Field Programmability of Supply Voltages for
FPGA Power Reduction

Fei Li, Yan Lin and Lei He
Electrical Engineering Department
University of California, Los Angeles 90095

Abstract

Power reduction is of growing importance for the field programmable gate array (FPGA). In this paper, we apply programmable
supply voltage (Vdd) to reduce power in FPGA. We first design FPGA logic fabrics using dual Vdd levels, and show that field
programmable power supply is required to obtain a satisfactory performance and power trade-off. With a simple yet practical
CAD flow to leverage the field programmable dual-Vdd logic fabric, we carry out a highly quantitative study using placed and
routed benchmark applications and delay/power models obtained from detailed circuit designs in 100nm technology. Compared
to single-vVdd FPGAs with VVdd level suggested by ITRS for 100nm technology, field programmable dual-Vdd FPGAs reduces
total FPGA power by 33.37% and energy-delay product by 28.97%. To the best of our knowledge, it is the first in-depth study
on programmable Vdd for power reduction in FPGA.

Index Terms

supply voltage programmability, dual VVdd, FPGA architecture, power reduction.

This paper is partially supported by NSF CAREER award CCR-0401682 and NSF grant CCR-0306682. We used computers donated by Intel and SUN
Microsystems. Address comments to Ihe@ee.ucla.edu.

Field Programmability of Supply Voltages for
FPGA Power Reduction

I. INTRODUCTION

FPGA is an attractive design platform due to its low NRE (non-recurring engineering) cost and the short time-to-market.
However, the power efficiency of FPGAs is much lower than ASIC because a large number of transistors are used for field
programmability and the utilization rate of FPGA resources is intrinsically low. FPGA power modeling and analysis have
drawn growing attention. [1] [2] present flexible power models for generic parameterized FPGA architectures and show that
both interconnect and leakage power are significant power components for existing FPGAs. [3] analyzes the leakage power
of a commercial FPGA architecture in 90nm technology and quantifies the leakage power challenge for nanometer FPGAs.
As power consumption becomes the increasingly important design constraint for FPGAs, FPGA power reduction has also
been studied recently. [4] introduces an inversion method to re-program the FPGA configuration bits and reduces leakage
power of multiplexers without additional hardware cost. [5] develops a suite of power-aware CAD algorithms for existing
FPGA architectures. Other work involves designing power-efficient FPGA circuits. For example, [6] investigates power-gating
of logic fabrics and applies region-constrained placement to reduce leakage power of unused logic blocks.

Existing FPGA circuits and architectures use uniform supply voltage (\VVdd). One can scale down the supply voltage of an
entire FPGA to reduce power, but the power saving is obtained at the cost of performance degradation. To further improve
the power efficiency of FPGAs, we believe that different supply voltage (Vdd) levels should be explored. Dual-Vdd technique
applies high supply voltage (VddH) to devices on critical paths to reduce power, and applies low supply voltage (VddL) to
devices on non-critical paths to maintain performance. The dual-Vdd technique has been successfully applied in ASICs [7]
and is able to achieve better power performance tradeoff than VVdd scaling. However, a pre-defined dual-Vdd FPGA fabric in
general can not achieve better power performance tradeoff than the Vdd scaling does because the pre-defined dual-\Vdd fabric
is not flexible enough for a variety of applications. Therefore, the field programmability must be introduced for the Vdd level.

The rest of the paper is organized as follows. Section Il presents background knowledge and our baseline FPGA architecture.
Section 111 introduces the field programmable power supply to logic fabrics and discusses the detailed circuit and fabric design.
Section 1V presents the CAD flow with consideration of VVdd-programmable logic fabrics. Experiments in Section V show that
the programmable dual-Vdd can reduce logic and local interconnect power by 42.30% and 37.97% respectively. Section VI
further applies VVdd programmability to interconnect fabrics and discusses the design of Vdd-programmable interconnect
switches. Experimental results show that the Vdd-programmable logic and interconnect fabrics together can reduce total FPGA
power by 33.37% and reduce energy-delay product by 28.97%. We conclude this paper in Section VII. To the best of our
knowledge, this paper presents the first in-depth study of field programmable Vdd for FPGA.

I1. BACKGROUND AND PRELIMINARIES
A. Cluster-based Island Style FPGAs

This paper assumes cluster-based island style FPGA architectures, which are used for most commercial FPGAs [8] [9].
Figure 1 presents a cluster-based logic block and basic logic elements [10]. A logic block is a cluster of fully connected
Basic Logic Elements (BLEs), and the cluster size is the number of BLEs in a logic block. Each BLE consists of one Lookup
Table (LUT) and one flip-flop. Figure 2 shows the schematic of a 4-input LUT, which includes SRAM cells and a multiplexer
tree. The SRAM cells in the LUT can be programmed to implement any four-input logic function. The island style routing
structure is shown in Figure 3 (a). Logic blocks are surrounded by programmable routing channels and routing wires in both
horizontal and vertical channels are segmented by routing switch blocks. Figure 3 (c) shows a subset switch block [11], where
the incoming track can be connected to the outgoing tracks with the same track number. The connections in a switch block
(represented by the dashed lines in Figure 3 (c)) are programmable routing switches. Routing switches can be implemented by
tri-state buffers and each connection needs two tri-state buffers so that it can be programmed independently for either direction.

In this paper, we assume that the LUT size is 4, cluster size is 10, and the interconnect structure contains 100% tri-state
buffers (rather than a mix of buffers and pass transistors). We customize FPGA array for each individual benchmark circuit
so that the array size just fits the given circuit for logic cell placement. We decide the routing channel width 1 in the same
way as the architecture study in [10], i.e., W = 1.2W,;;»,, Where W,,,;,, is the minimum channel width required to route the
given circuit successfully. The channel width W represents a “low-stress” routing situation that usually occurs in commercial
FPGAs for ‘average’ circuits. Similar to [10], we conduct experiments by placing and routing MCNC benchmark set in 100nm
technology.

T me ||
] A N
! ' J —— N
’ ’ . Outputs
| ot |
Inputs ; >—D‘L Inputs
‘ 7:%: ol e — kI:LT?m DFF
] -
‘ *j)j Clock
Clock :

(a) Cluster—based logic block

Fig. 1. FPGA logic block and basic logic element.

10
|

(b) Basic logic element (LUT + DFF)

v

1
1
T
1
1
1
—*
1

vIivd

Fig. 2. The schematic of a 4-input LUT (SR stands for SRAM cell).

co

=]
=]

3
=]
=]

[ms}

nnection block switch block
Eoi12s@ @3 oo o@

] e e

x [a}

-

il o

=]

[a}

=]

o@ o@

o@

o@

(a) Island style routing architecture

(c) Switch block

11,
TP

wN ko

logic block

inl
&)
&1\
4
connection—
switch A

(b) Connection block and
connection switch

ﬁ

®

(d) Routing switches

Fig. 3. (a) Island style routing architecture; (b) Connection block; (c) Switch block; (d) Routing switches.

