Workload-Ahead-Driven Online Energy Minimization
Techniques for Battery-Powered Embedded Systems with
Time-Constraints

Abstract— This paper proposes a new online voltage scaling (VS) tech- account the non-linear battery behavior during voltage calculation.
nique for battery-powered embedded systems with real-timeonstraints. More recently the first online and battery-aware DVS technique has
g_he VS technique takes into account the tasks execution tinseand hoen presented in [12]. This technique specifically targets periodic,

ischarge currents to further reduce the battery charge cosumption

when compared to the recently reported slack forwarding tebnique independent tasks and assumes identical discharge currents for eac
[12], whilst maintaining low online complexity of O(1). Furthermore, task. According to this assumption, it is always better to exploit
we investigate the impact of online rescheduling and remagpg on the the available slack by the last task in the schedule [12]. Based
battery charge consumption for tasks with data dependency hich has o thjs the authors introduce a slack forwarding technique that

not been explicity addressed in the literature and proposea novel N . .
rescheduling/?ema)éping technique. We demonstrate gndp copare the delays the utilization of online slack as late as possible. However,

efficiency of the presented techniques using seven realdifbenchmarks for many realistic multiprocessor systems executing heterogeneous
and numerous automatically generated examples. tasks, this assumption limits the achievable savings in battery charge
I. Introduction and Previous Work consymptlon. . o .
i))) This paper makes the following contributions: (a) We introduce a
Dynamic voltage scaling (DVS) is a powerful technique to reducg,ad-ahead-driven online DV'S techniquéich explicitly takes
the energy consumption in embedded computing systems. This redjies account the workload-ahead (the sum over all products of
tion is achieved by exploiting the application’s temporal performan scharge current and WCET of remaining tasks) to overcome the

requilremelnt by d]}/namically adalpting the prochessing spﬁedﬁand fifftation of [12] discussed above. The proposed algorithm achieves
supply voltage of processing elements. Much research effort Nagqqr patery lifetimes compared to slack forwarding algorithm with-

concentrated on DVS algorithms for the calculation of approprla[ﬁn sacrificing the online time complexity, which remains constant,

performance/voltage setting. DVS algorithms can be broadly clas%-. O(1), since the workload used in the algorithm is computed in

fied into offline and online (e.g. [8], [9], [10]) techniques dependingt'he offline phase. (b) In addition to the online voltage scaling, we
on when the voltage settings are computed. '

Offline (e.g. [1], [2], [3]) approaches calculate voltage settings

times (WCET) to guarantee satisfaction of time constraints. Althouggﬂg
offline DVS avoids a run-time overhead due to the voltage calculatiqré,C

it fails to exploit online slack arising from tasks executing with less
. . ” The rest of the paper is organized as follows. Section Il outlines the
than their WCET (differences-10 times have been reported [7])'system and battery models. Section Il presents the problem formu-

On the contrary, online DVS techniques (e.g. [8], [9], [10]) perfor lation. The proposed workload-ahead-driven online DVS technique

the voltage calculation during run-time to utilize such online slack . . ' X . .
by taking into account the actual execution times (AET) of taskl introduced in Section IV. Section V describes the proposed online

: - : . - ?escheduling and remapping approach. Experimental results and
Clearly, online techniques have the potential to achieve higher enei@hclusions are given in Sections VI and Section VII, respectively.

savings, however, it is necessary to carefully design such online
DVS algorithms in order to avoid high run-time overheads that could
jeopardize the achievable energy savings and the timing constraints.
An aggressive online voltage adjustment approach has been presepte System Model and Task Graph
in [8]. Here only the next task to be executed is considered during the

voltage calculation. The online approach introduced in [9] calculates'” this work we consider battery-powered embedded computing

the scaling factor for soft aperiodic tasks and considers run-time vapyStems, which consist of multiple processing elements (PEs) con-

ations. The algorithm has an online complexityffin?), wherem is nected by communication links (CLs), illustrated in Fig. 1(a). A dc/dc

the number of tasks which have not been executed on the procesSifigverter adapts the battery voltage to the system supply voltage. The

elements. Zhu and Muller [10] utilize a feedback control loop t3YStem functionality is captured by a task graph moG¢r, C),

facilitate DVS and integrated the controller into an earliest deadli d- 1(b). Nodes 7(2', € T) in this directed acyclic graph (DAG)
first (EDF) scheduler. The online complexity depends line&lyn), fep“?sef“ computational tasks and edg@se(.C) denote data com-
on the number of tasks:.. Task scheduling and online voltage scalind;'un'cfit'ons petween tasks. As Sh.()Wh.In Fig. 1(b), tasks/edges are
are combined in [11]. This work, however, is limited to identica ssociated with worst case execution times (WCETS). The WCETs
degrend on the worst case number of cyclds,) required for

PE systems and a straightforward extension toward heterogene - d the circuit hich | d d h
systems is not apparent. execution and the circuit frequengy which in turn depends on the

Although the above given offine and online voltage scalingUPP!V voltageVaa and threshold voltagé; [1]:
techniques are effective in reducing energy dissipation, they are not Ky KwVaa

efficient in prolonging the battery lifetime of mobile applications, t= T k(Vaa - Vo)® @

since the non-linear battery characteristics [5], [6] are negled%erek and « are technology related constants. The power dissipa-

during the optimization. In [4] an offline DVS technique for batteryiion of a task can be expressed as [2]:

powered systems was introduced, and it was demonstrated that up
to 56% longer battery lifetimes could be achieved by taking into P=fC.VE (2)

orithm facilitates the usage of the workload-ahead-driven DVS
hnique and also has a complexity®@f1).

