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Abstract— This paper proposes a new online voltage scaling (VS) tech-
nique for battery-powered embedded systems with real-timeconstraints.
The VS technique takes into account the tasks execution times and
discharge currents to further reduce the battery charge consumption
when compared to the recently reported slack forwarding technique
[12], whilst maintaining low online complexity of O(1). Furthermore,
we investigate the impact of online rescheduling and remapping on the
battery charge consumption for tasks with data dependency which has
not been explicitly addressed in the literature and proposea novel
rescheduling/remapping technique. We demonstrate and compare the
efficiency of the presented techniques using seven real-life benchmarks
and numerous automatically generated examples.

I. Introduction and Previous Work

Dynamic voltage scaling (DVS) is a powerful technique to reduce
the energy consumption in embedded computing systems. This reduc-
tion is achieved by exploiting the application’s temporal performance
requirement by dynamically adapting the processing speed and the
supply voltage of processing elements. Much research effort has
concentrated on DVS algorithms for the calculation of appropriate
performance/voltage setting. DVS algorithms can be broadly classi-
fied into offline andonline (e.g. [8], [9], [10]) techniques depending
on when the voltage settings are computed.

Offline (e.g. [1], [2], [3]) approaches calculate voltage settings at
design time before actual execution based on worst case execution
times (WCET) to guarantee satisfaction of time constraints. Although
offline DVS avoids a run-time overhead due to the voltage calculation,
it fails to exploit online slack arising from tasks executing with less
than their WCET (differences>10 times have been reported [7]).
On the contrary, online DVS techniques (e.g. [8], [9], [10]) perform
the voltage calculation during run-time to utilize such online slack
by taking into account the actual execution times (AET) of tasks.
Clearly, online techniques have the potential to achieve higher energy
savings, however, it is necessary to carefully design such online
DVS algorithms in order to avoid high run-time overheads that could
jeopardize the achievable energy savings and the timing constraints.
An aggressive online voltage adjustment approach has been presented
in [8]. Here only the next task to be executed is considered during the
voltage calculation. The online approach introduced in [9] calculates
the scaling factor for soft aperiodic tasks and considers run-time vari-
ations. The algorithm has an online complexity ofO(m2), wherem is
the number of tasks which have not been executed on the processing
elements. Zhu and Muller [10] utilize a feedback control loop to
facilitate DVS and integrated the controller into an earliest deadline
first (EDF) scheduler. The online complexity depends linearly,O(m),
on the number of tasksm. Task scheduling and online voltage scaling
are combined in [11]. This work, however, is limited to identical
PE systems and a straightforward extension toward heterogeneous
systems is not apparent.

Although the above given offline and online voltage scaling
techniques are effective in reducing energy dissipation, they are not
efficient in prolonging the battery lifetime of mobile applications,
since the non-linear battery characteristics [5], [6] are neglected
during the optimization. In [4] an offline DVS technique for battery-
powered systems was introduced, and it was demonstrated that up
to 56% longer battery lifetimes could be achieved by taking into

account the non-linear battery behavior during voltage calculation.
More recently the first online and battery-aware DVS technique has
been presented in [12]. This technique specifically targets periodic,
independent tasks and assumes identical discharge currents for each
task. According to this assumption, it is always better to exploit
the available slack by the last task in the schedule [12]. Based
on this, the authors introduce a slack forwarding technique that
delays the utilization of online slack as late as possible. However,
for many realistic multiprocessor systems executing heterogeneous
tasks, this assumption limits the achievable savings in battery charge
consumption.

This paper makes the following contributions: (a) We introduce a
workload-ahead-driven online DVS techniquewhich explicitly takes
into account the workload-ahead (the sum over all products of
discharge current and WCET of remaining tasks) to overcome the
limitation of [12] discussed above. The proposed algorithm achieves
longer battery lifetimes compared to slack forwarding algorithm with-
out sacrificing the online time complexity, which remains constant,
i.e. O(1), since the workload used in the algorithm is computed in
the offline phase. (b) In addition to the online voltage scaling, we
address for the first time the problem of online taskreschedulingand
remappingfor tasks with dependencies to further reduce the battery
charge consumption. The proposed online rescheduling/remapping
algorithm facilitates the usage of the workload-ahead-driven DVS
technique and also has a complexity ofO(1).