B. Low Leakage SRAM

300]q UOJIIBULIOD

Out

FPGAs use a large number of SRAM cells for field programmability. The configuration SRAM cells are used either to
program the logic function of LUTs or to configure the connections between interconnect wires. Previous work has shown
that high threshold voltage (high-Vt) can be used for transistors in SRAM cells to reduce SRAM leakage [3], [12]. Figure 4
uses an LUT as an example to illustrate the application of such low leakage technique. The entire LUT is partitioned into
two different regions. All the configuration SRAM cells belong to region I, and the rest part including MUX-tree and input

buffers becomes region 1l. Note that the two regions are DC disconnected due to the inverters at the output of the SRAM
cells. The content of the SRAM cells does not change after the LUT is configured and the SRAM cells always stay in the
read status. Therefore, they only consume leakage power (excluding dynamically reconfigurable designs) and their read or
write delays are irrelevant to the design performance. Ideally, we can increase Vt in region | as much as possible to achieve
maximal leakage reduction without introducing runtime delay penalty. In reality, a too high Vt increases the SRAM write time
(i.e., FPGA configuration time) significantly. In this paper, we decide to increase the SRAM cell Vt for 15X SRAM leakage
reduction while only increasing the configuration time by 13%. This trade-off is justifiable because the configuration time is not
critical in most FPGA applications. Note that the high-Vt low-leakage SRAM cells can also be used for the programmability
of interconnects. In the rest of the paper, we assume the low-leakage SRAMs are used for all the programmabilities in FPGAs.

Configuration SignalI 0
f

vdd / Vit(high)

olirsficsfie B

RN
1

Regon| VadVt Region I 0ee

/

two different Vt regions

Fig. 4. The schematic of a 4-input LUT using high-Vt (low-leakage) SRAM cells (SR stands for SRAM cell).

I1l. VDD PROGRAMMABLE LOGIC FABRICS

To introduce dual-Vdd and Vdd programmability to FPGA logic fabrics, we design the detailed circuits and fabrics in this
section. We also discuss the corresponding CAD flow to leverage the new FPGA logic fabrics. The interconnect fabric assumes
uniform Vdd level throughout this section.

A. Circuit Design for Logic Blocks

We design three types of logic blocks as shown in Figure 5. The first two types, H-block and L-block, are connected to
supply voltages VddH and VddL respectively. A H-block has the highest performance while a L-block has reduced power
consumption at the cost of the increased delay. To further introduce the supply voltage programmability, a VVdd-programmable
logic block, named as P-block in Figure 5 (d) is designed. We implement a P-block by inserting PMOS transistors between the
power supply rails and the logic block. These transistors are called power switches, and configuration bits are used to control
the power switches so that an appropriate supply voltage can be chosen for the P-block.

(b) H-Block (c) L-Block
v e

- i

BN k-LUT| FF e

| | Logic Blocl Logic Blocl
3 . i

VddH

' ° '

: * ;

' | VddL
. T o
++D‘k_LUT ' Config. Bit

= p— Config. Bit

Logic Blocl

power switch
1 !
| D—»k—LUT ‘

-

(a) Logic Block (d) P-Block

Fig. 5. Logic blocks in dual-Vdd and Vdd-programmable FPGAs.

Note that the power switch is very similar to the sleep transistor for power gating [13]. An important design aspect for sleep
transistor is how to determine its size because it impacts both performance and area overhead. In our circuit design, we control

the area overhead of power switches in two ways. First, sleep transistors usually use high Vt for better leakage reduction in
power-off state. Transistors with high Vt have larger on-resistance and the transistor size needs to be increased for the specified
performance. We design power switches with normal Vt so that area overhead can be reduced. Figure 6 presents the SPICE
simulation results for a 4-input LUT with power switch in 100nm technology. The X-axis is the power switch area in the
percentage of original 4-input LUT area and Y-axis is the corresponding circuit delay. The area is calculated as the equivalent
number of minimum width transistors. The delay overhead due to power switch insertion is labeled beside each data point.
Clearly, for a same area overhead, a power switch with normal Vt has smaller delay compared to a power switch with high
Vt. Our simulation shows that, compared to a normal 4-input LUT at the same Vdd level, an optimized 4-input LUT with
power switches has 5% extra delay and 21% transistor area overhead.

To further reduce the power switch area, we make use of the fact that peak current for different parts of a circuit normally
do not occur at the same time [13]. We insert power switches for each logic block and then carry out SPICE simulation. For a
logic block with cluster size of 10, only 12% area overhead is required to achieve the same 5% performance loss. Therefore,
large granularity significantly reduces the power switch size and the transistor area overhead. In this paper, we decide to insert
power switches at the logic block level. To select different supply voltages, we need two power switches for each logic block.
According to Figure 6, different supply voltages almost do not change the area overhead in order to get the same delay increase.
To limit the delay increase to 5%, a P-block logic cluster requires 24% area overhead for two power switches.

0.31 7 »
—e—Vdd 1.3v, high-Vt power switch

21.12% ~i-Vdd 1.3v, normal-Vt power switch
—&—Vdd 1.0v, high-Vt power switch

0.29 —»Vdd 1.0v, normal-Vt power switch
15.51)'&\%
027 7.56%
QAW%
6.04%
0.25

5.7%
23.97% \

\ vdd = 1.0v
0.23 14.08% Vdd = 1.3v
16.79%
9.62%
7.14%
0.21 10.57% °

Eal 6.98%
delay overhead (%) compared
to no power switch

Delay (ns) for a LUT4

5.00%

0.19

0% 5% 10% 15% 20% 25%
Area overhead (%) for a LUT4

Fig. 6. Area and delay overhead of the power switch for a 4-input LUT.

Power switches also introduce power consumption overhead. Charging and discharging of their source/drain capacitors
introduce extra dynamic power. The configuration SRAM cells to control the power switches lead to extra leakage power. In
our SPICE simulation, we have found that the dynamic power overhead due to the parasitic capacitances of power switches
is almost ignorable. This is because the power switch transistor is either ON or OFF during normal operation and almost no
charging or discharging happens on the source/drain capacitors. Therefore, the major power overhead is due to the configuration
SRAM cells. Because high-Vt SRAM can be applied to all configuration SRAM cells, the increased number of SRAM cells
due to supply voltage programmability not necessarily leads to a large leakage power increase.

Due to the similarity between power switches and sleep transistors, we can apply power gating to an unused P-block simply
by turning off both switches. However, our normal-Vt power switches are more leaky compared to high-Vt sleep transistors.
To achieve effective leakage reduction, we propose gate-boosted power switches. When putting a P-block into power-off state,
we drive the gate voltage of a PMOS power switch to one Vt higher than the Vdd level at its source node. Table I shows
that a gate-boosted power switch can reduce leakage by two orders of magnitude compared to a normal switch. Note that
gate-boosting has already been used in some commercial Xilinx FPGAs [10] to compensate the logic ‘1’ degradation of NMOS
pass transistors in routing switches. Therefore, it is not difficult to implement gate-boosting for our PMOS power switches and
achieve the same effective leakage reduction as high-Vt sleep transistors.

TABLE |
LEAKAGE POWER FOR A P-BLOCK CONTAINING ONE 4-LUT.