II. Preliminaries

v ims . munE deadlines can be guaranteed. This step is essential to exploit online
PEO h
oomy N2 { _ 3 %% slack that arises from variations in the execution time of tasks.

1
vome I f""lﬁ:’fm Q'/yzg - Secondly, f(_)r the initially (statically) given mapping and schedul-
1 ; g, some online slack could be potentially wasted, as demonstrated
6 Batery 053 0‘_’22"%5 pedl o ?n_t_he moti_/ational exampl_e of Section V. To avqid this waste, the
C: Converter 0.8ms e o initial mapping and scheduling should be adapted in accordance to the
Cf: communication interface deadiie: 4.2ms 0~eT OwceT available online slack, i.e. online rescheduling and remapping should

[CY (b) (©

Fig. 1. Task graph and system model be performed. The online voltage scaling problem is addressed in the

next section, while rescheduling and remapping are the subjects of
whereC. is the effective switched capacitance of the circuit. Eqgs. (Hection V.
and (2) provide the well-known energy/delay tradeoff exploited by all

DVS approaches. Since the discharge current drawn from the batterie o
follows I = P/(Vs -) (whereV, andn are the average batteryA. Motivational Example

voltage and the converter efficiency respectively), DVS can be usedThe essence of the online voltage scaling problem is the online
to influence the battery discharge current and, as a results, it cansheek distribution, in order to efficiently exploit slack resulting from
used to achieve savings in the battery charge consumption [5], [tdsks that execute faster than their WCETSs. In this motivational
We assume that tasks and edges have been initially (offline) mapegdmple we outline two different slack distribution methods using
and scheduled onto the target architecture, such that resource amdalistic task graph from the E3S suite [16], namely the office-auto
time constraints are satisfied under WCETSs, Fig. 1(c). At run-timbenchmark consisting of 5 tasks, Fig. 2(a). For simplicity we consider
however, tasks might finish before their WCET, resulting in online

slack. For instance, in Fig. 1(¢) has an actual execution time (AET) @@
of 0.6ms, leaving an online slack of 4. _
<if>/ﬁ(o—(2) -

IV. Battery-Aware Online Voltage Scaling

B. Battery Model

To extend the battery lifetime of portable devices it is not sufficient @ (b)
to “simply” minimize the dissipated energy. But it is essential to Fig. 2. Office-auto task graph [16] and execution order

take into account the non-linear battery behavior (caused by electro- . .
ere that all tasks have been mapped to a single processing element

chemical phenomena) during the system optimization [4], [5]. | i .
general, it is better to discharge batteries with a low, constajifd the execution order corresponds to Fig. 2(b). We assume that

current rather than with high current peaks. For an excellent sur\/‘&? PE can vary itsl supply C;/oltage kl])etwefmm an(_j Vm‘.”' Wi:h”
on battery modelling see [13]. In this work we use an analyticgl™" 1_ Q|;4BIV"IW: n aﬁcor ance, the task execution tlvn\}gsl‘z_lf) OWd
high-level battery model proposed in [5] whose accuracy has be f (1). Table 1 gives the worst-case execution time () an

demonstrated to be within 3% of the physical battery. The batte scharge cu_rrentlo of each task (in execution order of Fig. 2(b)),
charge consumption (reflecting the battery lifetimes) is: hen executing al/,.... Furthermore, the table shows the actual

N—1 nl T2 T4 75 T3
Z I - F(L, sty, sty + A, B) (3) WCET (ms) 0.79 | 10.80 | 4.80 | 22.81| 0.79
pt T (mA) 0.256 | 4.066 | 3.990 | 2.243 | 0.256
- AET (ms) 0.63 | 8.64 | 3.84 | 18.25| 0.63
where N is the total number of steps used to approximate the load [~online slack (ms)| 0.16 | 2.16 | 0.96 | 4.56 | 0.16

current profile (LCP), and, Ax and stx denote the current, the TABLE |
duration and the start time atep;, in the LCP, respectively. Further,
L is the time duration that the battery has been charged forgand
is a constant related to the non-linear property modelled by function
F: execution time (AET) of tasks at run-time (we assume here 80%
of WCET), as well as the resulting online slack (WCET-AET). The
() deadline is assumed to correspond to the finishing time of the last
B2m? task 3), when all tasks execute with their WCET.
.) Table 1l shows the outcome of two different techniques that dis-
As smaller charge consumption (Eq. 3) will lead to longer battery, e the available online slack. Note that not all the available online
lifetime [5], our qptlmlzatlon objective is the minimization of theslack might be exploited due to the limited voltage range of the PE.
charge consumption. The first technique is based on the slack forwarding idea presented

