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Abstract 
In this paper, we introduce a novel bus arbiter architecture, called 
look-ahead arbiter (LAA), to improve bus bandwidth and energy 
consumption of using DRAM memory in MPEG-4 decoding. A 
key innovation of the LAA is that it decides which master gets to 
use the bus next according to the request status and drives out the 
next request address to the memory controller in advance. 
Consequently, the memory controller can decide whether to 
precharge the row currently accessed to avoid unnecessary row-
activation and precharge operation. A second key contribution of 
this work is that we use row-major mapping for video data instead 
of block-based mapping to save energy and bandwidth through 
the LAA. Experiment with the MPEG-4 SP@L3 decoder  shows 
that combining row-major mapping along with LAA, the memory 
controller provides the best performance both in terms of energy 
reduction and memory bandwidth improvement, up to 32% and 
33% respectively.   
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1. Introduction 
Energy consumption and memory bandwidth demand have 
become the major concern in the design of embedded video 
processing system. Fig.1 shows a typical block diagram of a 
present video processor based on SoC platform. The major 
building blocks include the general purpose CPU, DSP, 
application–specific coprocessors, video I/O, memory controller 
and bus arbiter dedicated to providing the coordination for data 
transferring between on-chip devices and external memory. 
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Fig. 1. Video processor based on SoC platform 

In this study, we focus on the application of MPEG-4 decoding. 
Typically, video data that are too large to fit into the on-chip 
buffers are stored to the off-chip memory, for instance, SDRAM 
memory. In such a system, high memory bandwidth is required 
due to the huge amount of video data transferring between video 
processor and the external SDRAM. However, the SDRAM 
power dissipation occupies a significant fraction of the overall 
system power consumption. Thus, it is a good candidate for power 
and bandwidth minimization. 

Memory mapping of video data is an important problem in 
video processing because it directly affects the amount of energy 
and bandwidth usage of SDRAM. Mapping policies using block-
based layout for the video data have been proposed in [4, 5]. Fig. 
2 (a) illustrates the block-based mapping policy that can reduce 
the number of row-activation and precharge operation. In this 
mapping, the requested data block overlapped with block unit B3 
can be accessed in a longer burst mode when the motion vector is 
zero. However, if the motion vector is not zero, four block units 
B1, B2, B3, and B4 are transferred because the requested data 
block overlaps with these four block units. In this example, three-
fourths of pixels are redundant in this transferring. Overheads 
associated with these redundant pixels offset the benefits due to 
less row-activation and precharge operation in block-based 
mapping policies. Furthermore, when the video data are read line-
wise for display, using block-based mapping is inefficient since 
each fragment that composes a video line needs a row-activation 
and a precharge command to specify the address of the fragment. 

On the other hand, row-major mapping is inherently suitable 
for reading video data to display, as shown in Fig. 2 (b). It is 
observed that the pixel transfer time in row-major mapping has 
negligible impact from the motion vector value. This is because 
the address generator employed by a motion compensation 
module can adjust the starting address of each row in the 
requested data block according to the motion vector value when 
the motion vector is nonzero. However, with row-major mapping, 
it has a negative effect, that is, a row change for the requested 
data needs a row-activation and precharge operation in order to 
access the next row in the requested data block. 

If the percentage of nonzero motion vector that occurs in a P-
VOP is very high, a lot amount of energy and bandwidth are 
wasted in the transferring of the redundant pixels when a block-
based mapping policy is used. In our experiment, the nonzero 
motion vectors are up to 70% in some P-VOP. Thus, there is an 
advantage to store the video data in the row-major order in 
memory. 
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(a) Block-based mapping 
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(b) Row-major mapping 
Fig. 2. Video data mapping policies and schedule of data 
transferring 

 
In this paper, we introduce an integrated design of a look-ahead 

arbiter (LAA) and memory controller to alleviate the negative 
effect caused by row-major mapping. In this design, the LAA 
drives out the request address and the next request address to the 
memory controller according to the request status. Thus, the 
memory controller can make appropriate decision about whether 
to precharge an active row based on the access dependence. 
Consequently, it can avoid unnecessary row-activation and 
precharge operation to improve bus bandwidth and power 
consumption when using SDRAM. 