Leakage power (watt)
Vdd | Power-on Power-off state
state normal gate-boosted
power switch | power switch
1.3v | 2.47E-06 3.46E-07 2.17E-09
1.0v 8.05E-07 3.37E-07 9.28E-10

B. Level Converter

In a dual-Vvdd circuit, the interface between a VddL device and a VddH device must be designed carefully to avoid the
excessive leakage power. If a VVddL device drives a VddH device and the VVddL device output is logic ‘1’, both PMOS and
NMOS transistors in the VddH device will be at least partially “on”, and dissipate unacceptable amount of leakage power
due to DC short circuit current. A level converter should be inserted to block the short circuit current. The level converter
converts VddL signal swing to VddH signal swing 1. Different level converter circuits have been used in dual-Vdd ASIC
designs [14], [15], [16], [17]. We use the recently proposed asynchronous level converters with single supply voltage [18] in
our dual-Vdd fabrics. Figure 7 shows the transistor level schematic of the level converter. When the input signal is logic ‘1’,
the threshold voltage drop across NMOS transistor ‘n1’ can provide a virtual low supply voltage to the first-stage inverter
(p2,n2) so that p2 and n2 will not be partially “on”. When the input signal is logic ‘0’, the feedback path from node ‘OUT’ to
PMOS transistor ‘p1’ pulls up the virtual supply voltage to VddH and inverter (p2,n2) generates a VddH signal to the second
inverter so that no DC short circuit current exists. For a particular VddH/VddL combination, we decide the transistor size in

VddH
L pt|p
[ps
IN VddH signal
sjgnalH n2
GND

Fig. 7. A level converter circuit with single supply voltage.

the level converter as follows. We start from a level converter with minimum transistor sizes. We size up the transistors to
limit the level converter delay within 30% of a single LUT delay or 7% of a logic cluster delay. For transistor sizes that meet
the delay bound, we choose the sizing with the lowest power consumption. Table 1l shows the delay and leakage power of
the sized level converters. Note that the leakage power increases as the voltage difference between VddH and VddL increases.
This is because the threshold voltage drop cannot provide a proper virtual low-supply as the gap between VddH and VddL is
large. Therefore, the VddH/VddL ratio cannot be too large unless the threshold voltage of NMOS transistor nl can be tuned.

TABLE Il
DELAY AND POWER OF THE LEVEL CONVERTER IN FIGURE 7 AT ITRS 100NM TECHNOLOGY.

VddH/VddL | delay | energy per leakage
(ns) switch (fJ) | power (UW)

1.3v/1.0v 0.0814 7.40 0.0104
1.3v/0.9v 0.0801 8.05 0.0139
1.3v/0.8v 0.0845 9.73 0.0240

C. Dual-Vvdd Logic Fabric and Vdd Programmability

The combination of three types of logic blocks can construct different FPGA logic fabrics. We study two logic fabrics,
pre-defined dual-Vdd fabric and VVdd-programmable fabric, in the following.

1) Pre-defined Dual-Vdd Fabric: The pre-defined dual-Vdd fabric, named as arch-DV in this paper, is a mixture of H-blocks
and L-blocks. There is a pre-defined Vdd level (VddH or VddL) for each logic block in the fabric. The physical locations of
H-blocks and L-blocks define the dual-Vdd layout pattern. Figure 8 shows two possible layout patterns. One is the row-based
pattern with a ratio of VVddL-row/VVddH-row as 1:1. Another is the interleaved layout pattern with a ratio of \VddL-block/\VVddH-
block as 1:1. The ratio of VddL-row/VVddH-row or the ratio of VVddL-block/\VVddH-block can be determined experimentally.
Note that the routing resources use uniform VddH because this section focuses on applying dual VVdd only to logic blocks. The
advantage of dual-Vdd routing fabric is explored in Section VI. Figure 8 also shows example routing paths connecting logic
blocks with different supply voltages. The output signals from a VddL logic block must go through level converters before
entering the routing channels. If the VVddL logic block size is N, i.e., it has N output pins, we need N level converters at output
pins. On the other hand, VddH logic blocks do not need any level converters. The signal in the uniform VddH routing finally
reaches another logic block, which can be VddH or VVddL. In either case, no level converters are needed at the input pins of
a logic block.

INote that a VddH device can drive a VddL device without generating excessive leakage power. No level convert is needed in this case.

input pin VddL logic block

= = = EDDD

Putput pin|

1] ST O .

VddH logic bl

nl= ‘mOEC
OmOm

_ output [pin
without level converter

(a) Row~-based dual-Vdd layout pattern (b) Interleaved dual Vdd layout pattern
(Ratio VddL Row/VddH Row =1:1) (Ratio VddL Block/ VddH Block =1:1

uniforni VddH routing

Fig. 8. Pre-defined dual-Vdd layout patterns.

2) Vdd-Programmable Logic Fabric: When all the logic blocks in a FPGA fabric are P-blocks, we call it a logic fabric
with full VVdd programmability. This logic fabric has the maximum Vdd programmability for logic blocks. For each output of
a P-block, we have a level converter to implement the interface from VddL logic block to VddH routing channels. The logic
block output can be programmed to either go through the level converter circuit or bypass it.

On the other hand, one can also obtain a logic fabric by mixing all the three types of logic blocks and it has the Vdd
programmability somewhere between the pre-defined dual-Vdd logic fabric and the logic fabric with 100% P-blocks. Although
such a fabric represents a tradeoff between power switch area and Vdd programmability, the different tile size of H-block/L-
block and P-block may cause difficulty in obtaining a regular fabric layout. In this paper, we only study Vdd-programmable
logic fabric with 100% P-blocks.

1V. CAD FLow FOR VDD-PROGRAMMABLE LoGIC FABRIC

We develop corresponding CAD algorithms and design flow in Figure 9 to leverage the dual-Vdd and Vdd-programmable
fabrics. Given a single-Vdd gate-level netlist, we first apply single-Vdd technology mapping and timing driven packing [10]
to obtain a cluster-level netlist. We then perform single-Vdd timing-driven placement and routing by VPR [10] and generate
the back-annotated basic circuit netlist (BC-netlist) defined in [12]. As the first step to consider dual \Vdd in our design flow,
Vdd assignment for logic blocks is performed to obtain a dual-Vdd BC-netlist?. After, the dual-Vdd assignment, we have two
different design paths. If the logic fabric has full Vdd programmability (i.e., 100% P-blocks), the dual-Vdd assignment result is
always feasible and an enhanced version of FPGA power analysis framework fpgaEva-LP [2] [23] is used to estimate the power
and performance. If the logic fabric is a pre-defined dual-Vdd fabric, the corresponding design path goes through additional
steps of dual-Vdd placement. We discuss the dual-Vdd assignment and dual-Vdd placement in the following sections.

Gate—level Netlist
(single Vdd)

v

Synthesis and
logic block packing

v
Cluster—level netlist
(single vdd)
Timing driven layout
(single \vvdd)
BC—netlist
(single \Vvdd)

. J Dual—Vdd assignment ‘
pre—define
dual-Vvdd il
Timing driven layout 100%
(dual \dd) P—blocks

Arch _
| Spec. | BC—netlist
—_— dual \vvdd

‘ Simulation/Evaluation ‘

' '

Delay Power

Y

Fig. 9. Design flow for pre-defined dual-Vdd and Vdd-programmable logic fabrics.

2Because we apply uniform high Vdd (VddH) to interconnects in this section, the routing algorithm does not need to consider dual Vdd.

A. Dual-Vdd Assignment

The dual-Vdd assignment determines the Vdd level for each logic block in the mapped netlist. 1t makes use of the surplus
timing slack in a circuit and performs power optimization by using dual VVdd levels. Sensitivity-based algorithms have been used
in ASIC circuit tuning either for delay optimization [19] or for power-delay trade-off [20]. We use a similar sensitivity-based
algorithm for dual-Vdd assignment. First, we define the power sensitivity as follows,

Definition 1 (Power Sensitivity S;): For a given design variable x, the power sensitivity is calculated as

AP

S = Ry
o Apsw + ABkg
N Az Azx

where P, is the switching power and P, is the leakage power.

