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Abstract. This paper describes the synthesis of dynamic differential logic to
increase the resistance of FPGAs against Differential Power Analysis. Com-
pared with an existing technique, it saves more than a factor 2 in slice utiliza-
tion. Experimental results indicate that a secure version of the AES algorithm
can now be implemented with a mere doubling of the slice utilization when
compared with a normal non-secure single ended implementation.

1 Introduction

Side-channel attacks (SCAs) have been identified as an important open issue re-
lated to the general security of cryptographic applications on FPGAs [1]. These at-
tacks find the secret key with information associated with the physical implementa-
tion of the device, such as time delay and power consumption. Much effort has al-
ready gone into setting up the Differential Power Analysis (DPA) on FPGAs [2].

We have previously presented a logic level design methodology to implement a
secure DPA resistant crypto processor on FPGA [3]. In this manuscript, we study the
synthesis aspects in order to reduce area consumption and time delay. The next sec-
tion briefly introduces Wave Dynamic Differential Logic (WDDL), the cornerstone
of the logic level design methodology. Section 3 discusses a technique to combine
several WDDL gates into 1 slice. This reduces the area consumption and time delay.
Section 4 describes the clustering procedure of the synthesis methodology. In section
5, the performance is evaluated. Finally, a conclusion is formulated.

2  Wave Dynamic Differential Logic

To address power attacks, we have introduced a family of secure compound
standard cells, referred to as Wave Dynamic Differential Logic [3]. WDDL can be
constructed from regular standard cells and is applicable to FPGA. WDDL achieves
its resistance by charging in every cycle a constant load capacitance. It is dual rail
with precharge logic in which a pre-discharge wave travels over the circuit. In the
precharge phase, the inputs to the WDDL gate are set at 0. This puts the output of the
gate at 0 and the precharge wave travels over to the next gate.

The set of logic gates is restricted to the WDDL AND- and OR-gates in order to
assure that every compound standard cell has exactly 1 output transition per cycle [3].
In addition, it is essential for input independent power consumption that the gate
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always charges ideally the same load capacitance. The capacitances at the differential
in- and output signals are alike [4]. There is however a difference in the interconnect
capacitance due to routing variations. Placing the 2 LUTs of a compound standard
cell adjacent and in the same slice minimizes this effect. Then, the differential signals
need to travel the same distance.

The basic building block of a Virtex-II FPGA is known as a slice and consists of
two 4-input, l-output look up tables (LUTs), some multiplexers and registers. A
WDDL AND-gate (OR-gate) occupies 1 slice, in which the G-LUT functions as an
and-operator (or-operator) on the true inputs, while the F-LUT functions as an or-
operator (and-operator) on the false inputs.

3 Slice Compaction

Currently, 2 LUTs are used to build a compound WDDL gate. Each LUT is gen-
erates one output of the differential output pair. It is however possible to add more
functionality into each LUT. A cluster formed by an arbitrary collection of G-LUTs
and the cluster formed by the corresponding F-LUTs behave as a compound WDDL-
gate. The 2 clusters (1) are differential; (2) transmit the precharge value; and (3) have
a 100% switching factor. A LUT on the Virtex-II platform has 4 inputs and 1 output.
In this case, the clusters can have at most 4 inputs and 1 output.

Fig. 1 shows an example. Fig. 1A depicts the single ended logic function to be
implemented. The WDDL implementation that results from our original methodology
is shown in Fig. 1B. Each gate is replaced by its corresponding WDDL gate. In total,
6 slices are occupied. The logic depth is 3. Fig. 1C shows the implementation after
clustering. This implementation occupies only 2 slices and has a logical depth of 2.
The clustering algorithm to obtain such compact, side-channel resistant implementa-
tions of WDDL based circuits is the topic of this paper.

4 Logic Synthesis

The kernel of DPA-proof logic synthesis is a clustering algorithm. Given a DPA-
proof implementation consisting solely out of secure compound WDDL AND- and
OR-gates, it partitions the design into groups of LUTs with 4 or less distinct inputs
and 1 output. Each group will form together with their corresponding dual group a
secure compound gate and will be mapped onto adjacent LUTs within the same slice.
A group of LUTs can be divided into many partitions. Various factors, such as graph
traversal order and redundancy introduction, influence the compaction. The remain-
der of this section describes an alternative, yet efficient clustering procedure.

4.1 Clustering through Transformation

Fig. 1C could also have been obtained through a transformation of the synthe-
sized single ended design, shown in Fig. 1D. It is a parallel combination of this de-
sign and its dual. To implement an arbitrary logic function however, several inver-
sions may be present. Inversions prohibit a direct transformation.



Fig. 1. Original single ended logic function (A); WDDL implementation (B); clustered WDDL
implementation (C); and synthesized single ended implementation (D).