The rest of the paper is organized as follows. Section II outlines the
system and battery models. Section III presents the problem formu-
lation. The proposed workload-ahead-driven online DVS technique
is introduced in Section IV. Section V describes the proposed online
rescheduling and remapping approach. Experimental results and
conclusions are given in Sections VI and Section VII, respectively.

II. Preliminaries

A. System Model and Task Graph

In this work we consider battery-powered embedded computing
systems, which consist of multiple processing elements (PEs) con-
nected by communication links (CLs), illustrated in Fig. 1(a). A dc/dc
converter adapts the battery voltage to the system supply voltage. The
system functionality is captured by a task graph modelG(T , C),
Fig. 1(b). Nodes (τi ∈ T ) in this directed acyclic graph (DAG)
represent computational tasks and edges (γj ∈ C) denote data com-
munications between tasks. As shown in Fig. 1(b), tasks/edges are
associated with worst case execution times (WCETs). The WCETs
depend on the worst case number of cycles (Kw) required for
execution and the circuit frequencyf , which in turn depends on the
supply voltageVdd and threshold voltageVt [1]:

t =
Kw

f
=

KwVdd

k(Vdd − Vt)α
(1)

wherek andα are technology related constants. The power dissipa-
tion of a task can be expressed as [2]:

P = fCeV
2

dd (2)
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Fig. 1. Task graph and system model

whereCe is the effective switched capacitance of the circuit. Eqs. (1)
and (2) provide the well-known energy/delay tradeoff exploited by all
DVS approaches. Since the discharge current drawn from the batteries
follows I = P/(Vb · η) (where Vb and η are the average battery
voltage and the converter efficiency respectively), DVS can be used
to influence the battery discharge current and, as a results, it can be
used to achieve savings in the battery charge consumption [5], [6].
We assume that tasks and edges have been initially (offline) mapped
and scheduled onto the target architecture, such that resource and
time constraints are satisfied under WCETs, Fig. 1(c). At run-time,
however, tasks might finish before their WCET, resulting in online
slack. For instance, in Fig. 1(c)τ0 has an actual execution time (AET)
of 0.6ms, leaving an online slack of 0.4ms.

B. Battery Model

To extend the battery lifetime of portable devices it is not sufficient
to “simply” minimize the dissipated energy. But it is essential to
take into account the non-linear battery behavior (caused by electro-
chemical phenomena) during the system optimization [4], [5]. In
general, it is better to discharge batteries with a low, constant
current rather than with high current peaks. For an excellent survey
on battery modelling see [13]. In this work we use an analytical
high-level battery model proposed in [5] whose accuracy has been
demonstrated to be within 3% of the physical battery. The battery
charge consumption (reflecting the battery lifetimes) is:

N−1∑

k=0

Ik · F (L, stk, stk + ∆k, β) (3)

whereN is the total number of steps used to approximate the load
current profile (LCP), andIk, ∆k and stk denote the current, the
duration and the start time ofstepk in the LCP, respectively. Further,
L is the time duration that the battery has been charged for andβ
is a constant related to the non-linear property modelled by function
F :

F (x, y, z, β) = z − y + 2

10∑

m=1

e−β2m2(x−z) − e−β2m2(x−y)

β2m2
(4)

As smaller charge consumption (Eq. 3) will lead to longer battery
lifetime [5], our optimization objective is the minimization of the
charge consumption.

III. Problem Formulation

We assume that the tasksT = {τi} and precedence constraints
C = {γj} of task graphG(T , C) have been initially mapped
and scheduled onto a distributed architecture containing voltage
scalable processors, which can vary their supply voltageVdd within
a continuous range[Vmin, Vmax]. The worst case clock cycles (Kw)
that each task needs to be executed as well as its discharge current
are known. In addition, some tasks may be associated by a deadline
dl.