In our dual-Vdd assignment problem, the design variable = becomes supply voltage VVdd. To calculate the power sensitivity,
we need the relationship between power and supply voltage. We use the FPGA power model in [2]. The switching power Ps,,
of a primitive node 7 in the BC-netlist is calculated as follows,

Poy(i) =0.5f - E; - C; - V2 (1)

where f is the clock frequency, E; is the effective transition density considering glitches and C; is the load capacitance. The
leakage power Py, of node ¢ is calculated as follows,

Py (1) = Iikg(Vaa) - Vaa (2

where I, is the leakage current at supply voltage V4. Because we use the constant-leakage Vdd scaling, AP, /A is zero.
The power sensitivity of a logic block B can be calculated as the sum of sensitivities for all the nodes inside this logic block,
ie.

So(B)= > S.(i) ©)
node i€B

We present our dual-Vdd assignment algorithm in Figure 10. It is a greedy algorithm with an iteration loop. Given the
single-Vdd BC-netlist, we analyze the timing and obtain the circuit path with the largest timing slack. Power sensitivity is
calculated for logic blocks on this path but not on the critical path. We select the logic block with the largest power sensitivity
and assign low Vdd to it, and update the timing information. If the new critical path delay exceeds the user-specified delay
increase bound, we reverse the low-Vdd assignment. Otherwise, we keep this assignment and go to next iteration. In either
case, the logic block selected in current iteration will not be re-visited in other iterations. Right after the dual-Vdd assignment,
we can estimate the power and delay for the dual-Vdd BC-netlist as shown in Figure 9. However, this dual-Vdd BC-netlist
does not consider the logic cell placement constraint imposed by the pre-defined dual-Vdd pattern. It assumes the flexibility
to assign low-Vdd to a logic block at arbitrary physical location. We call it ideal case for fabric arch-DV. To obtain real case
power and delay considering the layout pattern constraint, we use this dual-Vdd netlist as an input and perform dual-Vdd

placement.

B. Placement for Dual-Vdd and Vdd Programmable Fabrics

We develop dual-Vdd placement algorithm based on the simulated annealing algorithm implemented in VPR [10]. VPR
placement tool models an FPGA as a set of legal slots or discrete locations, at which logic blocks or I/O pads can be placed.
A linear congestion cost function is used in VPR placement, which is shown as follows,

Nyets))
COStlinfcgst = Zl q(z)[ci)i)z(gz))ﬁ + Cll:fij((ll))ﬁ] (4)

The summation is done over the number of nets N,,.., in the circuit. For each net ¢, bb,(¢) and bb,(¢) represents the horizontal
and vertical spans of its bounding box, respectively. The ¢(i) compensating factor is due to the fact that the bounding box
wire length model underestimate the wiring required to connect nets with more than three terminal. Its value depends on
the number of terminals in net i. Cy, ,¢;y and C, ;) are the average channel capacities in x and y directions, respectively,
over the bounding box of net i. When the channel capacities are different across the FPGA chip, the cost function penalizes
placements which require more routing in the narrower channels and hence reduce the routing congestion.

Sensitivity-based dual-Vdd assignment algorithm:
input: single-Vdd BC-netlist N
output: dual-Vdd BC-netlist N’

(with original Vdd and another low Vdd)

constraint:
crit_path_delay(N')—crit_path_delay(N)
crit_path_delay(N)

< delay_increase_bound

Let partially assigned BC-netlist V,, be input netlist NV;
While(NV, has logic blocks not tried)
begin
Find path p with largest timing slack in N,,;
Get logic blocks on path p but not on critical path;
Calculate power-sensitivity for those logic blocks;
Select logic block B with largest sensitivity;
Assign low Vdd to B and update timing information;
If(delay constraint not met)
begin
Reverse the low-Vdd assignment;
end
mark logic block B as ‘tried’;
end
Let the output netlist N’ be N,

Fig. 10. Sensitivity-based dual-Vdd assignment algorithm.

We adopt the same adaptive annealing schedule in VPR but use a new cost function in our dual-Vdd placement. we define
moves as either swapping two logic blocks or moving a logic block to an empty slot. The cost of moving a logic block j to
an empty slot is

ACost(move) = ACO0stjin—cgst + @ - Amatched(j)
+7 - (1 — matched(j))
+8- Aprog(j) + 6 - prog(j) ()
matched(j) is a Boolean function describing the Vdd-matching state of a logic block in the new slot and is defined as

1 VddL block j in slot of L-block or P-block
1
0

matched(j) = VddH block 5 in slot of H-block or P-block

Otherwise

If the Vdd assigned to block j matches the Vdd at its physical location, matched(j) returns value ‘1°. Otherwise, it returns
‘0’. Because the power supply of a P-block in a VVdd programmable fabric is configurable, any logic block placed in a P-block
slot returns a matched value. Amatched(j) is the difference of match(j) to penalize moving block j from a Vdd-matched
location to an unmatched location. The term 1 — matched(j) penalizes moving block j from a Vdd-unmatched location to
another unmatched location. Considering the power and delay overhead of a P-block used in a VVdd programmable logic fabric,
we further penalize the VVdd-matched location at a P-block slot other than a H-block or L-block slot. Similar to matched(y),
prog(j) is the Boolean function that designates whether the current location of block j is a P-block slot or not. The term
Aprog(j) penalizes moving block j from a Vdd non-programmable slot to a VVdd programmable slot, and the term prog(j)
penalizes moving block j from a Vdd programmable slot to another VVdd programmable slot. Weights «, 3, v and 6 are
determined experimentally. The cost of swapping two logic blocks is the sum of the costs given by Equation 5 for the two
blocks.

V. EXPERIMENTAL RESULTS FOR VDD-PROGRAMMABLE LOGIC FABRICS

In this section, we perform architecture comparison for four types of FPGAs: arch-SV, arch-DV, arch-PV and ideal-DV. The
difference between the three FPGAs lies in the logic fabric. Their interconnect fabrics all use uniform Vdd. The logic fabric
in arch-SV uses the same single Vdd as its interconnect fabric and it is the baseline in our architecture comparison. arch-DV
is our pre-defined dual-Vdd FPGA and its logic fabric consists of H-blocks and L-blocks with VddH being the same Vdd
level for its interconnect fabric. Both row-based and interleaved dual-Vdd layout patterns are studied. arch-PV is our Vdd
programmable FPGA with 100% P-blocks. ideal-DV is the ideal FPGA that does not have any P-blocks but assumes that the
mixture and placement of H-blocks and L-blocks can be perfectly customized for each individual application. Compared to

arch-PV with 100% P-blocks to customize power supply for every logic block, ideal-DV has neither power and delay overhead
associated with P-blocks nor the capability to turn off the unused logic blocks by power-gating. For all the four FPGAs, we
use LUT size 4 and logic block size 10 in our experiments.