The rest of this paper is organized as follows. Section 2 
presents the backgrounds and related work. The video data 
arrangement strategy and proposed architecture are discussed in 
Section 3 and Section 4, respectively. Section 5 describes the 
simulation system. Section 6 shows the results of simulations. 
Finally, Section 7 summarizes the conclusion of this paper. 

2. Backgrounds and Related Work 
In SDRAM [3], the address that accesses the memory is 
partitioned into bank, row, and column. Each bank contains an 
array of memory cells that can be accessed for an entire row at a 
time. After a row in a bank is activated (i.e. open), which is done 
through the ACTIVE command, the accessed row is transferred to 
the bank’s row buffer or sense amplifier where READ and 
WRITE command can take place by supplying the column 
addresses. Traditionally, the SDRAM either operates in the open 
page mode or the close page mode. For the open page policy, the 
selected memory row is stored in the row buffer, which can serve 
any number of reads or writes (column accesses) until a forced 
PRECHARGE command is given, or a row miss occurs, or 
refresh occurs. This precharge operation writes the data in the row 
buffer back to the memory array (i.e. close the bank), which 

prepares the bank for subsequent row activation. However, the 
energy consumed by row-activation and precharge operations 
occupies a significant fraction of the whole SDRAM energy 
consumption [8]. Thus, reducing these operations can save 
significant energy. 

Most previous work on DRAM energy and bandwidth issue 
comes from single processor environments. Such a system does 
not present the same complexity as today’s SoC environment 
including multi-master, as shown in Fig. 1. 

Works in DRAM power management have been previously 
proposed in [1, 2, 6]. Miura and et al. [1] use open-page policy or 
close-page policy alternately to reduce the energy consumption 
and latency when using SDRAM. This is accomplished by using a 
predictor to predict the access dependence (hit or miss). Approach 
to reduce DRAM energy with cache-based memory architecture is 
presented by Fan and et al. [2]. They exploit the fact that the 
DRAM should directly put into a low-energy mode while there 
are no access requests. In [6], it is proposed to control power 
modes of RDRAM according to idle periods predicted by three 
hardware mechanisms (ATP, CTP and HBP). The idle periods can 
be explored and integrated by compiler-assisted approach in 
advance.  

In [7], Rixner and et al. propose a mechanism to reduce 
memory bandwidth, by reordering DRAM operations according to 
pending memory references. This work may maximize the 
available memory bandwidth, but it perhaps can not meet the 
timing requirement specified by a request without considering the 
priority for each bus master. 

To improve the efficiency of memory access for video 
processing, Kim and Park [4] proposed an address translation 
technique that can effectively reduce the number of row-
activation and precharge operation. However, this work only 
examines the MPEG-2 video decoding algorithm without 
considering the overhead caused by reading video data for display. 
Approaches to find out a suitable block unit to mapping into 
SDRAM with minimal memory bandwidth are presented by 
Jaspers and de With [5]. 

3. Video Data Arrangement Strategy 
In this section, we explore various data arrangement strategies 
and implementation method based on row-major mapping of 
video data. As shown in Fig. 3(a), the video data are stored in 
row-major order in the external SDRAM. Without the loss of 
generality, we assume that the row width of the SDRAM is two 
times of the video width. When 16 pixels in a 4 × 4 block are read 
from the SDRAM, the data transfer scheme is inefficient due to 
the fact that the memory controller cannot recognize two 
consecutive accesses located in the same row of the same bank. 
Hence, the unnecessary ACTIVE and PRECHARGE command 
between data A and data B is generated. To overcome this 
problem, we employ the look-ahead arbiter instead of a 
conventional arbiter. Fig. 3(b) depicts a reading of requested data 
block with the LAA that drives out the request address of data A 
and the next request address of data B to the memory controller 
simultaneously. Since the request address and the next request 
address have the same bank field and row field, the seamless data 
stream of data A and B can be transferred by careful timing of the 
READ commands (including bank address and column address) 
for data B.  
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(a) Reading a requested data block with a conventional arbiter 
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(b) Reading a requested data block with the LAA 
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(c) Reading a requested data block with the LAA and row interleaving 
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(d) Reading a requested data block with the LAA and video partition 
Fig. 3. Various data arrangement strategies based on row-major mapping and schedule of access 
 

