
Using Row-major Mapping with Look-ahead Arbiter to
Reduce DRAM Energy and Bandwidth Usage in MPEG-4

Decoding

Wei-Cheng Lin and Chung-Ho Chen
Department of Electrical Engineering, National Cheng-Kung University

No.1 University Road, Tainan, Taiwan 70101, R.O.C
Tel: 886-6-2757575-62400-722 Tel: 886-6-2757575-62394
Kevin@casmail.ee.ncku.edu.tw chchen@mail.ncku.edu.tw

Abstract
In this paper, we introduce a novel bus arbiter architecture, called
look-ahead arbiter (LAA), to improve bus bandwidth and energy
consumption of using DRAM memory in MPEG-4 decoding. A
key innovation of the LAA is that it decides which master gets to
use the bus next according to the request status and drives out the
next request address to the memory controller in advance.
Consequently, the memory controller can decide whether to
precharge the row currently accessed to avoid unnecessary row-
activation and precharge operation. A second key contribution of
this work is that we use row-major mapping for video data instead
of block-based mapping to save energy and bandwidth through
the LAA. Experiment with the MPEG-4 SP@L3 decoder shows
that combining row-major mapping along with LAA, the memory
controller provides the best performance both in terms of energy
reduction and memory bandwidth improvement, up to 32% and
33% respectively.

Keywords:
Arbiter, bandwidth, DRAM, energy consumption, memory
controller, MPEG-4 decoding

1. Introduction
Energy consumption and memory bandwidth demand have
become the major concern in the design of embedded video
processing system. Fig.1 shows a typical block diagram of a
present video processor based on SoC platform. The major
building blocks include the general purpose CPU, DSP,
application–specific coprocessors, video I/O, memory controller
and bus arbiter dedicated to providing the coordination for data
transferring between on-chip devices and external memory.

C ac h e

G en e ra l
P u rp o se

C P U

C u s to m ize d
IP s

F ast2 S lo w
B rid g e

G P IO

U A R T

In te rru p t
C o n tro lle r

T im ers

F a s t B u s

S lo w
B u s

S o CA rb ite r
G e n e ra l
P u rp o se

D S P

V id eo I/O M em o ry
co n tro lle r

B an k 1 B an k 2 O ff-ch ip S D R A MB a n k 3 B an k 4

Fig. 1. Video processor based on SoC platform

In this study, we focus on the application of MPEG-4 decoding.
Typically, video data that are too large to fit into the on-chip
buffers are stored to the off-chip memory, for instance, SDRAM
memory. In such a system, high memory bandwidth is required
due to the huge amount of video data transferring between video
processor and the external SDRAM. However, the SDRAM
power dissipation occupies a significant fraction of the overall
system power consumption. Thus, it is a good candidate for power
and bandwidth minimization.

Memory mapping of video data is an important problem in
video processing because it directly affects the amount of energy
and bandwidth usage of SDRAM. Mapping policies using block-
based layout for the video data have been proposed in [4, 5]. Fig.
2 (a) illustrates the block-based mapping policy that can reduce
the number of row-activation and precharge operation. In this
mapping, the requested data block overlapped with block unit B3
can be accessed in a longer burst mode when the motion vector is
zero. However, if the motion vector is not zero, four block units
B1, B2, B3, and B4 are transferred because the requested data
block overlaps with these four block units. In this example, three-
fourths of pixels are redundant in this transferring. Overheads
associated with these redundant pixels offset the benefits due to
less row-activation and precharge operation in block-based
mapping policies. Furthermore, when the video data are read line-
wise for display, using block-based mapping is inefficient since
each fragment that composes a video line needs a row-activation
and a precharge command to specify the address of the fragment.

On the other hand, row-major mapping is inherently suitable
for reading video data to display, as shown in Fig. 2 (b). It is
observed that the pixel transfer time in row-major mapping has
negligible impact from the motion vector value. This is because
the address generator employed by a motion compensation
module can adjust the starting address of each row in the
requested data block according to the motion vector value when
the motion vector is nonzero. However, with row-major mapping,
it has a negative effect, that is, a row change for the requested
data needs a row-activation and precharge operation in order to
access the next row in the requested data block.