WCETS, DISCHARGE CURRENTSAETS AND ONLINE SLACKS OF
AUTO-OFFICE TASKS

10 2 2 2.2

=B m*(z—=z) —B"m*(z—y)
e — e

F(xay7z7ﬁ)zziy+2§

m=1

I11. Problem Formulation

“slack forwarding” | proposed technique|
We assume that the tasks = {7;} and precedence constraints Online slack (ms)
C = {v;} of task graphG(7,C) have been initially mapped available | explaits [available [exploits
and scheduled onto a distributed architecture containing voltage Z gég 8 g';g 8'23
scalaple processors, which can vary their supply volfegewithin 5 358 0 586 585
a continuous rang8/min, Vimaz]. The worst case clock cyclek({,) T3 784 118 457 118

that each task needs to be executed as well as its discharge current
are known. In addition, some tasks may be associated by a deadline
dl.

The problem addressed by the proposed online techniqueins[12], in which all available online slack is forwarded to the last
twofold. Firstly, each time when a task..: is to be executed on a task. Accordingly, taskrs accumulates an online slack of 7.84ms
voltage scalable processor, an appropriate volldge: for its exe- (0.16+2.16+0.96+4.56) before it starts execution. Neverthethss,
cution has to be selected such that the battery charge consumptioto ighe limited voltage range of the PE, it is only possible to make use
minimized (taking into account the workload-ahead) and all imposed 1.18ms of the total slack, i.e., 6.66ms of slack remain unexploited.

TABLE I
ONLINE SLACK DISTRIBUTION

As a result, a battery charge of 0.189mAs can be calculated frq@2.81ms2.243mA) and its position is close to the end of the schedule
Egs. (1)—(4) and the task properties given in Table I. and as a result, it obtains the largest slack portion (2.85ms). Note
A second approach (the approach we propose in this pap#rat we only calculate the slack distributed to the next task. It is not
distributes the available online slack by explicitly considering theecessary to distribute slack to tasks beyond the next task because
discharge currents and WCETSs of tasks. That is, each time a taéls& total amount of online slack will change with the execution of
finishes execution, the workload-ahead (sum over products of dike next task, hence, a recomputation of the distribution is required.

charge current and WCET of remaining tasks) is evaluated to make a

slack distribution decision. The method is outlined in Section I\f- Algorithm: WAD-DVS

B, however, the resulting slack distribution is given in Table I} |nput: - Whewt, WAnest, Kw, WCEThewt, SThewt, CurrTime
As we can observe from the table, using this method all tasks ar®utput: - Viext

assigned some of the available slack. For instance, afterrfabls 0%; if tl}g neaclt tZSk g%;n start émm%diately then

N i i i i i . online_slack = next — Currilime,

Iwiheo_l egi%unon'_'the avaﬂible clm_ltlne sila((:)kozhat |sf (t'—,\r>]<_pI0|Itakae _Fyg35 Slacknot = onlineslack x (Woeot AWncat),

askr, is 0.16ms. However, it exploits only 0.04ms of this slack Via 04 requencynent = Ko/(WCETnent + slacknent):

voltage scaling, while the remaining 0.12ms are accumulated for th@s: Compute Vier: by solving Eq. (1)

workload ahead. Therefore, aftes finishes the available slack is . with known Vi and frequencyneat;
2.28ms (2.16+0.12). As shown in Table Il, task exploits 0.38ms 8?: el’g”m Vneat;

of this slack. Similarly, the slack is forwarded and distributed to theog: ¢4l RM-RS-DVS Il (Fig. 6)
tasksts andrs. WhenTts is to be executed, the available online slack 09: end if

(4.57ms) is still sufficient to scale its voltage to the lowest level, i.e.
3 obtains the same amount of slack then with the slack forwarding Fig- 3. Pseudo code of the workload-ahead-driven online DVS

approac_h. According to the second o!istri_butior_\, the consumed batterg,<aq on above outlined workload-ahead principle, Fig. 3 gives the
charge is reduced to 0.154mAs, which is an improvement of 18.8%¢,4o code of our workload-ahead-driven voltage scaling algarithm
when compared to the slack forwarding method [12]. Its input consists of the information regarding the next task. This
B. Workload-Ahead-Driven Online DVS Technique information includes the task’s workload1%...:) and workload-

As we have seen in the motivational example of Section Iv-A2N€8d IV Anca,), its worst case number of cycle&’(,) and execution

slack forwarding is not particularly effective for heterogeneousstask™€ d(é/y_CETﬁm)l' as vk\]/ell as its offhﬂe decided start t'mﬁ,r’w”.)'
which draw different currents from the battery and require differe f addition, the algorithm requires the current tir @ufrTime) in