Before we present the experimental results, we need to determine the ratio between H-block and L-block for pre-defined dual-
Vdd FPGA arch-DV. Table I11 shows the percentage of VVddL logic blocks after dual-Vdd assignment for 20 benchmark circuits.
No delay-increase is allowed when we assign VddL to logic blocks. VddH and VddL are set to 1.3v and 0.8v, respectively.
The percentage varies from 53% to 96% and the average is around 75%. It clearly shows that circuits implemented on the
uniform-Vdd FPGA have a large amount of surplus timing slack to be utilized for power reduction. According to the ideal
percentage given by dual-Vdd assignment and considering that the pre-defined dual-Vdd layout pattern constraints may reduce
the percentage of VddL logic block, we set the ratio H:L to 1:2 for arch-DV.

TABLE Il
PERCENTAGE OF VDDL LOGIC BLOCKS GIVEN BY DUAL-VDD WITH ZERO DELAY-INCREASE AND NO LAYOUT RESTRICTIONS. (VDDH = 1.3v AND VDDL
=0.8v)
circuit # of # of % of VddL
logic blocks | 1/0 blocks | logic blocks
alu4 162 22 74.07
apex2 213 41 46.01
apex4 134 28 60.45
bigkey 294 426 89.12
clma 1358 144 80.93
des 218 501 74.31
diffeq 195 103 83.59
dsip 588 426 54.32
elliptic 666 245 90.74
ex1010 513 20 75.66
exsp 194 71 60.98
frisc 731 136 95.13
misex3 181 28 57.52
pdc 624 56 69.54
5298 266 10 82.81
538417 982 135 88.67
$38584 1046 342 96.73
seq 274 76 53.03
spla 461 122 79.70
tseng 305 174 86.26
Avg 74.98

A. Architecture Comparison

We carry out experiments on 20 MCNC benchmarks for the four types of FPGAs. Both row-based and interleaved layout
patterns in Figure 8 have been tried for arch-DV. However, our experimental results show no significant power and performance
difference between these two layout patterns. Considering that row-based layout pattern is easier to route the power/ground
network, we only present the experimental results of row-based layout pattern for arch-DV.

Figure 11 presents the architecture comparison for a large circuit s38584. The X-axis is the clock frequency calculated as the
reciprocal of critical path delay. The Y-axis is the total power consumption. Each curve in the figures represent the power vs.
performance tradeoff for a particular FPGA architecture under different VVdd levels or VddH/VddL combinations. For arch-DV
and ideal-DV, we try several different VddH/VVddL combinations and prune the inferior data points (i.e., those with larger
power consumption and smaller clock frequency) to obtain the curve. We label the VVdd level or VddH/VddL combination
beside each data point. The curve for arch-SV shows that we can scale down the Vdd level of a single-Vdd FPGA and reduce
the power at the cost of performance degradation. The curve for arch-DV demonstrates a poor performance for the pre-defined
dual-vVdd FPGA. The placement constraint for pre-defined dual-\Vdd fabric arch-DV is large enough to degrade the performance
dramatically and equivalently leads to large power overhead at the same clock frequency.

With Vdd programmability to alleviate the placement constraint accompanying the pre-defined dual-Vdd fabric, FPGA
arch-PV (with 100% P-blocks) are able to achieve much better power performance tradeoff curve compared to arch-SV (See
Figure 11). The advantage of FPGA architecture arch-PV over arch-DV is observed for all the benchmark circuits. It shows
that Vdd programmability is required to obtain a satisfactory performance vs. power tradeoff when dual Vdd is used to reduce
FPGA power. In the clock frequency range of our experiments, the power saving by arch-PV is larger at the higher frequency
end. This is because higher clock frequency usually requires higher supply voltage and more surplus timing slack can be
utilized at the logic block level. Moreover, FPGA arch-PV gives a power performance tradeoff curve which is very close to
that of FPGA ideal-DV. It shows that the power and delay overhead for VVdd programmability is relatively small.

Table 1V shows the power saving by Vdd-programmable FPGA arch-PV as well as the delay increase when compared to
single-Vdd FPGA arch-SV for all the benchmark circuits. The Vdd level for arch-SV is 1.3v as suggested by ITRS roadmap

10

15
=)
5]

- arch-SV

~6-arch-DV (pre-defined Vdd)
—*arch-DV (ideal case)
~+-arch-PV (100% P-block)

=)
=
I

=
=
o
I
t

=)
o
I
t

1.5v/1.0v

1. 3v/1.0v 75v/0. 8v

0.45 +
. 3v/0.8v

total power (watt)

0.4 71 0v/0.9v
0.9v/0. 8v
0.35

0.3 } } } } } }
55 65 75 85 95 105 115
clock frequency (MHz)

Fig. 11. Power versus delay for s38584 (arch-SV: single-Vdd FPGA,; arch-DV: FPGA with pre-defined dual-Vdd logic fabric; arch-PV: FPGA with Vdd-
Programmable logic fabric).

125

TABLE IV
POWER AND DELAY COMPARISON BETWEEN FPGA arch-PV (WITH 100% P-BLOCKS) AND THE BASELINE FPGA arch-SV. THE VDD 1S 1.3V FOR
ARCH-SV AND VDDH/VDDL COMBINATION IS 1.3v/0.8V FOR ARCH-PV.

arch-SV (baseline) arch-PV (100% P-blocks)
circuit delay | Togic power Tocal intent. global intent delay Togic power | Tocal intct. power total FPGA FPGA energy-delay
(ns) (Watt) power (Watt) | power (Watt) | increase saving saving power saving product reduction
aud 10.38 0.0175 0.0300 0.0974 2.13% 43.90% 42.34% 15.31% 11.66%
apex2 11.10 0.0192 0.0321 0.1528 1.99% 27.95% 27.24% 7.68% 3.98%
apex4 10.13 0.0101 0.0147 0.0807 2.12% 37.73% 36.39% 9.33% 5.45%
bigkey 6.34 0.0603 0.0788 0.2267 1.97% 60.10% 47.13% 21.31% 18.19%
clma 21.37 0.0474 0.0550 0.9147 2.33% 35.33% 33.34% 2.11% -2.52%
des 10.60 0.0526 0.0542 0.3183 2.20% 63.85% 40.48% 14.37% 10.55%
diffeq 11.93 0.0076 0.0071 0.0580 3.49% 36.99% 39.03% 8.27% 1.76%
dsip 5.49 0.0434 0.0564 0.2635 2.14% 53.53% 29.80% 12.26% 8.46%
elliptic 16.02 0.0176 0.0174 0.2046 2.81% 43.44% 41.34% 7.18% 1.90%
ex1010 | 14.69 0.0229 0.0266 0.2818 1.98% 39.08% 37.98% 6.27% 2.52%
ex5p 11.49 0.0084 0.0117 0.0772 2.10% 37.33% 33.07% 8.23% 4.34%
frisc 22.30 0.0185 0.0141 0.3188 2.72% 36.74% 33.08% 3.54% -1.79%
misex3 9.65 0.0158 0.0264 0.1092 2.21% 36.72% 35.43% 11.57% 7.61%
pdc 14.67 0.0266 0.0359 0.4234 1.80% 34.96% 36.96% 5.22% 1.78%
s298 21.16 0.0104 0.0152 0.0813 2.30% 40.28% 43.41% 12.19% 8.11%
s38417 | 14.63 0.0423 0.0527 0.3842 2.71% 43.40% 37.27% 7.23% 2.14%
s38584 10.62 0.0484 0.0739 0.3700 2.68% 54.06% 51.41% 15.57% 10.98%
seq 931 0.0204 0.0335 0.1521 2.13% 34.18% 32.88% 10.07% 6.20%
spla 13.77 0.0210 0.0273 0.2606 1.80% 41.48% 43.26% 7.45% 4.10%
tseng 12.47 0.0073 0.0082 0.0450 2.94% 44.88% 37.55% 9.61% 4.22%
Avg. - - - - 2.33% 42.30% 37.97% 9.74% 5.48%