If the percentage of nonzero motion vector that occurs in a P-
VOP is very high, a lot amount of energy and bandwidth are
wasted in the transferring of the redundant pixels when a block-
based mapping policy is used. In our experiment, the nonzero
motion vectors are up to 70% in some P-VOP. Thus, there is an
advantage to store the video data in the row-major order in
memory.

mailto:Kevin@casmail.ee.ncku.edu.tw

Row 0
Row 1

Bank0
1

Mapping

SDRAM

Reading for displayRequested data block

Row-activation and
precharge

Displayed data

Requested data (nonzero motion vector)

Redundant data

Requested data
(zero motion vector)

Video data

B1 B2

B3 B4B1 B2 B3 B4

B3

Block unit Motion vector

Time

Useful data

(a) Block-based mapping

R ow 0
R ow 1

B ank0
1

M apping

SD R A M

D isplayed data

R equested data
(nonzero m otion vector)

R equested data
(zero m otion vector)

V ideo data
Tim e

(b) Row-major mapping
Fig. 2. Video data mapping policies and schedule of data
transferring

In this paper, we introduce an integrated design of a look-ahead

arbiter (LAA) and memory controller to alleviate the negative
effect caused by row-major mapping. In this design, the LAA
drives out the request address and the next request address to the
memory controller according to the request status. Thus, the
memory controller can make appropriate decision about whether
to precharge an active row based on the access dependence.
Consequently, it can avoid unnecessary row-activation and
precharge operation to improve bus bandwidth and power
consumption when using SDRAM.

The rest of this paper is organized as follows. Section 2
presents the backgrounds and related work. The video data
arrangement strategy and proposed architecture are discussed in
Section 3 and Section 4, respectively. Section 5 describes the
simulation system. Section 6 shows the results of simulations.
Finally, Section 7 summarizes the conclusion of this paper.

2. Backgrounds and Related Work
In SDRAM [3], the address that accesses the memory is
partitioned into bank, row, and column. Each bank contains an
array of memory cells that can be accessed for an entire row at a
time. After a row in a bank is activated (i.e. open), which is done
through the ACTIVE command, the accessed row is transferred to
the bank’s row buffer or sense amplifier where READ and
WRITE command can take place by supplying the column
addresses. Traditionally, the SDRAM either operates in the open
page mode or the close page mode. For the open page policy, the
selected memory row is stored in the row buffer, which can serve
any number of reads or writes (column accesses) until a forced
PRECHARGE command is given, or a row miss occurs, or
refresh occurs. This precharge operation writes the data in the row
buffer back to the memory array (i.e. close the bank), which

prepares the bank for subsequent row activation. However, the
energy consumed by row-activation and precharge operations
occupies a significant fraction of the whole SDRAM energy
consumption [8]. Thus, reducing these operations can save
significant energy.

Most previous work on DRAM energy and bandwidth issue
comes from single processor environments. Such a system does
not present the same complexity as today’s SoC environment
including multi-master, as shown in Fig. 1.

Works in DRAM power management have been previously
proposed in [1, 2, 6]. Miura and et al. [1] use open-page policy or
close-page policy alternately to reduce the energy consumption
and latency when using SDRAM. This is accomplished by using a
predictor to predict the access dependence (hit or miss). Approach
to reduce DRAM energy with cache-based memory architecture is
presented by Fan and et al. [2]. They exploit the fact that the
DRAM should directly put into a low-energy mode while there
are no access requests. In [6], it is proposed to control power
modes of RDRAM according to idle periods predicted by three
hardware mechanisms (ATP, CTP and HBP). The idle periods can
be explored and integrated by compiler-assisted approach in
advance.

In [7], Rixner and et al. propose a mechanism to reduce
memory bandwidth, by reordering DRAM operations according to
pending memory references. This work may maximize the
available memory bandwidth, but it perhaps can not meet the
timing requirement specified by a request without considering the
priority for each bus master.

To improve the efficiency of memory access for video
processing, Kim and Park [4] proposed an address translation
technique that can effectively reduce the number of row-
activation and precharge operation. However, this work only
examines the MPEG-2 video decoding algorithm without
considering the overhead caused by reading video data for display.
Approaches to find out a suitable block unit to mapping into
SDRAM with minimal memory bandwidth are presented by
Jaspers and de With [5].