The problem addressed by the proposed online technique is
twofold. Firstly, each time when a taskτnext is to be executed on a
voltage scalable processor, an appropriate voltageVnext for its exe-
cution has to be selected such that the battery charge consumption is
minimized (taking into account the workload-ahead) and all imposed

deadlines can be guaranteed. This step is essential to exploit online
slack that arises from variations in the execution time of tasks.

Secondly, for the initially (statically) given mapping and schedul-
ing, some online slack could be potentially wasted, as demonstrated
in the motivational example of Section V. To avoid this waste, the
initial mapping and scheduling should be adapted in accordance to the
available online slack, i.e. online rescheduling and remapping should
be performed. The online voltage scaling problem is addressed in the
next section, while rescheduling and remapping are the subjects of
Section V.

IV. Battery-Aware Online Voltage Scaling

A. Motivational Example

The essence of the online voltage scaling problem is the online
slack distribution, in order to efficiently exploit slack resulting from
tasks that execute faster than their WCETs. In this motivational
example we outline two different slack distribution methods using
a realistic task graph from the E3S suite [16], namely the office-auto
benchmark consisting of 5 tasks, Fig. 2(a). For simplicity we consider
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Fig. 2. Office-auto task graph [16] and execution order

here that all tasks have been mapped to a single processing element
and the execution order corresponds to Fig. 2(b). We assume that
the PE can vary its supply voltage betweenVmin and Vmax, with
Vmin = 0.4 · Vmax. In accordance, the task execution times follow
Eq. (1). Table I gives the worst-case execution time (WCET) and
discharge current (I) of each task (in execution order of Fig. 2(b)),
when executing atVmax. Furthermore, the table shows the actual

τ1 τ2 τ4 τ5 τ3
WCET (ms) 0.79 10.80 4.80 22.81 0.79

I (mA) 0.256 4.066 3.990 2.243 0.256
AET (ms) 0.63 8.64 3.84 18.25 0.63

online slack (ms) 0.16 2.16 0.96 4.56 0.16

TABLE I
WCETS, DISCHARGE CURRENTS, AETS AND ONLINE SLACKS OF

AUTO-OFFICE TASKS

execution time (AET) of tasks at run-time (we assume here 80%
of WCET), as well as the resulting online slack (WCET-AET). The
deadline is assumed to correspond to the finishing time of the last
task (τ3), when all tasks execute with their WCET.

Table II shows the outcome of two different techniques that dis-
tribute the available online slack. Note that not all the available online
slack might be exploited due to the limited voltage range of the PE.
The first technique is based on the slack forwarding idea presented

“slack forwarding” proposed technique
Online slack (ms)

available exploits available exploits
τ2 0.16 0 0.16 0.04
τ4 2.32 0 2.28 0.38
τ5 3.28 0 2.86 2.85
τ3 7.84 1.18 4.57 1.18

TABLE II
ONLINE SLACK DISTRIBUTION

in [12], in which all available online slack is forwarded to the last
task. Accordingly, taskτ3 accumulates an online slack of 7.84ms
(0.16+2.16+0.96+4.56) before it starts execution. Nevertheless,due
to the limited voltage range of the PE, it is only possible to make use
of 1.18ms of the total slack, i.e., 6.66ms of slack remain unexploited.



As a result, a battery charge of 0.189mAs can be calculated from
Eqs. (1)–(4) and the task properties given in Table I.

A second approach (the approach we propose in this paper)
distributes the available online slack by explicitly considering the
discharge currents and WCETs of tasks. That is, each time a task
finishes execution, the workload-ahead (sum over products of dis-
charge current and WCET of remaining tasks) is evaluated to make a
slack distribution decision. The method is outlined in Section IV-
B, however, the resulting slack distribution is given in Table II.
As we can observe from the table, using this method all tasks are
assigned some of the available slack. For instance, after taskτ1 has
finished execution the available online slack that is exploitable by
taskτ2 is 0.16ms. However, it exploits only 0.04ms of this slack via
voltage scaling, while the remaining 0.12ms are accumulated for the
workload ahead. Therefore, afterτ2 finishes the available slack is
2.28ms (2.16+0.12). As shown in Table II, taskτ4 exploits 0.38ms
of this slack. Similarly, the slack is forwarded and distributed to the
tasksτ5 andτ3. Whenτ3 is to be executed, the available online slack
(4.57ms) is still sufficient to scale its voltage to the lowest level, i.e.
τ3 obtains the same amount of slack then with the slack forwarding
approach. According to the second distribution, the consumed battery
charge is reduced to 0.154mAs, which is an improvement of 18.5%
when compared to the slack forwarding method [12].

