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Side-channel attacks
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Differentlal Power Analysis (DPA)
= Statistical analysis extract secret key
= Quick with relatively cheap setup
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Asymmetric power consumption

\E/ s 7o,

basic building block
same current for every transition

= independent of algorithm/arithmetic
= correct by construction
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Logic families

= Current Mode Logic
« perfect current source
0/ \1 * major drawback: static
power consumption

771 = Voltage Mode Logic
0 « fixed amount of charge

. * including events in which
| gate does not change state

Single switching event per cycle

—> Dynamic and Differential Logic
(aka dual rail with precharge logic)
= dynamic logic
alternates precharge and evaluation

= differential logic
uses true and false signals

= dynamic differential logic
 evaluation phase: 1 output becomes 0
 precharge phase: output is charged to 1
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Unbalanced capacitive loads
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= For constant power consumption:
constant load capacitance.

= Match loads at differential outputs.
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Alternating spacer protocol
[Sokolov]

= dynamic differential logic

PR | EV | PR | EV | PR | EV | PR
1 1 1 1 1 0 1
1 0 1 0 1 1 1
= alternating spacer
(PR | EVY| PR | EV |(PR | EV)| PR
0 1 1 1 0 0 1
0 0) 1 0 [LO 1 )| 1

= sufficient to only look at 1 transition
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Memory effects

(0,0) input

= internal nodes
may/may not
(dis)charge

= e.g. DCVSL

= (dis)charge all
internal nodes
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Sense Amplifier Based Logic

= Balanced in/output nodes.
= All internal nodes connect to output.
- AN D-gate: Currem—[mf\] . ! \{oltage—[\*’] Cumtosatr

C c :
S A L N I“EF

Ho 1 0

1 Qe precharge - 4

A | = :

S ;
cIk_I

AND

U

0 05 1 15 2 25
Time - [ns] 11

Experimental setup

= DPA on module of last round DES
¢ $°

P. <} clk Pr<}— clk Selection

function
D(K,C)

K predicts

1% bit of P,
K guessed.

C.<} clk C known.

v

DPA: “Power measurements are partitioned over 2 sets based on
guess of secret key. Difference between typical supply currents
of sets has noticeable peaks if guess was correct.”

S1
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box
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Implementation details

= Difference in logic style:
- static CMOS
+ SABL

= 0.18um, 1.8V CMOS technology
= 5000 encryptions
= Hspice with 10ps simulation step

= Same circuit; two implementations.
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DPA — differential trace

SC-CMOS implementation

= secret key
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Measurements to disclosure
SC-CHMOS implementation
: 5
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Charge recycling SABL

cIk-cid \‘:”:;— —44 \’]P;clk —> ‘l:”;,_J_i_L_c*
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Transient waveforms
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= Charge recycling
= Intermediate

precharge voltages

= Power consumptionN
= Peak supply currentN
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Energy-delay tradeoff inverter
60 . . i
| o min(EDP) Domino
\SABL \CRSABL ¢ min(PDP) setup
:T A\ Ecok Egata
@40\“& = Exclude:
:Cj h = EIoad
30} = Smartcard:
Low fg
2050 560 300 460 500
Delay - [ps]
20

Kris Tiri - September 2004
Seminar UCL Crypto Group

10



Energy masking behavior
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Standard building blocks

D

B

Q-
De-Morgan’s
Law

= false output

= with false inputs

with
precharge

WY

signal

= precharge 1:

outputs are 0

= precharge 0:

1 output is 1
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Wave Dynamic Differential Logic

* input 0 = output 0

* no precharge operator

= Restrict library to AND, OR gate

prgcharge ( AN
inputs

prch

J -

D gate - \
—D_ register
OR gate ‘l&
clk
Encryption
Module
/ 24
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WDDL library

= All functions of and2, or2 operator
= |n addition: inverted input, output signals
= XOR2X4: OAI221X2: AOD_ALQ|221x1 INVX2

A AOI22X1 | INVX4 50
I >O— Y B1 D_
o |
~+H— A0 ] OAI221X1 INVX2
D_LOA|22X1 INVX4 AT —
B NI
DY -

= OQur WDDL library: 128 cells

>l

<l
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Experimental results

= Measurement results for FPGA test circuit
- smgle ended
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Load capacitance breakdown