WCETSs. An effective online DVS algorithm must take these aspe e S_Chedm?' Whe_n a busy PE finishes_exec_:uting atask oran idle PE
receives an incoming data communication, it calls the online voltage

into consideration to achieve a “globally” fair distribution of online =™ .) X
g y gallng algorithm. If the next task on the PE can start immediately

slack. To cope with this problem, we define two metrics that captuta h ilabl i lack i df h
the effects of tasks on the battery charge consumption. Assume R 1), the availa '€ oniiné slack 1S comque rom the current
Stlg}% and the start time of the next task..: (line 2). The slack

the next task to be scaled and the set of unscaled (ahead) task
() distributed tor,...: is calculated based on Eq. (5) in line 3. According

denoted ag,...: and 7., respectively, withr,c.: € 7. S >
Definition 1: We define thavorkload (W) of a taskr; as the product to the amount of distributed slack, the frequency and voltage at which

of its discharge current; and WCET, i.e. W; = I, - WCET; Tnewzt NAS 10 be executed are computed in lines 4 and 5. Then the

Definition 2: We define theworkload-aheadI¥ 4,) of a taskr; as algorithm returng/,,...: and terminates in line 6. On the other hand,
the sum of the workloads of all remaining task;Tn ie WAlr _ if the next task could not start at this moment due to the lack of

_ needed input data (e.gz in Fig. 1 (c) can not start when, finishes
ZT'ETT W;. since 23 has not arrived yet), the algorithm calls the online task
The workload-ahead-driven slack distribution gives the slack to the 723 | - Yyeu, gon . . .
next task based on the ratio of F& and 1V A: _reschedullng/remapplng procedure_descnbed in Section V (line 8). It
is important to note that each step in the algorithm can be performed
Whear 0s (5) in constant time ©(1)), hence the overall complexity i9(1). The

W Aneat constant complexity allows the scaling overhead be incorporated into
whereos is the available online slack. It should be noted that bottihe WCET of tasks during timg analysis [14]. In the above described
W and WA for each task are computed in the offline phase, smnline voltage scaling algorithm, no task will start later than its offline
this computation does not contribute to the online complexity of thiecided start time, so the timing constraint of each task is guaranteed
algorithm. It is also important to note that it is our aim to developnd all hard deadlines are satisfied.
an effective yet fast online DVS technique, hence we intentionally . .)
avoiding a complex online algorithm. V. Online Task Rescheduling and Remapping

The workload as given in Definition 1 is the main source of battery Due to the initial static schedule and mapping, it is possible that
charge consumption, i.e. larger workloads will consume more battesyme of the online slack is wasted when tasks execute faster than their
charge [5]. Hence, by using Eg. (5), tasks with heavy workloa?/CET. The reason for this is the fact that earlier finishing tasks might
are scaled more aggressively than light weight tasks. Although wesult in other tasks becoming ready for execution earlier, however,
use here the WCETs to compute the workloads, it is possible ttte static schedule "unnecessarily” delays such tasks. To avoid this
leverage information regarding expected execution times (EETs)whste of online slack, we introduce online task rescheduling and
such information is available. In the case that EETs are known iiemapping as supplements of the proposed online DVS (Section IV-
advance, these values should be used rather than WCET in orBgr Fig. 4 outlines the integration of the workload-ahead-driven
to compute the workload-ahead more accurately. Another importddWS technique with the rescheduling and remapping strategy. The
factor affecting the battery charge consumption is the position ofnecessity for online rescheduling and remapping is illustrated through
task in the schedule (the later a task is in the schedule, the sma#lanotivational example.
should be the current it draws [6]). It is apparent that this factor is o
also taken into account by Eq. (5): the later a task is in the schedufe, Motivational Example
the smaller itsiW A, and as a result, it will receive relatively larger Fig. 5(a) shows a task graph consisting of 7 nodes. The WCETSs of
slack and its current will be smaller as expected. For example, fraasks are indicated, and the tasks are mapped and scheduled on 3 PEs,
Tables | and 1l we can observe that taskhas the largest workload in accordance to Fig. 5(b). For simplicity we neglect communications

slacknezt =

| - Re> Re> PE Algorithm: RM-RS-DVS

nformation scheduling mapping remains

neo)ftt?:sk taﬁlgv‘slgan possible? possible? idle Input: - Wheat, WAnext, WCETpext, SThest, Kw,

CurrTime, M
Yes Output: - Vineat
‘ReSChEdu“ng ‘ ‘ Remapping ‘ 0l1:int k = min(M, size of PE[p].exe_Queue);
! ! Perform 02: bool search_result = false;
WAD 03:for 5 = 1 to k //online rescheduling

04: if PElp].exe_Queuelj] satisfies

Fig. 4. Integrated workload-ahead-driven DVS and resclimgloemapping rescheduling conditions then