[21] for 100nm process technology. The VddH/VddL combination for arch-PV is 1.3v/0.8v. FPGA arch-PV has a larger critical
path delay due to the insertion of power switch for logic blocks. However, this delay increase is very small with properly sized
power switches and it is only 2.33% in our experiments. We breakdown FPGA power into logic power, local interconnect
power and global interconnect power. The logic power is the power of LUTSs, flip-flops and MUXes in logic blocks. The local
interconnect power is the power of internal routing wires and buffers within logic blocks. Routing wires outside logic blocks,
programmable interconnect switches in routing channels and their configuration SRAM cells contribute to global interconnect
power. Because FPGA arch-PV has the Vdd programmability for logic blocks, it can reduce both logic power and local
interconnect power. On average, arch-PV reduces logic power by 42.30% and reduces local interconnect power by 37.97%.
However, the total FPGA power saving is significantly smaller, and it is only 9.74% on average. When considering the delay
increase in FPGA arch-PV, the energy-delay product reduction is only 5.48%. The small power saving for an entire FPGA
chip is because global interconnects between logic blocks consumes most of the power in an FPGA. As shown by the power
breakdown in Table IV for arch-SV, global interconnect power is much larger than the sum of logic power and local interconnect
power for all benchmark circuits. Therefore, Vdd programmability must be applied to FPGA interconnect fabric in order to
achieve significant total power saving.

V1. VDD-PROGRAMMABLE INTERCONNECT FABRICS

FPGA interconnects consume most of the area and power in existing FPGAs. Therefore, interconnect power reduction is the
key to reduce total FPGA power. Although local interconnect power has been reduced significantly by our VVdd-programmable

11

logic fabric, the global interconnect power is still dominant. Vdd programmability must be introduced to interconnect fabric
to achieve a significant total power saving. We design VVdd-programmable interconnect circuits and fabrics in this section.

A. Vdd-Programmable Interconnect Fabric

We apply programmable dual-Vdd to each interconnect switch (either a routing switch or a connection switch). Our Vdd-
programmable routing switch is shown in Figure 12 (a). The right part of the circuit is the VVdd-programmable routing switch.
For the tri-state buffer in the routing switch, we insert two PMOS transistors M3 and M4 between the tri-state buffer and
VddH, VddL power rails respectively. Similar to a Vdd-programmable logic block, turning off one of the two power switches
can select a VVdd level for the routing switch. Considering the extremely low interconnect utilization rate (an average of 11.90%
3 as shown in Table V for MCNC benchmark set), we can turn off both power switches and power gate an unused routing
switch. In that case, we provide three Vdd states: high Vdd, low Vdd and power-gating.

The power gating state provided by Vdd programmability is very attractive because our SPICE simulation shows that power-
gating of the routing switch can reduce its leakage power by a factor of over 300. We also consider the power and delay
overhead associated with the power switch insertion. The dynamic power overhead is almost ignorable (See energy per switch
in Table VI). This is because the power switches stay either ON or OFF and there is no charging and discharging at their
source/drain capacitors. The main power overhead is the leakage power of the extra configuration cells for \Vdd selection. We
use the same high-Vt SRAM cells in Section Il to reduce configuration cell leakage. Further, the VVdd-programmable routing
switch has an increased delay compared to the conventional routing switch because the power switches are inserted between
the buffer and power supply. We properly size the power switches for the tri-state buffer to achieve a bounded delay increase.
For a routing architecture with all wire segments spanning four logic blocks, we assume 7X minimum width tri-state buffers
and get 16% delay increase by inserting 4X minimum width power switches. The left part of the circuit in Figure 12 (a) is
the level converter. We insert the level converter right before the routing switch and use a multiplexer to either select this level
converter or bypass it. The transistor M1 is used to prevent signal transitions from propagating through the level converter
when it is bypassed, and therefore eliminate the dynamic power of an unused level converter. Only one configuration bit is
needed to realize the level converter selection and signal gating for unused level converters.

logic block

inl

connection |
switch

320]q UONYBULOD

Configurable Level Conversion} Vdd-Programmable Routing Buffer i /
‘ @ Configurable level conversion
(a) Vdd-programmable routing switch (b) Vdd-programmable connection block

Fig. 12. (a) Vdd-programmable routing switch; (b) Multiplex-based Vdd-programmable connection block. (SR stands for SRAM cell and LC stands for level
converter. The same configurable level conversion circuit is used in both (a) and (b))

Another type of routing resources are the connection blocks [10]. Figure 12 (b) shows the multiplexer-based implementation
of a connection block, which chooses only one track in the channel and connects it to the logic block input pin. The buffers
between the routing track and the multiplexer are connection switches. To apply Vdd programmability to connection blocks,
we can simple replace the connection switches with VVdd-programmable buffers and insert the configurable level conversion
circuits before each new connection switch. However, this structure introduces a large number of extra configuration SRAM
cells. For a connection block containing N Vdd-programmable connection switches, there are 2V + [logoN'| configuration
SRAM cells, among which [logaN| SRAM cells are for the multiplexer and the other 2N SRAM cells are for N Vdd-
programmable connection switches. Another disadvantage for such a connection block is that its delay increases quickly as
the number of inputs to the connection block increases. Recently, new Vdd-programmable switch and connection block are
proposed in [23] to improve the SRAM efficiency as well as the delay. As shown in Figure 13 (a), a Vdd-programmable switch
module with three signal ports, VddH _En, VddL_En and Pass_En, is first defined. By setting these three control signals, we
can program the VVdd-programmable switch between Vdd selection and power-gating. Figure 13 (b) further shows the SRAM-
efficient Vdd-programmable switch. Pass. En can be generated by VddH_ En and VddL. En with a NAND2 gate. With the
new Vdd-programmable switch, the SRAM efficient design of Vdd-programmable connection block is shown in Figure 13
(c). It removes the multiplexer and tie the tri-state outputs of VVdd-programmable switches together. A [loga N : N decoder

SNote that we use the minimum FPGA array that just fits the application circuit. In reality, the chip size can be significantly larger than necessary and the
interconnect switch utilization can be even lower.