In order to overlap the SDRAM command overhead, the video 
data can be mapped into two banks of the SDRAM by row 
interleaving. Fig. 3(c) shows the requested data located in the 
different banks. If the video data are accessed according to the 
sequence of A, B, C then D in such interleaved mapping, the 
ACTIVE and READ commands for data C can be issued in 
advance to reduce latency of memory access when data B are 
transferred. The row interleaving reduces the memory-bus 
bandwidth by taking advantage of two facts. First, in a multiple-
bank SDRAM, when one bank performs the ACTIVE or 
PRECHARGE command, the other bank can be accessed. Second, 
two successive accesses located in different bank can be made 
known to the memory controller with the LAA mechanism. 
Consequently, the command time can be overlapped if each bank 
is accessed alternately. 

To further eliminate row-activation and precharge operations, 
we place the requested data block into the same row by 

partitioning the video frame into 2 parts and storing them in row-
major order respectively, as shown in Fig. 3(d). Thus, a data block 
request just requires an ACTIVE and a PRECHARGE command. 

The idea behind video partition is to put together the requested 
data block that has originally been placed into different rows but 
accessed consecutively. However, applying partition has two 
drawbacks: decreasing the burst length of reading of video data 
for display and increasing the access overhead when the requested 
data block crosses the partition boundary. This impact on energy 
consumption and bandwidth usage depends on the number of 
partition. Thus, we can explore the number of partition until the 
performance declines. 

4. The Proposed Architecture 
In this section, we present our hardware-assisted approach to 

improve energy and bandwidth usage of SDRAM. We start with 



the look-ahead arbiter and memory controller, and then present the 
row-interleaving mechanism. 

4.1 Look-ahead Arbiter and Memory Controller  
In a multi-master system, the bus arbiter and memory controller 
are of the most important system units that impact system 
performance and energy usage of memory. However, 
conventional arbitration schemes have only focused on the use 
and allocation of the memory bus to the requesting masters. It 
does not take into consideration of the access dependence which 
can be used to avoid unnecessary memory command. In this 
section, we have proposed an effective design that integrates the 
bus arbiter and memory controller to explore the access 
dependence. 

Fig. 4 shows a conventional data transfer architecture for a 
multi-master system using the SDRAM. In this architecture, the 
masters assert the request signal to the arbiter indicating the 
transfer they wish to perform. After the arbiter grants the bus to a 
master based on its arbitration policy, the master drives out the 
address routed to the memory controller through the central 
multiplexer. The memory controller generates the SDRAM 
command to access the data in the memory. 
  The SDRAM is accessed by the memory controller that usually 
incorporates conventional bank management policy, i.e., open-
page or close-page policy [1, 2], to decide whether to precharge 
the row currently accessed at the end of the access. In the closed 
page policy, the controller precharges the active row immediately 
after the access is completed. However, since the memory 
controller receives consecutive accesses locating in the same row 
of the SDRAM, the unnecessary row-activation and precharge 
operations between the accesses increase the energy consumption 
and access latency. In the open page policy, the active row is 
opened as long as possible in order to save latency due to 
precharge and row-activation. In this way, an open bank consumes 
more energy than a closed bank while there is no further request 
for the same bank. Obviously, it is not easy to determine a suitable 
bank management policy when the memory controller does not 
have enough access dependence information. 
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Fig. 4. Conventional data transfer architecture for multi-master 
system using the SDRAM 

