS to en-
force the legalizabilty of floorplanning subproblems, because
all blocks are hard. On these benchmarks, PATOMA pro-
duces results of 10% lower wirelength than the default mode
of Parquet-2, with a speedup of 33x, and of 5% lower wire-
length than the high-effort mode of Parquet-2, with an average
speedup of 523 x.

The third set of experiments includes the same GSRC cir-
cuits all blocks hard, but without pads. PATOMA was com-
pared with Traffic and FFPC for these benchmarks, since these
floorplanners do not use pads or shape soft blocks. FFPC’s
wirelength is 3% longer than PATOMA’s, on average, while
its run time is 6x longer. With Traffic’s run-time limit set to
PATOMA’s run time, Traffic’s average total wirelength is 60%
longer than PATOMA’s.

In the fourth set of experiments, we generated large-scale
floorplanning benchmarks from the IBM/ISPD98 suite [2] that
include both hard and soft blocks on a fixed die with 20%
whitespace. The soft blocks are clusters of standard cells gen-
erated by the First-Choice clustering heuristic [9]. The hard
blocks are the same macros as in the original benchmarks. The
allowed range of aspect ratios for the soft blocks was set at
[1/3, 3]. The sizes of the benchmarks range from 500 to 2,000
blocks. We called this suite of benchmarks the HB-suite (hy-
brid blocks). These benchmarks are available online [7]. For
these examples, Parquet-2’s wirelength is on average 104%

higher than PATOMA’s, while it is 209x slower.

V1. CONCLUSIONS

A new paradigm has been presented for floorplanning a
combination of fixed- and variable-dimension blocks under a
wirelength objective and a fixed-outline constraint. By con-
structively ensuring satisfiability of all constraints at each level
by fast, area-driven heuristics, recursive cutsize-driven biparti-
tioning is allowed to proceed longer, and post-hoc legalization
is eliminated. The resulting flow is scalable and produces su-
perior wirelengths in orders of magnitude less run time than a
leading SA-based tool.

REFERENCES

[1] S. Adya and I. Markov. Fixed-outline Floorplanning Through Better
Local Search. In Proc. International Conference on Computer Design,
pages 328-334, 2001.

[2] C.J. Alpert. The ISPD98 Circuit Benchmark Suite. In Proc. Int'l Symp.
on Phys. Design, pages 80-85, 1998.

[3] Y.C. Chang, Y.W. Chang, G. Wu, and S. Wu. B*-trees: A New Repre-
sentation for Non-Slicing Floorplans. In Proc. Design Automation Con-
ference, pages 458-463, 2000.

[4] J. Cong, G. Nataneli, M. Romesis, and J. Shinnerl. An Area-Optimality
Study of Floorplanning. In Proc. Int'l Symposium on Physical Design,
pages 78-83, 2004.

[5] J. Cong, M. Romesis, and J. Shinnerl. Fast floorplanning by look-ahead
enabled recursive bipartitioning. Technical Report TR040043, Computer
Science Dept., University of California, Los Angeles, 2004.

[6] P. Guo, C. Cheng, and T. Yoshimura. An O-tree Representation of
Non-slicing Floorplan and its Applications. In Proc. Design Automa-
tion Conf., pages 328-334, 1999.

[7] http://cadlab.cs.ucla.edu/cpmo/HBsuite.html/.

[8] X. Hong, S. Dong, G. Huang, Y. Ma, Y. Cai, C. Cheng, and J. Gu. A
Non-slicing Floorplanning Algorithm Using Corner Block List Topolog-
ical Representation. In Proc. Design Automation Conf., pages 268-273,
1999.

[9] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. Multilevel hyper-
graph partitioning: Application in visi domain. In Proc. 34th ACM/IEEE
Design Automation Conference, pages 526-529, 1997.

[10] J.Linand Y. Chang. TCG: A Transitive Closure Graph-Based Represen-
tation for Non-Slicing Floorplans. In Proc. Design Automation Conf.,
pages 764-769, 2001.

[11] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani. Rectangle-
packing-based module placement. In Proc. International Conference on
Computer-Aided Design, pages 472-479, 1995.

[12] S. Nakatake, K. Fujiyoshi, H. Mirata, and Y. Kajitani. Module Packing
Based on the BSG-structure and IC Layout Applications. In |[EEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
volume 17, pages 519 - 530, 1998.

[13] R. Otten. Automatic Floorplan Design.
Conf., pages 261-267, 1982.

[14] A. Ranjan, K. Bazargan, S. Ogrenci, and M. Sarrafzadeh. Fast Floor-
planning for Effective Prediction and Construction. In IEEE Trans. on
VLS Sys., pages 341 — 351, 2001.

[15] P. Sassone and S.K. Lim. A Novel Geometric Algorithm For Fast
Wire-Optimized Floorplanning. In Proc. International Conference on
Computer-Aided Design, 2003.

[16] D.F. Wong and C.L. Liu. A New Algorithm for Floorplan Design. In
Proc. Design Automation Conference, pages 101 — 107, 1986.

In Proc. Design Automation