12

circuit total interconnect | unused interconnect | utilization
switches switches rate
aud 36478 31224 14.40%
apex4 43741 37703 13.80%
bigkey 63259 57017 9.87%
clma 653181 593343 9.16%
des 87877 79932 9.04%
diffeq 42746 36974 13.50%
dsip 75547 70138 7.16%
elliptic 140296 125800 10.33%
ex5p 45404 39288 13.47%
frisc 238853 216993 9.15%
misex3 39928 33819 15.30%
pdc 268167 238610 11.02%
s298 43725 37641 13.91%
s38417 243315 216577 10.99%
s38584 195363 174460 10.70%
seq 61344 53173 13.32%
spla 153235 134991 11.91%
tseng 29051 25026 13.85%
Avg. 11.90%
TABLE V

UTILIZATION RATE OF INTERCONNECT SWITCHES.

routing switch delay (ns) energy per switch (Joule)
Vdd | without Vdd with Vdd without Vdd with Vdd
program- programmability program- program-
mability (increase %) mability mability
1.3v 5.90E-11 6.86E-11 (+16.27%) 3.3049E-14 3.2501E-14
1.0v 6.45E-11 7.55E-11 (+17.05%) 1.6320E-14 1.6589E-14

TABLE VI
DELAY AND POWER OF A VDD-PROGRAMMABLEROUTING SWITCH. WE USE 7X MINIMUM WIDTH TRI-STATE BUFFER FOR ROUTING SWITCHESAND 4X
MINIMUM WIDTH PMOS TRANSISTOR FOR POWER SWITCHES.

and 2N NAND2 gates are used to generate the control signals for the Vdd-programmable switches. When the connection
block is used, only one of the Vdd-programmable switches is enabled and the V'dd_sel signal selects its VVdd level. The other
Vdd-programmable switches are power-gated. When the entire connection block is not used, Dec_Disable is asserted to power
gate all the VVdd-programmable switches in the connection block. This design reduces the number of SRAM cells for a N-input
connection block to [log2N'| + 2. Further, the new connection block is 28% faster than the multiplexer-based connection block
and 19% less dynamic power as shown in Table VII. In this paper, we use the SRAM efficient Vdd-programmable switches
and connection blocks in our interconnect fabric. Because we apply programmable-VVdd to both logic blocks and programmable
interconnect switches, it is possible that a VddL connection switch connects to a VddH logic block. To ensure that there is
supply level conversion for this type of connection, we also insert the configurable level conversion circuit before each logic
block input pin.

connection switch delay (ns) energy per switch (Joule)
Vdd | w/oVdd w/ Vdd w/o Vdd w/ Vdd
program- programmability program- programmability
mability (increase %) mability (increase %)
13v | 293E-10 | 2.10E-10 (-28.33%) | 3.84E-14 | 3.11E-14 (-19.01%)
1.0v 3.70E-10 | 2.22E-10 (-40.00%) 3.09E-14 | 2.04E-14 (-33.98%)

TABLE VII
THE DELAY AND POWER OF THE SRAM-EFFICIENT VDD-PROGRAMMABLE CONNECTION BLOCK. WE USE 4X MINIMUM WIDTH TRI-STATE BUFFER FOR
CONNECTION SWITCHESAND 1X MINIMUM WIDTH PMOS TRANSISTOR FOR POWER TRANSISTORS.

The resulting FPGA has Vdd-programmability for both logic and interconnect fabrics and we name it as arch-PV-fpga. The
same design path for FPGA arch-PV (with 100% P-blocks) in Figure 9 can be applied to arch-PV-fpga. The only change is that
a circuit element in the step of dual-Vdd assignment can be either a logic block or an interconnect switch. Power sensitivity
is calculated for both logic blocks and interconnect switches.

B. Experimental Results

In this section, we compare the new fabric arch-PV-fpga with the baseline fabric arch-SV and present the results in Table VIII.
The Vdd programmable interconnects in FPGA arch-PV-fpga enable Vdd selection for used interconnect switches and power-
gating for unused interconnect switches. As shown in Column 6 - 8, the leakage power of global interconnects is reduced

13

VddH_En VddL_En Pass En

| i : VddH_En VddL_En Pass En QOut
I witcl | In
*—

”””””””””””” Switch

(a) Vdd-Programmable switch (b) SRAM efficient VVdd-programmable switch

Logic block
¢—int

V)
@
Q
]
Q
@
o]

Switch i
N ddH_En VddL_En PasEn|
LT [T K

Wiretracks

Dec _Disable

(c) SRAM—efficientVdd programmable connection block

Fig. 13. (a) VVdd-programmable switch (b) SRAM-efficient VVdd-programmable switch; (c¢) SRAM-efficient Vdd-programmable connection block.

by 23.20% and the dynamic power of global interconnects is reduced by 40.89%. The overall global interconnect power is
reduced by 28.89%. With this power reduction for global interconnects, arch-PV-fpga is able to reduce total FPGA power by
33.37%. In contrast, arch-PV only applies Vdd programmability to the logic fabric and the total FPGA power reduction is
only 9.74% (see Table IV). Although the circuit level delay increase for a Vdd-programmable interconnect switch is 16%, the
SARM efficient connection block is 28% faster compared to the multiplexer-based connection block. Therefore, at system level,
arch-PV-fpga only has a small delay increase of 3.24% compared arch-SV. Considering this performance loss, we compare the
metric of energy-delay product in Column 10 and show that arch-PV-fpga can still reduce energy-delay product significantly
(~28.97%).

TABLE VIII
POWER AND DELAY COMPARISON BETWEEN FPGA arch-PV-fpga AND BASELINE FPGA arch-SV. THE VDD 1S 1.3V FOR ARCH-SV AND VDDH/VDDL
COMBINATION 1S 1.3v/0.8V FOR ARCH-PV-FPGA.

1 2] 3 [4 5 [6 [7 [8 [9 [10
arch-SV (baseline) arch-PV-fpga
circuit delay [dlobd intcnt. | total power delay global intcnt. power saving total FPGA FPGA energy-delay
(ns) power (Watt) (Watt) increase | overal leakage | dynamic | power saving product reduction
aud 10.38 0.0974 0.1450 2.13% 29.18% | 22.58% | 35.18% 36.78% 3L.47%
apex2 11.10 0.1528 0.2040 4.11% 30.25% | 22.82% | 37.63% 32.85% 27.96%
apex4 10.13 0.0807 0.1056 3.57% 25.56% | 23.18% | 29.85% 30.14% 25.78%
bigkey 6.34 0.2267 0.3658 3.07% 32.15% | 22.02% | 41.45% 42.84% 36.93%
clma 21.37 0.9147 1.0172 5.04% 24.41% | 22.02% | 37.69% 28.74% 21.38%
des 10.60 0.3183 0.4251 5.04% 34.63% | 24.16% | 44.85% 40.01% 37.20%
diffeq 11.93 0.0580 0.0726 2.32% 28.27% | 24.78% | 47.68% 30.59% 29.73%
dsip 5.49 0.2635 0.3634 0.62% 34.02% | 23.39% | 45.25% 37.59% 33.03%
elliptic | 16.02 0.2046 0.2395 3.58% 27.98% | 22.31% | 52.52% 32.72% 26.76%
ex1010 | 14.69 0.2818 0.3312 4.34% 23.35% | 21.02% | 31.85% 29.87% 20.94%
ex5p 11.49 0.0772 0.0973 6.18% 26.55% | 23.41% | 33.96% 30.13% 26.09%
frisc 22.30 0.3188 0.3515 2.85% 27.15% | 25.57% | 46.29% 28.06% 27.58%
misex3 9.65 0.1092 0.1514 0.33% 29.92% | 23.65% | 35.22% 33.26% 29.91%
pdc 14.67 0.4234 0.4859 2.48% 26.01% | 22.09% | 40.12% 30.83% 23.83%
s298 21.16 0.0813 0.1069 4.94% 30.95% | 23.60% | 50.49% 35.29% 31.54%
s38417 | 14.63 0.3842 0.4791 2.86% 26.22% | 23.21% | 35.18% 30.55% 26.14%
s38584 | 10.62 0.3700 0.4923 3.12% 35.37% | 24.67% | 52.84% 39.95% 38.70%
seq 9.31 0.1521 0.2061 1.03% 29.84% | 23.56% | 36.14% 32.18% 28.35%
spla 13.77 0.2606 0.3089 2.7% 27.40% | 21.41% | 42.89% 33.59% 25.73%
tseng 12.47 0.0450 0.0605 5.76% 28.54% | 24.51% | 40.69% 31.46% 30.26%
Avg. - - - 3.24% 28.89% | 23.20% | 40.89% 33.37% 28.97%