3. Video Data Arrangement Strategy
In this section, we explore various data arrangement strategies
and implementation method based on row-major mapping of
video data. As shown in Fig. 3(a), the video data are stored in
row-major order in the external SDRAM. Without the loss of
generality, we assume that the row width of the SDRAM is two
times of the video width. When 16 pixels in a 4 × 4 block are read
from the SDRAM, the data transfer scheme is inefficient due to
the fact that the memory controller cannot recognize two
consecutive accesses located in the same row of the same bank.
Hence, the unnecessary ACTIVE and PRECHARGE command
between data A and data B is generated. To overcome this
problem, we employ the look-ahead arbiter instead of a
conventional arbiter. Fig. 3(b) depicts a reading of requested data
block with the LAA that drives out the request address of data A
and the next request address of data B to the memory controller
simultaneously. Since the request address and the next request
address have the same bank field and row field, the seamless data
stream of data A and B can be transferred by careful timing of the
READ commands (including bank address and column address)
for data B.

A B
C D

Video data

Memory
controller

A B C D
A B C D

Command

Data

Memory bus

Active Precharge

A A B B C C D D

Mapping

Row 0
Row 1

Arbiter

Bank 0

Bank 1

A
B
C
D

Read

Requested data block

SDRAM

(a) Reading a requested data block with a conventional arbiter

A B
C D

B ank 0

A B C D
A B C D

C om m and

D ata

M em ory bus

A B C D

Row 0
Row 1

M em ory
controllerLA A B ank 1

B D

SD R A M

(b) Reading a requested data block with the LAA

A B C D
A B C D

C o m m an d

D ata

M em ory b us

A BC D

A B

B ank 0
R o w 0

B ank 1M em ory
con tro llerL A A

C DDB C

S D R A M

(c) Reading a requested data block with the LAA and row interleaving

A B C D
A B C D

Command

Data

Memory bus

A D

A B C D

Bank 0

Video data

A
B
C
D

Mapping

Memory
controllerLAA

Partition in 2 parts

DCB

Bank 1
SDRAM

Part 1 Part 2
Part 1

Part 2

(d) Reading a requested data block with the LAA and video partition
Fig. 3. Various data arrangement strategies based on row-major mapping and schedule of access

In order to overlap the SDRAM command overhead, the video
data can be mapped into two banks of the SDRAM by row
interleaving. Fig. 3(c) shows the requested data located in the
different banks. If the video data are accessed according to the
sequence of A, B, C then D in such interleaved mapping, the
ACTIVE and READ commands for data C can be issued in
advance to reduce latency of memory access when data B are
transferred. The row interleaving reduces the memory-bus
bandwidth by taking advantage of two facts. First, in a multiple-
bank SDRAM, when one bank performs the ACTIVE or
PRECHARGE command, the other bank can be accessed. Second,
two successive accesses located in different bank can be made
known to the memory controller with the LAA mechanism.
Consequently, the command time can be overlapped if each bank
is accessed alternately.

To further eliminate row-activation and precharge operations,
we place the requested data block into the same row by

partitioning the video frame into 2 parts and storing them in row-
major order respectively, as shown in Fig. 3(d). Thus, a data block
request just requires an ACTIVE and a PRECHARGE command.

The idea behind video partition is to put together the requested
data block that has originally been placed into different rows but
accessed consecutively. However, applying partition has two
drawbacks: decreasing the burst length of reading of video data
for display and increasing the access overhead when the requested
data block crosses the partition boundary. This impact on energy
consumption and bandwidth usage depends on the number of
partition. Thus, we can explore the number of partition until the
performance declines.

4. The Proposed Architecture
In this section, we present our hardware-assisted approach to

improve energy and bandwidth usage of SDRAM. We start with

the look-ahead arbiter and memory controller, and then present the
row-interleaving mechanism.

4.1 Look-ahead Arbiter and Memory Controller
In a multi-master system, the bus arbiter and memory controller
are of the most important system units that impact system
performance and energy usage of memory. However,
conventional arbitration schemes have only focused on the use
and allocation of the memory bus to the requesting masters. It
does not take into consideration of the access dependence which
can be used to avoid unnecessary memory command. In this
section, we have proposed an effective design that integrates the
bus arbiter and memory controller to explore the access
dependence.

Fig. 4 shows a conventional data transfer architecture for a
multi-master system using the SDRAM. In this architecture, the
masters assert the request signal to the arbiter indicating the
transfer they wish to perform. After the arbiter grants the bus to a
master based on its arbitration policy, the master drives out the
address routed to the memory controller through the central
multiplexer. The memory controller generates the SDRAM
command to access the data in the memory.
 The SDRAM is accessed by the memory controller that usually
incorporates conventional bank management policy, i.e., open-
page or close-page policy [1, 2], to decide whether to precharge
the row currently accessed at the end of the access. In the closed
page policy, the controller precharges the active row immediately
after the access is completed. However, since the memory
controller receives consecutive accesses locating in the same row
of the SDRAM, the unnecessary row-activation and precharge
operations between the accesses increase the energy consumption
and access latency. In the open page policy, the active row is
opened as long as possible in order to save latency due to
precharge and row-activation. In this way, an open bank consumes
more energy than a closed bank while there is no further request
for the same bank. Obviously, it is not easy to determine a suitable
bank management policy when the memory controller does not
have enough access dependence information.