05: search_result = true;
@ 0 AET (JwceT 06: move exe_Queuel|j] to the head of exe-Queue;
1ms reo] (DT:) 07: break;

| 08: end if

| 09: end for

1 10: if search-result == true then

4.5ms 4ms pgq T5 11: call WAD-DVS; /I (Fig. 3)
L femappin 12: else // online remapping
[pEc?I' 13: fori = lton&&i!l=p
@ not | -»'-'e§C eduling 14: k = min(M, size of PE[i].exe_Queue);
1 2ms 1ms usable! 5g : 15: forj = 1tok
m pEg slack '—T{mt—ﬁj 16: if PE[i].exe_Queue[j] satisfies
1 3545 7 8 10 (ms) remapping conditions then
_wasted without reschedulin 17: search_result = true;
2ms or femapping 18: fetch task PEJi].exe_-Queue(j] from PE[i] and
(a) (b) put it to the head of PE|[p].exe_-Queue;
19: break;
Fig. 5. lllustration of online task rescheduling and remagpi g(l) esgdf(g
22: end for
in this example, however, they are considered in our algorithm. As23: if searchresult == true then

24: call WAD-DVS; /I (Fig. 3)

we can observe from Fig. 5(b}; has a longer WCET (4.5ms) than| 550 o

T2 (4ms). However, let us assume that requires only 2.5ms for | 26: et PE[p] be idle;

execution at run-time, i.e. it finishes at 3.5ms. Wheffinishes, there | 27: end if

is an online slack appearing on PE2 (indicatedoasn Fig. 5(b)), | 28 end if

but 74 can not start its execution earlier because its parent task Fig. 6. Pseudo code of online rescheduling and remapping

haﬁ notlte:(mlnaltaegzqt this mgm_lt_ent. C_IgaLI_y, a large pok:t'OSEozf tr(:i]‘aaranteed to start on time. This condition prevents any deadline
online slack on Is wasted. To avoid this waste, taskn violation. The second condition is that at the time of the search, all

can be placed beforefl to fill the avallable_o_nllne slack. That IS, jt incoming data communications have arrived so that it can start at
we change the execution order of the remaining tasks (reschedulingiy’ o ment. If these two conditions are true, the found task is moved

However, the WCET of the rescheduled task must be smaller thf’?)nthe head of the execution queue and placed before the next task

the available online slack to avoid the delay of the start time o_f tq%m (line 6). Then the proposed online DVS procedure is called

| b heduled. th c ¢ b | ﬁine 11) to utilize the otherwise wasted online slack. As indicated
For example, to be rescheduled, the WCETrofmust be smaller j, £ 4 it no suitable task for rescheduling has been found, task

thanos If the WCET of 75 is longer than the slack, then we cang - v will be performed (line 12-28

further search the remaining tasks of other PEs to see if there? pping P ()
suitable task. In the example of Fig. 5(b}, on PE1 can be fetched
from PEL to fill the online slack on PE2, i.e5 is remapped online.

SSimilar to online rescheduling, online remapping checks tasks in
the search window oéxe_Queue of other PEs to find a task that
can utilize the available online slack (line 12-22). Nevertheless, the
selection is more strict in remapping phase (line 16). Tasks can
only be fetched from another PE if they fulfill the two conditions
Our aim is to facilitate online voltage Scaling to avoid online Slachentioned in the reschedu”ng phase as well as if their remapping
waste. Similar to our online voltage scaling, we want the onlingoes not introduce new communications. The reason is that new
rescheduling and remapping techniques to be independent of ¢a communications may delay the transfer of some other scheduled
number of tasks, in order to minimize its computational overheagommunications on the CLs. This, in turn, may cause some tasks not
Therefore, we will not take all the remaining tasks into consideratiofy start on time and result in the risk of deadlines violation. After a
instead, an effective yet fast local search strategy is proposesl. sk is remapped it is removed from the task queue of its originally
pseudo code of our online task rescheduling/remapping is givenrifapped PE teze_Queue head of PEf] (line 18), which then wiill
Fig. 6. Suppose there anePEs in the system and téh (1 < p <n) call the proposed voltage scaling procedure (line 24). If no task can

PE is the one with the potentially wasted online slack. Let eage found to be remapped, the idling of RE[s not avoided and the
PE have areze_Queue storing tasks to be executed and Iet be online slack is wasted (line 26).

a constant integer called theearch window The search window)

represents the maximal number of tasks eite_Queue that are VI. Experimental Results

potentially to be rescheduled or remapped. The complexity of theln order to validate the effectiveness of the proposed online voltage
algorithm is bounded by the search window, which is constant. Tkealing and rescheduling/remapping strategies in reducing battery
algorithm first restricts the search window if the number of tasks rtharge consumption, we conducted several experiments using 30
exe_Queue is smaller than/ (line 1), then searchesce_Queue of hypothetical examples as well as 7 real-world benchmakrs. The
PE[p] within the search window\/ to fill the online slack on PE. hypothetical examples have been automatically generated using TGFF
To be a rescheduling candiate, a task should satisfy two conditidig], a pseudo-random task graph generator. The first 5 realistic
(line 4). First, its WCET (we still only know WCET of remaining examples have been taken from the E3S benchmark suit [16] (auto-
tasks at this moment) is less than the online slack so that the nmdust, consumer, office-auto, networking and telecomm), while the

task will start no later than its offline decided start time. For examplgsk graphs for GSM decoder and encoder have been derived from
in Fig. 5, the WCET ofrs is less than the online slack and is publicly available C code [18]. All reported results have been