 
To minimize access overhead, we introduce the look-ahead 

arbiter which is integrated with the memory controller using an 
access dependence based policy (ADBP) for multi-master 
architecture. Fig. 5 shows the basic idea of the proposed 
architecture. In this design, the LAA drives out the request address 

and the next request address (if any) to the memory controller 
according to the request status. The memory controller generates 
the SDRAM command based on three strategies that the ADBP 
uses. First, if the request address and the next request address have 
the same bank field and row field, the active row is kept open to 
reduce operating current and latency. In this way, row-activation 
and precharge operation is eliminated. Second, if the two 
addresses have the different bank field, two banks are opened 
simultaneously to mitigate communication command overheads. 
Third, if there is no next request address, meaning that the request 
status is empty, auto-precharge is performed, which deactivates 
the open row automatically upon the completion of the access 
burst in conjunction with a specific READ or WRITE command. 
Furthermore, since the master also drives out its request address 
and the next request address (if any) to the LAA, thus, we can 
explore access dependence of consecutive accesses issued by the 
same master. To eliminate row-activation and precharge 
operations, the LAA promotes the master that acquires the 
ownership of the bus to the highest priority when the request 
address and the next request address from the master have the 
same bank address and row address. 
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Fig. 5. Novel data transfer architecture for multi-master system 
using the SDRAM 

 

4.2 Row Interleaving 
When consecutive accesses are issued to the SDRAM, the current 
row and the next row that is referenced (if any) are usually close 
together in the same bank due to spatial locality. If that occurs, the 
SDRAM command can not be overlapped, as shown in Fig. 3 (c). 
Thus, we place the adjacent rows into the different banks, which is 
referred to row interleaving, to minimize command overhead. 

We use an address bus rotation mechanism implemented 
between the master and arbiter, as shown in Fig. 6, to perform row 
interleaving. This transparent mechanism is accomplished by 
routing the address bus wires and not adds any overhead in terms 
of area or delay. 
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Fig. 6. Address bus rotation scheme 



Fig. 7 depicts the basic address rotation policy and memory 
allocation. The address is divided into four contiguous fields: bank, 
row, column and word offset field. The bank field determines 
which bank is made active. The row field is used to index one of 
the rows of the selected bank while the column field is used to 
index one of the columns of the row. The word offset field selects 
the desired byte from the word. The bank, row, and column field 
are assumed to have x, y and z bits respectively. Consequently, 
the memory includes L ( ) banks organized with  rows and 
K ( ) words. Fig. 7 (a) shows the original address bus definition 
and memory allocation before rotation. To perform row 
interleaving, all bits of the bank field and the row field are rotated 
right x bits. Fig. 7 (b) illustrates the address bus definition and 
memory allocation after rotation. 
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(b) After rotation 
Fig. 7. Address bus definition and memory allocation 

5. Simulation System 
To evaluate the proposed design, we implement a video decoder 
for MPEG-4 Simple Profile at Level 3 (SP @ L3) which supports 
CIF (352 × 288) resolution up to 30 frames per second with the 
AMBA platform [9]. Fig. 8 shows the block diagram of the 
MPEG-4 decoder system in which various hardware co-processors 
are used to accelerate the required operations. The main data 
transferring paths among the processing units are labeled in Fig. 8. 
The coded bit stream input unit (CI) writes bit stream to the 
SDRAM. These compressed data are read out again by the coded 
bit stream output unit (CO), and then the bit stream is processed 
by both or either of the texture decoding or motion decoding 
depending on the macroblock type. The reconstructed data that is 
ready for display and reference is written to the SDRAM by the 
reconstruction unit (VOPR). The LAA schedules the requests 
according to a bus-arbitration policy. In our design, video output 
unit (VO) has the highest priority, followed by CO, then motion 
compensation unit (MC), VOPR and finally CI. 