Bank
management

policy
(open/close)

Arbiter

Master #1

Master #2

Master #N

Off-chip
SDRAM

Request and grant

Data and
request

address bus

Command
bus

Address
bus

Data
bus

.

.

.

Memory
controller

Fig. 4. Conventional data transfer architecture for multi-master
system using the SDRAM

To minimize access overhead, we introduce the look-ahead

arbiter which is integrated with the memory controller using an
access dependence based policy (ADBP) for multi-master
architecture. Fig. 5 shows the basic idea of the proposed
architecture. In this design, the LAA drives out the request address

and the next request address (if any) to the memory controller
according to the request status. The memory controller generates
the SDRAM command based on three strategies that the ADBP
uses. First, if the request address and the next request address have
the same bank field and row field, the active row is kept open to
reduce operating current and latency. In this way, row-activation
and precharge operation is eliminated. Second, if the two
addresses have the different bank field, two banks are opened
simultaneously to mitigate communication command overheads.
Third, if there is no next request address, meaning that the request
status is empty, auto-precharge is performed, which deactivates
the open row automatically upon the completion of the access
burst in conjunction with a specific READ or WRITE command.
Furthermore, since the master also drives out its request address
and the next request address (if any) to the LAA, thus, we can
explore access dependence of consecutive accesses issued by the
same master. To eliminate row-activation and precharge
operations, the LAA promotes the master that acquires the
ownership of the bus to the highest priority when the request
address and the next request address from the master have the
same bank address and row address.

LAA

Request
address

bus

Next
request
address

bus

ADBP

Master
#1

Master
#2

Master
#N

Off-chip
SDRAM

Request and grant

Data , request
address and next

request address bus

Command
bus

Address
bus
Data
bus.

.

.

Memory
controller

Data
bus

Request
status

Fig. 5. Novel data transfer architecture for multi-master system
using the SDRAM

4.2 Row Interleaving
When consecutive accesses are issued to the SDRAM, the current
row and the next row that is referenced (if any) are usually close
together in the same bank due to spatial locality. If that occurs, the
SDRAM command can not be overlapped, as shown in Fig. 3 (c).
Thus, we place the adjacent rows into the different banks, which is
referred to row interleaving, to minimize command overhead.

We use an address bus rotation mechanism implemented
between the master and arbiter, as shown in Fig. 6, to perform row
interleaving. This transparent mechanism is accomplished by
routing the address bus wires and not adds any overhead in terms
of area or delay.

M a s t e r A r b i t e r.
.
.

.

.

.

R o t a t i o n

O r i g i n a l
A d d r e s s

R o t a t e d
A d d r e s s

Fig. 6. Address bus rotation scheme

Fig. 7 depicts the basic address rotation policy and memory
allocation. The address is divided into four contiguous fields: bank,
row, column and word offset field. The bank field determines
which bank is made active. The row field is used to index one of
the rows of the selected bank while the column field is used to
index one of the columns of the row. The word offset field selects
the desired byte from the word. The bank, row, and column field
are assumed to have x, y and z bits respectively. Consequently,
the memory includes L () banks organized with rows and
K () words. Fig. 7 (a) shows the original address bus definition
and memory allocation before rotation. To perform row
interleaving, all bits of the bank field and the row field are rotated
right x bits. Fig. 7 (b) illustrates the address bus definition and
memory allocation after rotation.

x2 y2
z2

Bank0

Bank1 Bank L-1
bx-1 ⋯ b0 ry-1 ⋯ ⋯ r0 cz-1 ⋯ ⋯ c0

Word
offset

Bank field Row field Column field

Original address
K words

⋯
..