B. Online Task Rescheduling and Remapping Technique

Bench- battery charge consump. (mAs) | Improvem. (%) 8 ‘ ‘ ‘ battery charge conumption<—
mark ASU SF [ACD | wAaD | EAD T 72D

(# task) om?X) | O(1) | o) | O(1)
Auto-in. (28) 0.248 0.372 | 0.372 | 0.247 | 33.67 | 33.67
Consum. (27)| 4.687 7.136 | 7.136 | 4.690 | 34.28 | 34.28
Office-au. (5) 0.104 | 0.126 | 0.118] 0.104 | 17.86 | 11.86
Network. (23) [0.873 1.125] 1.125| 0.863 | 23.29 | 23.39
Telecom. (42)| 0.289 0.387 | 0.387 | 0.287 | 25.69 | 25.69
GSMdec. (34)| 4.394 | 6.785| 6.595 | 4.365 | 35.66 | 33.81
GSMenc. (53)| 5.877 9.044 | 8419 | 5.755| 36.36 | 31.65

TABLE Il 66

RESULTS OF ONLINEDVS IN SINGLE PESYSTEMS i i i i i i
0 1 2 3 4 5 6

search window size (M)

obtained using the battery model of Section II-B and the evaluathrb 7. Influence of search window size on rescheduling/rguingpresults
criterion is the battery charge consumption. Further, the evaluation is
based on the same normal distribution (mean: 0.6 times the WCET,
standard deviation: 0.13 times the WCET) of the actucal execution
times of tasks that has been used in [12]. 33.81% over SF and ACD, respectively. This clearly indicates the

In the first set of experiments, we evaluate the efficiency of ofgh solution quality of the proposed approach at low computational
workload-ahead-driven DVS algorithm (WAD, Fig. 3) by means ofomplexity.
a comparison with 4 different online DVS techniques, summarized The second set of experiments was conducted to validate the
for reference in the followingl. ASU: This heuristic is based on workload-ahead-driven DVS as well as the rescheduling/remapping
the slack distribution techniqualterSlackUtilizationpresented in [5]. techniques in the context of systems consisting of multiple processing
Although this technique was originally proposed as offline techniquelements. We used LOPOCOS [15], an academic system-level synthe-
we have extended it towards online DVS by calculating voltaggs tool, to find suitable multiple PE implementations and to generate
setting each time before a task starts execution. The satisfactiorttif offline mappings and schedules for all 36 benchmarks (GSM
deadlines is imposed by considering WCET for each executing taslecoder and encoder have been combined into a single benchmark).
It is important to note that this approach has a high computatiorial all experiments we set the search window sizd)(of the
run-time overhead (for each finishing tagk(n®>X), wheren is rescheduling/remapping algorithm to 10, empirically found to be a
the number of the remaining tasks aid reflects the complexity good value. Nevertheless, due to the importance of the window size
of the battery model). However, we use this approach due to @8 the solution quality we have devoted an extra set of experiments on
solution quality as a baseline for comparisgh. SF The slack this subject, presented later in this section. Since the slack forwarding
forwarding approach is based on the technique presented in [12].tRghnique [12] was particularly introduced for independent tasks, we
time complexity is constant({(1)). 3. ACD: The average current- refrain in these experiments from a direct comparison.
based distribution is a heuristic that leverages information regardingThe results of our experiments are summarized in Table IV.
the task discharge currents to distribute slack: if the current of tAde first, second, and third columns give the benchmark name,
next task to be executed is less than or equal to average currenthef number of tasks/communication edges, and the number of
tasks, it gets no slack; else, it gets some slack such that its currBfis in the system, respectively. Columns 4-7 show the battery
decreases to the average value. When there is only one task lgfigrge consumptions in 4 different scenarios. Column 4 (No DVS)
all slack is assigned to it. The time complexity of this method igepresents the nominal charge consumption, i.e., when no online
constant, too. We use this heuristic to underline the importance \sfltage scaling is employed; Column 5 (WAD) shows the results
the workload-driven technique that considers discharge currentsofighe proposed workload-ahead-driven DVS technique; Columns 6
well as remaining task execution time$. WAD: This represents (WAD+RS) and 7 (WAD+RS+RM) give the charge consumption
our workload-ahead-driven distribution technique, as introduced When integrating WAD with online rescheduling and rescheduling
Section IV-B. It has also a complexity @(1). with remapping, respectively. Columns 8-10 summarize the achieved