This system works at 108MHz with 32-bit data bus and the 
64Mb SDRAM organized as 4 banks of 2048 rows and 256 
columns by 32 bits [3]. Since the clock period is 9.26 ns, the CAS 
delay is 3 clock cycles and RAS-to-CAS delay is 2 clock cycles. 
We generate a refresh command every 1684 cycles to meet the 
refresh requirement. In our experiment, we use an aggressive 
policy to save more energy. That is, when no request is pending, 
the memory enters the power-down state immediately. 
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Fig. 8. Data access flow of the simulated system 

6. Result of Simulation 
To evaluate the energy and bandwidth performance efficiency of 
the LAA and the ADBP, we carry out two set of experiments. The 
first experiment implements the row-major mapping with the 
scheme we propose. For comparison purposes, we also implement 
a block-based mapping scheme with the block unit of 16 × 16 
pixels for luminance and 8 × 8 pixels for chrominance. Table 1 
shows the schemes evaluated including the block-based mapping 
with close-page policy (B_B_C), the block-based mapping with 
open-page policy (B_B_O), the row-major mapping with close-
page policy (R_M_C), the row-major mapping with open-page 
policy (R_M_O), the row-major mapping with integrated design 
of the LAA and the memory controller incorporated the ADBP 
(R_M_L) and the R_M_L with video partitioned into “n” parts 
(R_M_Ln). 
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Fig. 9 shows the comparisons of energy consumption among 
the schemes investigated for various percentages of nonzero 
motion vector in a P-VOP. The energy consumed by R_M_C is 
used as a base. Obviously, the percentage of the nonzero motion 
vector has a strong impact on the energy consumption of the 
block-based mapping (B_B_C and B_B_O) because of reading 
redundant pixels. However, this only has a negligible impact on 
the energy consumption of row major mapping, with an average 
overhead of less than 2%. Using R_M_L4 significantly reduces 
the number of energy consumption around 32% compared to 
R_M_C. This saving comes from the reduction in the row-
activation and precharge operations. However, R_M_L8 
consumes more energy than R_M_L4 because the overhead 
caused by video partition increases. 

Fig. 10 compares the bandwidth needed for transfer among the 
standard scheme (R_M_C) and the other schemes. Using R_M_L4 
also significantly reduces the bandwidth by 33% compared to 



R_M_C. B_B_O consumes less bandwidth when the percentage of 
nonzero motion vector is low, but its energy consumption is very 
high. We have also evaluated row interleaving scheme with low 
percentage of nonzero motion vector. The row interleaving is 
more helpful in reducing bandwidth, and therefore achieves 4.5% 
higher performance than R_M_L4. However, we cannot reduce 
energy consumption by using row interleaving only.  
   The I-VOP has similar results as the P-VOP. The results are 
shown in Fig. 11 and 12. We can observe that using R_M_L2 can 
achieve the best performance of bandwidth and energy 
consumption. Since the P-VOP is the majority of all VOPs, we 
propose to use R_M_L4 to achieve the best energy-delay saving in 
this system. 
 

7. Conclusion  
In MPEG-4 decoding system, memory mapping of video data 
directly affects the energy consumption and bandwidth usage of 
SDRAM. Using block-based mapping is inefficient, when the 
video data are read line-wise for display and the percentage of 
nonzero motion vector is high. However, when a macroblock is 
accessed in row-major mapping, unnecessary row-activation and 
precharge operations increase. 

In this paper, we propose an effective design that integrates the 
bus arbiter and the memory controller. This design can explore the 
access dependence to reduce unnecessary command. We also 
present video data partition and row interleaving strategies that 
provide opportunity for eliminating or overlapping row-activation 
and precharge operation. Experiment results show that the row-
major mapping strategy incorporated the proposed schemes can 
provide the best performance both in terms of energy reduction 
and memory bandwidth improvement, up to 32% and 33% 
respectively. The proposed schemes can be easily extended in 
other MPEG decoding system. 
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Fig. 9. Comparison of energy consumption for P-VOP  
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Fig. 10. Comparison of bandwidth for P-VOP  
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Fig. 11. Comparison of energy consumption for I-VOP  
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Fig. 12. Comparison of bandwidth for I-VOP  
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