Row 0

Row L-1
Row L

(a) Original

rx-1 ⋯ r0 Bank0

Row 0

Bank1

Row 1

Bank L-1

Row L-1

bx-1 ⋯ b0 ry-1 ⋯ ⋯ rx Word
offset

Bank field Row field Column field

Rotated address

Circular Rotate right x bits

⋯
cz-1 ⋯ ⋯ c0

Row L

(b) After rotation
Fig. 7. Address bus definition and memory allocation

5. Simulation System
To evaluate the proposed design, we implement a video decoder
for MPEG-4 Simple Profile at Level 3 (SP @ L3) which supports
CIF (352 × 288) resolution up to 30 frames per second with the
AMBA platform [9]. Fig. 8 shows the block diagram of the
MPEG-4 decoder system in which various hardware co-processors
are used to accelerate the required operations. The main data
transferring paths among the processing units are labeled in Fig. 8.
The coded bit stream input unit (CI) writes bit stream to the
SDRAM. These compressed data are read out again by the coded
bit stream output unit (CO), and then the bit stream is processed
by both or either of the texture decoding or motion decoding
depending on the macroblock type. The reconstructed data that is
ready for display and reference is written to the SDRAM by the
reconstruction unit (VOPR). The LAA schedules the requests
according to a bus-arbitration policy. In our design, video output
unit (VO) has the highest priority, followed by CO, then motion
compensation unit (MC), VOPR and finally CI.

This system works at 108MHz with 32-bit data bus and the
64Mb SDRAM organized as 4 banks of 2048 rows and 256
columns by 32 bits [3]. Since the clock period is 9.26 ns, the CAS
delay is 3 clock cycles and RAS-to-CAS delay is 2 clock cycles.
We generate a refresh command every 1684 cycles to meet the
refresh requirement. In our experiment, we use an aggressive
policy to save more energy. That is, when no request is pending,
the memory enters the power-down state immediately.

VLD Inverse
scane

Inverse
DC/AC

prediction
IQ IDCT

AMBA AHB Bus

Motion
compensation

(MC)

Coded bit
stream

input (CI)

Video
output
(VO)

Coded bit
stream

output (CO)

LAA
ADBP

SDRAM

Motion
decoding

VOP
reconstruction

(VOPR)

CPU

1

2 3 4

5

Texture
decoding

1. CI write coded bit stream
2. CO read coded bit stream
3. MC read reference data

4. VOPR write reconstructed data
5. VO read reconstructed data for display

Fig. 8. Data access flow of the simulated system

6. Result of Simulation
To evaluate the energy and bandwidth performance efficiency of
the LAA and the ADBP, we carry out two set of experiments. The
first experiment implements the row-major mapping with the
scheme we propose. For comparison purposes, we also implement
a block-based mapping scheme with the block unit of 16 × 16
pixels for luminance and 8 × 8 pixels for chrominance. Table 1
shows the schemes evaluated including the block-based mapping
with close-page policy (B_B_C), the block-based mapping with
open-page policy (B_B_O), the row-major mapping with close-
page policy (R_M_C), the row-major mapping with open-page
policy (R_M_O), the row-major mapping with integrated design
of the LAA and the memory controller incorporated the ADBP
(R_M_L) and the R_M_L with video partitioned into “n” parts
(R_M_Ln).

Table 1. The schemes evaluated

B _ B _ C

B _ B _ O

R _ M _ C

R _ M _ O

R _ M _ L

R _ M _ L n

B lo c k
b a s e d
m a p p in g

R o w
m a jo r
m a p p in g

C lo s e
p a g e
p o lic y

O p e n
p a g e
p o lic y

L A A &
A D B P

P a r t i t io n
in to“ n＂
p a r ts

Fig. 9 shows the comparisons of energy consumption among
the schemes investigated for various percentages of nonzero
motion vector in a P-VOP. The energy consumed by R_M_C is
used as a base. Obviously, the percentage of the nonzero motion
vector has a strong impact on the energy consumption of the
block-based mapping (B_B_C and B_B_O) because of reading
redundant pixels. However, this only has a negligible impact on
the energy consumption of row major mapping, with an average
overhead of less than 2%. Using R_M_L4 significantly reduces
the number of energy consumption around 32% compared to
R_M_C. This saving comes from the reduction in the row-
activation and precharge operations. However, R_M_L8
consumes more energy than R_M_L4 because the overhead
caused by video partition increases.