Since the slack forwarding idea [12] is most suitable for task sdpgttery charge savings in percent. Consider, for instance, benkchmar
without data communications, we executed the 7 realistic benchmal@#17. Here the nominal and the WAD-based charge consump-
on single PE systemsin which the inter-PE communications be-tions are 5.94161010”*mAs and 4.445910~°mAs, respectively,
tween tasks can be neglected. Table Il gives the results in termsrepresenting a saving of 25.17%. This can be further improved
battery charge consumption. In the table, the first column gives tAg using rescheduling as well as rescheduling with remapping to
benchmark name and the number of tasks in the benchmark. Phé119<10~°mAs and 4.020610~?mAs, respectively, obtaining
results of the 4 online DVS techniques are given in Columns 2-8irther saving of 7.78% and 9.83% when compared to using WAD
In the last two columns we show the percentage of improvement @aly.
battery charge consumption using the proposed WAD method oveAs mentioned above, the window size used by the rescheduling
methods SF and ACD. We can observe that ASU yields consister@d remapping technique has an influence on the achievable savings
the lowest battery consumption when compared to SF and ACID,battery charge consumption as well as on the online complexity.
while the results produced by our WAD technique are very close e following experiment is used to clarify this aspect and to provide
ASU and in some cases even slightly better. Consider, for instan@, insight into which window size should be typically used. Fig. 7
the GSM decoder benchmark. Here ASU obtains a battery chagjiwows the battery charge consumption of benchmark tgff27 depending
consumption of 4.394mAs, while SF and ACD result in 6.785mA@n the window sizeM. As it can be observed, a window size
and 6.595mAs, respectively. Nevertheless, WAD achieves the lowektzero, i.e. no reschedullng/remapplng is performed, results in a
value with 4.365mAs, resulting in improvements of 35.66% aneharge consumption of 7.430~?mAs. HOWGVGf with an increasing

window size this value decreases to 61D~ ?mAs. In general, we
INote that not all these benchmarks can be executed on a siglétout have observed that a window size of 10 provides a good trade-

violating timing constraints. We therefore adjusted thedtiaas such that no Off between solution quality and complexity for all investigated
violation occurred under WCETSs. benchmarks.

S RO FOUUPUPUON FURPSPUURN SUPTUSON SURROORS SO

7.4

7.2

7

6.8

battery charge consumption 40 mAs)

Bench- #task/ | # Battery charge consumption (18mAs) Percentages (%)
marks edge | PE | NoDVS [WAD [WAD+RS | WAD+RS+RM || FeDVS [WADTHES T WALFAGF RN
Auto-ind. 28725 2 22.134 17.317 17.317 17.317 21.76 0 0
Consum. 27130 3 851.32 | 613.38 613.38 613.38 27.94 [o] 0
Office-au. 5/5 1 15.578 12.768 12.768 12.768 18.03 0 0
Network. 23/19 2 12.295 10.404 10.404 10.404 15.38 0 0
Telecom. 42]40 2 46.181 | 36.118 36.054 36.031 21.79 0.17 0.24
GSM 87/138 6 10.399 7.581 7.458 7.458 27.09 1.62 1.62
tgffl 14717 2 0.0403 | 0.0351 0.0349 0.0349 12.97 0.51 0.51
tgff2 40/51 2 1.3795 | 0.9642 0.9334 0.9334 30.10 3.18 3.18
tgff3 45/49 2 1.7483 1.2703 1.2301 1.2060 27.34 3.17 5.06
tgff4 65/77 3 2.4312 1.8067 1.7682 1.7352 25.68 2.13 3.96
toff5 36/50 2 1.3206 | 0.9508 0.9493 0.9039 27.99 0.16 4,94
tgffe 46/62 2 0.9061 | 0.6869 0.6805 0.6805 24.18 0.93 0.93
tgff7 97/114 2 1.9721 1.4557 1.3656 1.3398 26.18 6.18 7.95
tgff8 1217145 4 3.6957 2.6453 2.4891 2.4189 28.42 5.90 8.55
tgffo 947115 4 1.8398 1.3622 1.2417 1.2276 25.95 8.84 9.88
tgff10 60785 3 1.8431 | 1.3428 1.3007 1.2716 27.14 314 5.30
tgffil 51/67 3 1.9460 1.4395 1.3534 1.3511 26.03 5.97 6.14
tgff1i2 102/132| 4 4.0853 2.9851 2.8718 2.8128 26.93 3.79 5.77
tgffi3 71/91 2 1.5975 1.1866 1.1695 1.1687 25.72 1.44 1.51
tgff14 128/166 | 5 5.3594 | 3.9473 3.8053 3.7664 26.34 3.59 4.58
tgff15 1457187 4 2.5630 1.9432 1.8382 1.8221 24.18 5.40 6.23
tgff16 847109 | 3 1.6536 | 1.2294 1.2060 1.1407 25.65 1.90 7.21
toffl7 196/236 | 3 5.9416 | 4.4459 4.1119 4.0206 25.17 7.78 9.83
tgff18 1497180 3 4.2885 | 3.2265 3.0185 2.9791 24.76 6.44 7.66
tgff19 81/103 3 2.4865 1.8633 1.7925 1.7306 25.06 3.81 7.12
tgff20 149/167| 5 5.3703 | 4.0737 3.8586 3.8368 24.14 5.28 5.81
tgff21 70/94 2 1.0458 | 0.7840 0.7249 0.7248 25.02 7.54 7.55
tgff22 1027152 3 3.9872 2.8624 2.6778 2.6188 28.21 6.45 8.50
tgff23 117/170] 3 3.9352 2.9009 2.7473 2.7429 26.28 5.29 5.44
tgff24 316/413 | 4 8.3134 | 6.0926 5.7592 5.6844 26.71 5.47 6.70
tgff25 269/348 | 3 5.4967 | 4.1520 3.8301 3.8114 24.46 7.75 8.20
tgff26 331/408| 4 8.1994 | 6.0464 | 5.5650 5.4978 26.25 7.96 9.07
tgff27 280/341| 4 10.097 | 7.4264 | 6.8689 6.7069 26.45 7.50 9.68
tgff28 378/443 | 4 1.3623 9.9426 9.1701 8.9537 27.01 7.77 9.94
tgff29 252/312 | 4 6.6971 5.0638 4.7497 4.6449 24.38 6.20 8.27
tgff30 210/234| 3 0.3786 | 0.3183 0.2746 0.2735 15.92 13.71 14.08
Ave. percents 24.80 4.36 5.59
TABLE IV
EXPERIMENTAL RESULTS IN MULTI-PESYSTEMS
VII. Conclusion [5] D. Rakhmatov, S. Vrudhula, "Energy Management for Batigoyvered