B. Workload-Ahead-Driven Online DVS Technique

As we have seen in the motivational example of Section IV-A,
slack forwarding is not particularly effective for heterogeneous tasks
which draw different currents from the battery and require different
WCETs. An effective online DVS algorithm must take these aspects
into consideration to achieve a “globally” fair distribution of online
slack. To cope with this problem, we define two metrics that capture
the effects of tasks on the battery charge consumption. Assume that
the next task to be scaled and the set of unscaled (ahead) tasks are
denoted asτnext andTr, respectively, withτnext ∈ Tr.
Definition 1: We define theworkload(Wi) of a taskτi as the product
of its discharge currentIi and WCETi, i.e. Wi = Ii · WCETi.
Definition 2: We define theworkload-ahead(WAi) of a taskτi as
the sum of the workloads of all remaining tasks inTr, i.e. WAi =∑

τj∈Tr
Wj .

The workload-ahead-driven slack distribution gives the slack to the
next task based on the ratio of itsW andWA:

slacknext =
Wnext

WAnext

· os (5)

whereos is the available online slack. It should be noted that both
W and WA for each task are computed in the offline phase, so
this computation does not contribute to the online complexity of the
algorithm. It is also important to note that it is our aim to develop
an effective yet fast online DVS technique, hence we intentionally
avoiding a complex online algorithm.

The workload as given in Definition 1 is the main source of battery
charge consumption, i.e. larger workloads will consume more battery
charge [5]. Hence, by using Eq. (5), tasks with heavy workload
are scaled more aggressively than light weight tasks. Although we
use here the WCETs to compute the workloads, it is possible to
leverage information regarding expected execution times (EETs), if
such information is available. In the case that EETs are known in
advance, these values should be used rather than WCET in order
to compute the workload-ahead more accurately. Another important
factor affecting the battery charge consumption is the position of a
task in the schedule (the later a task is in the schedule, the smaller
should be the current it draws [6]). It is apparent that this factor is
also taken into account by Eq. (5): the later a task is in the schedule,
the smaller itsWA, and as a result, it will receive relatively larger
slack and its current will be smaller as expected. For example, from
Tables I and II we can observe that taskτ5 has the largest workload

(22.81ms·2.243mA) and its position is close to the end of the schedule
and as a result, it obtains the largest slack portion (2.85ms). Note
that we only calculate the slack distributed to the next task. It is not
necessary to distribute slack to tasks beyond the next task because
the total amount of online slack will change with the execution of
the next task, hence, a recomputation of the distribution is required.

Algorithm: WAD-DVS

Input: - Wnext, WAnext, Kw , WCETnext, STnext, CurrT ime
Output: - Vnext

01: if the next task can start immediately then

02: online slack = STnext – CurrT ime;
03: slacknext = online slack × (Wnext/AWnext);
04: frequencynext = Kw /(WCETnext + slacknext);
05: Compute Vnext by solving Eq. (1)

with known Vt and frequencynext;
06: return Vnext;
07: else
08: call RM-RS-DVS; // (Fig. 6)
09: end if