Fig. 10 compares the bandwidth needed for transfer among the
standard scheme (R_M_C) and the other schemes. Using R_M_L4
also significantly reduces the bandwidth by 33% compared to

R_M_C. B_B_O consumes less bandwidth when the percentage of
nonzero motion vector is low, but its energy consumption is very
high. We have also evaluated row interleaving scheme with low
percentage of nonzero motion vector. The row interleaving is
more helpful in reducing bandwidth, and therefore achieves 4.5%
higher performance than R_M_L4. However, we cannot reduce
energy consumption by using row interleaving only.
 The I-VOP has similar results as the P-VOP. The results are
shown in Fig. 11 and 12. We can observe that using R_M_L2 can
achieve the best performance of bandwidth and energy
consumption. Since the P-VOP is the majority of all VOPs, we
propose to use R_M_L4 to achieve the best energy-delay saving in
this system.

7. Conclusion
In MPEG-4 decoding system, memory mapping of video data
directly affects the energy consumption and bandwidth usage of
SDRAM. Using block-based mapping is inefficient, when the
video data are read line-wise for display and the percentage of
nonzero motion vector is high. However, when a macroblock is
accessed in row-major mapping, unnecessary row-activation and
precharge operations increase.

In this paper, we propose an effective design that integrates the
bus arbiter and the memory controller. This design can explore the
access dependence to reduce unnecessary command. We also
present video data partition and row interleaving strategies that
provide opportunity for eliminating or overlapping row-activation
and precharge operation. Experiment results show that the row-
major mapping strategy incorporated the proposed schemes can
provide the best performance both in terms of energy reduction
and memory bandwidth improvement, up to 32% and 33%
respectively. The proposed schemes can be easily extended in
other MPEG decoding system.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

B_B_C B_B_O R_M_C R_M_O R_M_L R_M_L2 R_M_L4 R_M_L8

E
n
er
g
y
co
ns
u
m
p
tio
n

74% MV!=0 35% MV!=0 6% MV!=0

Fig. 9. Comparison of energy consumption for P-VOP

0

0.2

0.4

0.6

0.8

1

1.2

1.4

B_B_C B_B_O R_M_C R_M_O R_M_L R_M_L2 R_M_L4 R_M_L8

B
an
dw
id
th

74% MV!=0 35% MV!=0 6% MV!=0 6% MV!=0 + Row interleaving

Fig. 10. Comparison of bandwidth for P-VOP

0

0.2

0.4

0.6

0.8

1

1.2

1.4

B_B_C B_B_O R_M_C R_M_O R_M_L R_M_L2 R_M_L4 R_M_L8

E
ne
rg
y
co
ns
u
m
pt
io
n

Fig. 11. Comparison of energy consumption for I-VOP

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

B_B_C B_B_O R_M_C R_M_O R_M_L R_M_L2 R_M_L4 R_M_L8

B
an
dw
id
th

Non-row interleaving Row interleaving

Fig. 12. Comparison of bandwidth for I-VOP

References
[1] S. Miura, K. Ayukawa, and T. Watanabe, “A Dynamic-

SDRAM-Mode-Control Scheme for Low-Power Systems with
a 32-bit RISC CPU,” in the Proceeding of the International
Symposium on Low Power Electronics and Designs, 2001.

[2] X. Fan, C. S. Ellis and A. R. Lebeck, “Memory Controller
Policies for DRAM Power Management,” in the Proceeding of
the International Symposium on Low Power Electronics and
Designs, 2001.

[3] Samsung SDRAM 64Mb, H-die (x32) data sheet, 2004.
[4] H. Kim and I.-C. Park, “High-Performance and Low-Power

Memory-Interface Architecture for Video Processing
Applications,” IEEE Transactions on Circuits and Systems for
Video Technology, Vol. 11, No.11, pp. 1160-170, November
2001.

[5] E. G. T. Jaspers and P. H. N. de with, “Bandwidth reduction
for video processing in consumer systems,” IEEE
Transactions on Consumer Electronics, Vol. 47, No.4, pp.
885-894, November 2001.

[6] V. Delaluz, M. Kandemir, M. N. Vijaykrishnan, and et al.,
“ Hardware and Software Techniques for Controlling DRAM
Power Modes,” IEEE Transactions on Computers, Vol. 50, No.
11, pp. 1154-1173, November 2001.

[7] S. Rixner, W. Dally, and et al., “ Memory Access Scheduling,”
in the Proceedings of the 27th International Symposium on
Computer Architecture, 2000.

[8] Micron Technical Note TN-46-03 “Calculating Memory
System Power For DDR,” 2001.

[9] AMBA Specification Rev 2.0, 2000.

	Introduction
	Backgrounds and Related Work
	Video Data Arrangement Strategy
	The Proposed Architecture
	Simulation System
	Result of Simulation