. . Embedded Systems”, ACM Transactions on Embedded Computing Sys-
In this paper, we have presented a workload-ahead-driven voltage tems, vol. 2:3, 277-324, 2003.

scaling technique which explicitly takes the discharge current afg] P. Chowdhury and C. Chakrabarti, "Battery Aware Task &ithing for
execution times into account to make battery-aware scaling deci- & System-on-a-chip Using Voltage/Clock Scaling”, Proc.S51201-206,

: . : October 16-18, 2002.
sions. To further improve the battery charge consumption, we hagve \\ "o i R Ernst, "Embedded program timing analysis basegath

presented an online rescheduling/remapping technique that aims {ocjystering and architecture classification”, Proc. ICCAD8-604, 1997.
reduce the waste of online slack when using static schedules and njapH. Aydin, R. Melhem, D. Mosse and P. Mejia-Alvarez, "Dynamand
pings. To the best of our knowledge, this is the first online approach Aggressive Scheduling Techniques for Power-aware Rewd-8ystems”,
that addresses voltage scaling as well as rescheduling/remappin%'nproc- RTSS, 95-105, 2001.

. . . . J. Luo and N. K. Jha, "Static and Dynamic Variable Voltageh&duling
conjunction. All presented techniques are of constant time complexity ajqorithms for Real-Time Heterogeneous Distributed Embed@egs-

(O(1)), making them suitable for applications with hard real-time tems”, Proc. ASP-DAC, 712-719, Jan. 2002.
systems. The efficiency of the proposed techniques have been exfi#] Y. Zhu and F. Mueller, "Feedback EDF scheduling exjtgjtdynamic
imentally validated using automatically-generated as well as real-life Voltage scaling”, Proc. RTAS, 84-89, 2004.

L . D. Zhu, R. Melhem and B. R. Childers, "Scheduling with riynic
benchmarks. It has been demonstrated that significant savings o \oltage/Speed Adjustment Using Slack Reclamation in Muitieessor

to 36% in the battery charge can be obtained when compared t0 Real-Time Systems”, IEEE Trans. on Parallel and DistributgsiteSns,

approaches that delay the slack utilization as late as possible. Vol. 14:7, 686-700, 2003.
[12] J. Ahmed and C. Chakrabarti, "A dynamic task schedulirgpathm
REFERENCES for battery powered DVS systems”, Proc. ISCAS, 813-816, 2004
[13] R. Rao, S. Vrudhula and D. Rakhmatov, "Battery modelingenergy-
[1] J. Luo and N. K. Jha, "Low Power Distributed Embedded SysteDy- aware system design”, IEEE Computer, Vol. 36:12, 77-87, 2003
namic Voltage Scaling and Synthesis”, Proc. Int. Conf. Highiétmance [14] C. Shen, K. Ramamritham and J. A. Stankovic, "Resourcdafaing
Computing, 2002. in M_ultlprocessor Real-time Systems”, IEEE Trans. on Pdradied
[2] A. Andrei, M. T. Schmitz, P. Eles, Z. Peng and B. M. Al-Hasf Distributed Systems, Volume. 4:4, 382-397, 1993. o
"Overhead-Conscious Voltage Selection for Dynamic and kgakEnergy [15] M. T. Schmitz, B. M. Al-Hashimi and P. Eles, "Synthesiziiergy-
Reduction of Time-Constrained Systems”, Proc. DATE, 518;Z0®4. Efficient Embedded Systems with LOPOCOS”, Design Automatian fo
[3] M. T. Schmitz and B. M. Al-Hashimi, "Considering Power Vations Embedded Systems, Vol. 6, 401-424, 2002.
of DVS Processing Elements for Energy Minimization in Disttied [16] http://www.ece.northwestern.edu/ dickrp/e3s/
Systems”, Proc. ISSS, 250-255, 2001. [17] http://ziyang.ece.northwestern.edu/tgff/

[4] J. Luo and N. K. Jha, "Battery-aware Static Scheduling Bostributed [18] http:/kbs.cs.tu-berlin.de/ jutta/toast.html
Real-time Embedded Systems”, Proc. DAC, 444-449, 2001.