VII. CONCLUSIONS AND DISCUSSIONS

We have proposed supply voltage (Vdd) programmability to reduce FPGA power. We first design FPGA logic fabrics using
dual Vdd levels to reduce dynamic power and show that programmable Vdd is required to achieve a satisfactory power and
performance trade-off. With a simple yet practical CAD flow to leverage the new dual-Vdd logic fabrics, we carry out a
highly quantitative study using placed and routed benchmark circuits and area, delay and power models obtained from detailed

14

circuit design in 100nm technology. Compared to single-Vdd FPGA with Vdd level suggested by ITRS for 100nm process,
our Vdd programmable logic fabric reduces logic power and local interconnect power by 42.30% and 37.97% respectively.
Our Vdd programmable interconnect fabric reduces global interconnect power by 28.89%. With the power savings for logic
and interconnect fabric together, the total FPGA power is reduced by 33.37%. Due to delay overhead of VVdd programmability
at circuit level, the critical path delay of our Vdd programmable FPGA is 3.24% larger compared to single-Vdd FPGA. With
such small performance degradation, VVdd programmable FPGA significantly reduces energy-delay product by 28.97%. To the
best of our knowledge, it is the first in-depth study on programmable Vdd for FPGA power reduction.

Although we have significantly reduced FPGA interconnect power, there is still a large amount of leakage power for the
level converters inserted in our fine-grained Vdd-programmable interconnect fabric. In the future, we plan to design Vdd-
programmable interconnect fabric without large number of level converters to reduce their leakage overhead. Power supply
network to support configurable Vdd or dual-Vdd may introduce extra routing congestion. Leveraging our recent research on
optimal synthesis of sleep transistors and power supply network [24], [25], we will study power delivery design and optimization
for Vdd programmable FPGAs. Archtecture evaluation considering VVdd programmability can be also considered in the future.

REFERENCES

[1] K. Poon, A. Yan, and S. Wilton, “A flexible power model for FPGAs,” in Proc. of 12th International conference on Field-Programmable Logic and
Applications, Sep 2002.

[2] F. Li, D. Chen, L. He, and J. Cong, “Architecture evaluation for power-efficient FPGASs,” in Proc. ACM Intl. Symp. Field-Programmable Gate Arrays,
Feb 2003.

[3] T. Tuan and B. Lai, “Leakage power analysis of a 90nm FPGA," in Proc. IEEE Custom Integrated Circuits Conf., 2003.

[4] J. H. Anderson, F. N. Najm, and T. Tuan, “Active leakage power optimization for FPGAs,” in Proc. ACM Intl. Symp. Field-Programmable Gate Arrays,
Februray 2004.

[5] J. Lamoureux and S. J. Wilton, “On the interaction between power-aware FPGA CAD algorithms,” in Proc. Intl. Conf. Computer-Aided Design, November
2003, pp. 701-708.

[6] A. Gayasen, Y. Tsai, N. Vijaykrishnan, M. Kandemir, M. J. Irwin, and T. Tuan, “Reducing leakage energy in FPGAs using region-constrained placement,”
in Proc. ACM Intl. Symp. Field-Programmable Gate Arrays, February 2004.

[7] D. E. Lackey and et al., “Managing power and performance for system-on-chip designs using voltage islands,” in Proc. Intl. Conf. Computer-Aided
Design, 2002, pp. 195 — 202.

[8] Xilinx Corporation, “Virtex-11 1.5v platform FPGA complete data sheet,” July 2002.

[9] Altera Corporation, “Stratix programmable logic device family data sheet,” Aug 2002.

[10] V. Betz, J. Rose, and A. Marquardt, Architecture and CAD for Deep-Submicron FPGAs. Kluwer Academic Publishers, Feb 1999.

[11] G. G. Lemieux and S. D. Brown, “A detailed router for allocating wire segments in field-programmable gate arrays,” in Proceedings of the ACM Physical
Design Workshop, April 1993.

[12] F. Li, Y. Lin, L. He, and J. Cong, “Low-power FPGA using pre-defined dual-vdd/dual-vt fabrics,” in Proc. ACM Intl. Symp. Field-Programmable Gate
Arrays, Februray 2004.

[13] J. Kao, S. Narendra, and A. Chandrakasan, “MTCMOS hierarchical sizing based on mutual exclusive discharge patterns,” in Proc. Design Automation
Conf., June 1998, pp. 495-500.

[14] K. Usami and et al, “Automated low-power technique exploiting multiple supply volgates applied to a media processor,” IEEE Journal of Solid-Sate
Circuits, vol. 33, no. 3, pp. 463-472, 1998.

[15] K. Usami and M. Horowitz, “Clustered voltage scaling techniques for low-power design,” in Proc. Intl. Symp. Low Power Electronics and Design, 1995.

[16] M. Hamada and et al, “A top-down low power design technique using clustered voltage scaling with variable supply-voltage scheme,” in Proc. |IEEE
Custom Integrated Circuits Conf., 1998, pp. 495-498.

[17] F. Ishihara, F. Sheikh, and B. Nikolic, “Level conversion for dual-supply systems,” in Proc. Intl. Symp. Low Power Electronics and Design, 2003, pp.
164 - 167.

[18] R. Puri, L. Stok, J. Cohn, D. Kung, D. Pan, D. Sylvester, A. Srivastava, and S. Kulkarni, “Pushing ASIC performance in a power envelope,” in Proc.
Design Automation Conf., 2003, pp. 788 — 793.

[19] J. P. Fishburn and A. E. Dunlop, “TILOS: A posynomial programming approach to transistor sizing,” in Proc. Intl. Conf. Computer-Aided Design, 1985,
pp. 326-328.

[20] R. W. Brodersen, M. A. Horowitz, D. Markovic, B. Nikolic, and V. Stojanovic, “Methods for ture power minimization,” in Proc. Intl. Conf. Computer-
Aided Design, 2002, pp. 35-42.

[21] International Technology Roadmap for Semiconductors, in 2003 Edition, http://public.itrs.net/Files/2003I TRSHome2003.htm, 2003.

[22] F. Li, Y. Lin, and L. He, “FPGA power reduction using configurable dual-vdd,” in Proc. Design Automation Conf., June 2004, pp. 735-740.

[23] Y. Lin, F. Li, and L. He, “Power modeling and architecture evaluation for FPGA with novel circuits for vdd programmability,” in Proc. ACM Intl. Symp.
Field-Programmable Gate Arrays, Februray 2005.

[24] C. Long and L. He, “Distributed sleep transistor network for leakage power reduction,” in Proc. Design Automation Conf., June 2003.

[25] C. Long, J. Xiong, and L. He, “On optimal physical synthesis of sleep transistors,” in Proc. Intl. Symp. Physical Design, April 2004.