Mw:”—"ﬁfw 2cw = Intrinsic caps.:
L cun ~ g/tk ______ matched
%C\ %, " Interconnect:
g/ateg ' 3l dominant
Con ' (Moore’s law)
T gate 2 .
Co: intrinsic output capacitance /(> " Ba|anCIng
o mmesyaapactance. e interconnect:
——— crucial

Co,A +Cw,A + Ci,I1 + .. Ci,Ik
= Co,A’ + Cw,A’ + Ci,I1’" + .. Ci, Ik’
Cw,A = Cw, A’ P
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Place & Route approach

same layer)

= Parallel routes (adjacent tracks,

29

i

, parasitic effects

i

= Resistance: equal vias, wire segments

= Capacitance (to other layers):

x Via xy

e Metal x
= Metal y

exact if every other layer is a power plane

balance geometric distances
ideally same environment
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Differential pair routing

= Available via gridless/shape-based routers.
+ only few critical signals (e.g. clock)

+ experiment with 200 pairs:
8 hours CPU, 1000 conflicts, 100 open nets.

= Gridded routers avoid wires in parallel.
= We propose “fat’-wire routing.

%

 Abstract differential pair as one single fat wire.
* Route with fat wire; then decompose into pair.

Fat wire decomposition

1. Duplicate fat wire.
2. Slide apart copies.
3. Reduce to normal width.

AY -
-AY
-AX| | |AX
<>

32
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Some practical issues

= non-preferred routing: *
electric short
if fat wire takes a turn.

= Decomposition
* Translation
wire segment is defined as line between points;
— edit these points.
* Width reduction
wire width is defined in the library database;
— update the library.

33

Design example

e ol

Iliu [r—

= Two normal wires replace each fat wire.

34
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Differential routing methodology

diff.def
J\

stream

diff.lef
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Experimental setup

= DPA on module of last round DES
3 $°

P. < clk Pr<}— clk Selection

function
D(K,C)

S1 - -
(76L predicts

substitution K &
box A 1> bit of P..
I

K guessed.
CL<}clk Cr<— clk C known.

v v

DPA: “Power measurements are partitioned over 2 sets based on
guess of secret key. Difference between typical supply currents

of sets has noticeable peaks if guess was correct.” a6
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Implementation details

= Same circuit; two implementations.

= Difference in routing:
* reqular route (without constraints) — 8 sec. CPU
- differential pair route — 3 sec. CPU

= Same floorplan.
 aspect ratio 1, row utilization 0.8

= Toolflow:
* Place & route: Silicon Ensemble 5.3
 Layout-to-netlist (extraction parasitics): Virtuoso
» Power traces (transient simulation): Hspice

= 2000 encryptions.
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Absolute interconnect capacitances

Bin Count

= Extraction:

140h O regular route Simcap
12 diff. pair route | .
= Similar

100 H-o b distribution
ol power
o 17 dissipation
- ) * regular:

o 42.8pJ

’III' i1

[k .:! Beni®l BB o o e ra o . [
0 5 10 15 20 25 30 35 40 45 50 ° diff. pair
Interconnect Capacitance - [fF] 44.2pJ
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Matching precision
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DPA - differential trace
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DPA — peak-to-peak
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Prototype IC — ThumbPodll
= AES, controller, fingerprint processor.
secure
WDDL ' insecure :
differential route |single-ended f:..'
| R
42
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Power analysis

= Constant power consuming logic thwarts
« Simple power analysis
* Higher order power analysis

" NO power variation:

—> no side-channel information
through power supply

44
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Timing attacks

exploit timing information

uniform power does not remove threat
need always worst case running time
regular logic:

power measurements expose idle cycles
= dynamic differential logic:

gate has a switching event in every cycle
» whether or not useful data is processed

* whether or not idle cycles have been inserted
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Electro magnetic analysis

= flow of electric charges produces
electromagnetic field

= can monitor small area
= ideally same

amount of charge T2 7~

for all levels, modules
= only option: identify

the wire ro100mm
- _/=‘i“/
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Differential fault analysis

= force error; exploit weaknesses
= fault detection
= redundant encoding aids error detection
= e.g glitch attack
« correct if at rising clock edge differential signal

 otherwise, increase in clock frequency
« sufficient to monitor critical path

= other DFAs, e.g EM radiation flip state-bit,
detection not restricted to 1 register.
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Summary

= Secure digital design flow
* Logic styles
 Logic design with security partitioning
» Synthesis
* Place & Route approach
= Need for
 Definition of resistance, benchmarks, costs
 Analysis of resistance with model
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