This is best seen with an example. Fig. 2A shows a logic function implemented
with and2, or2, and inverter gates. The synthesized single ended implementation is
shown in Fig. 2B. Note that inside one LUT, there is an inversion. This is not a good
partitioning. The precharge 0 at the input of the inverter is propagated as a 1 and
consequently at least 1 of the 2 dual LUTs will have a 1 at the output during the pre-
charge phase. Hence, the precharge 0-wave is halted. The WDDL implementation
obtained through to the original design methodology is shown in Fig. 2C. Here the
inverters have been removed. The outputs of the secure compound gate that precedes
the inverter have been exchanged and as a result there is no inverter anymore to halt
the precharge wave. This procedure however, interconnects the G- and F-LUTs.

Fig. 2. Inversion mixes G-LUTs and F-LUTs: arbitrary logic function with inversion (A);
synthesized single ended design (B); and original WDDL implementation (C).

4.2 Practical Design Flow

The examples of above, lead to a first design flow:
1. The design is synthesized with a limited standard cell library (and2, or2, inverter).
2. The inverters are removed from the result of step 1. The input of each inverter
becomes a global output; the output of each inverter a global input.
3. The result of step 2 is synthesized for FPGA implementation.



4. Each LUT of step 3 is implemented in a G-LUT, its dual in the adjacent F-LUT.
The in- and outputs created in step 2 are reconnected. The inversions are estab-
lished by switching the differential connections.

A detailed discussion of this design flow is available [5].

Performing 2 synthesis procedures (in step 1 and 3) is inconvenient and seems
redundant. Furthermore, the methodology is only suitable for area optimization. In
step 4, the disconnected paths, which have been created in step 2 through stripping of
the inverters, are connected. As a result, the delays are summed and may be larger
than the critical path of step 3. In the next section, a compressed design flow is pre-
sented that ignores steps 2 and 3 and that can minimize the critical path.

4.3 Compressed Design Flow

Since a cluster formed by an arbitrary collection of and2 and or2 gates and its
dual will behave as a WDDL gate, the synthesis library can be expanded to include
all functions in which 4 or fewer inputs are combined with the and2 and or2 operator.
Additionally, since all signals will eventually be differential, the input signals may be
inverted and the output signals may be inverted. Or in other words instead of having a
secure AND and OR gate, we synthesize directly with the complete selection of se-
cure gates that can be implemented in a slice. We can now skip step 2 and 3 of the
practical design flow. The resulting secure digital design flow to implement DPA
resistant FPGAs is shown in Fig. 3. The gray colored blocks are the stages of the
previous design flow that have been expanded or excluded.

The script transforms the single ended gates in their WDDL counterparts. Each
gate declaration is replaced with a primitive module of the FPGA and the dual of this
primitive module. Mapping directives are added to implement both in adjacent LUTs.
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Fig. 3. Secure digital design flow for FPGAs.

5 Experimental Results

We implemented substitution-boxes of Kasumi, DES and AES. For each substi-
tution-box, 4 designs have been implemented: (1) original WDDL, the result from the
original AND-OR design methodology (Fig. 1B and 2C); (2) differential, the result
from a regular insecure synthesis of the differential netlist of the original WDDL
description; (3) compacted WDDL, the result from the compressed design flow of
section 4.3 (Fig. 1C); and (4) single ended, the result from a synthesis of a normal



insecure single ended design (Fig. 1D and 2B). The differential implementation
serves as benchmark because the synthesis tool only has behavioral information and
is free to map the functionality onto the LUTs. We have used DesignAnalyzer for the
original and the compacted WDDL implementation and the synthesis tool in the XST
Verilog design flow for the differential and the single ended implementation. The
programming files have been generated for a Virtex2 xc2v1000-6bg575 with the
same pin locations for each implementation. Synthesis and Place & Route have been
done with the default settings of the tools.

Table 1 presents the slice utilization. On average, there is a factor 2.25 reduction
between the original and the compacted WDDL implementations. There is also an
important difference, up to 37%, between the benchmark implementation and the
compacted WDDL implementation. The compacted WDDL designs of DES and
Kasumi are on average a factor 4.42 larger than the single ended designs. The secure
AES design however, only requires 1.95 times the slices of the single ended design.

Table 1. Slice utilization.

DES Kasumi AES
S1 S2 S3 S4 S5 S6 S7 S8 S7 S9  Sbox

originalWDDL 138 139 137 143 136 142 137 128 249 303 797
differential 73 81 87 78 86 85 76 73 142 157 357
compacted WDDL 67 65 64 57 70 68 59 64 110 123 340
single ended 14 15 14 8 13 15 15 13 30 32 174

6 Conclusions

We have presented a design methodology to synthesize secure DPA resistant
logic. Compared with the original WDDL, slice compaction offers more than a factor
2 reduction in slice utilization. The methodology seems perfect for the AES algo-
rithm. Compared with a single ended design, the overhead in slice utilization is re-
stricted to a factor 2. The experiments have also shown that the synthesis methodol-
ogy achieves smaller utilization factor than a conventional FPGA synthesis tool.
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