Fig. 3. Pseudo code of the workload-ahead-driven online DVS

Based on above outlined workload-ahead principle, Fig. 3 gives the
pseudo code of our workload-ahead-driven voltage scaling algorithm.
Its input consists of the information regarding the next task. This
information includes the task’s workload (Wnext) and workload-
ahead (WAnext), its worst case number of cycles (Kw) and execution
time (WCETnext), as well as its offline decided start time (STnext).
In addition, the algorithm requires the current time (CurrT ime) in
the schedule. When a busy PE finishes executing a task or an idle PE
receives an incoming data communication, it calls the online voltage
scaling algorithm. If the next task on the PE can start immediately
(line 1), the available online slack is computed from the current
time and the start time of the next taskτnext (line 2). The slack
distributed toτnext is calculated based on Eq. (5) in line 3. According
to the amount of distributed slack, the frequency and voltage at which
τnext has to be executed are computed in lines 4 and 5. Then the
algorithm returnsVnext and terminates in line 6. On the other hand,
if the next task could not start at this moment due to the lack of
needed input data (e.g.τ3 in Fig. 1 (c) can not start whenτ0 finishes
since γ23 has not arrived yet), the algorithm calls the online task
rescheduling/remapping procedure described in Section V (line 8). It
is important to note that each step in the algorithm can be performed
in constant time (O(1)), hence the overall complexity isO(1). The
constant complexity allows the scaling overhead be incorporated into
the WCET of tasks during timg analysis [14]. In the above described
online voltage scaling algorithm, no task will start later than its offline
decided start time, so the timing constraint of each task is guaranteed
and all hard deadlines are satisfied.

V. Online Task Rescheduling and Remapping

Due to the initial static schedule and mapping, it is possible that
some of the online slack is wasted when tasks execute faster than their
WCET. The reason for this is the fact that earlier finishing tasks might
result in other tasks becoming ready for execution earlier, however,
the static schedule ”unnecessarily” delays such tasks. To avoid this
waste of online slack, we introduce online task rescheduling and
remapping as supplements of the proposed online DVS (Section IV-
B). Fig. 4 outlines the integration of the workload-ahead-driven
DVS technique with the rescheduling and remapping strategy. The
necessity for online rescheduling and remapping is illustrated through
a motivational example.

A. Motivational Example

Fig. 5(a) shows a task graph consisting of 7 nodes. The WCETs of
tasks are indicated, and the tasks are mapped and scheduled on 3 PEs,
in accordance to Fig. 5(b). For simplicity we neglect communications
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in this example, however, they are considered in our algorithm. As
we can observe from Fig. 5(b),τ1 has a longer WCET (4.5ms) than
τ2 (4ms). However, let us assume thatτ1 requires only 2.5ms for
execution at run-time, i.e. it finishes at 3.5ms. Whenτ1 finishes, there
is an online slack appearing on PE2 (indicated asos in Fig. 5(b)),
but τ4 can not start its execution earlier because its parent taskτ2

has not terminated at this moment. Clearly, a large portion of the
online slack on PE2 is wasted. To avoid this waste, taskτ3 on PE2
can be placed beforeτ4 to fill the available online slack. That is,
we change the execution order of the remaining tasks (rescheduling).
However, the WCET of the rescheduled task must be smaller than
the available online slack to avoid the delay of the start time of the
remaining tasks, which could result in potential deadline violations.
For example, to be rescheduled, the WCET ofτ3 must be smaller
than os. If the WCET of τ3 is longer than the slack, then we can
further search the remaining tasks of other PEs to see if there is
suitable task. In the example of Fig. 5(b),τ5 on PE1 can be fetched
from PE1 to fill the online slack on PE2, i.e.,τ5 is remapped online.

B. Online Task Rescheduling and Remapping Technique

Our aim is to facilitate online voltage scaling to avoid online slack
waste. Similar to our online voltage scaling, we want the online
rescheduling and remapping techniques to be independent of the
number of tasks, in order to minimize its computational overhead.
Therefore, we will not take all the remaining tasks into consideration,
instead, an effective yet fast local search strategy is proposed. The
pseudo code of our online task rescheduling/remapping is given in
Fig. 6. Suppose there aren PEs in the system and thepth (1 ≤ p ≤ n)
PE is the one with the potentially wasted online slack. Let each
PE have anexe Queue storing tasks to be executed and letM be
a constant integer called thesearch window. The search window
represents the maximal number of tasks inexe Queue that are
potentially to be rescheduled or remapped. The complexity of the
algorithm is bounded by the search window, which is constant. The
algorithm first restricts the search window if the number of tasks in
exe Queue is smaller thanM (line 1), then searchesexe Queue of
PE[p] within the search windowM to fill the online slack on PE[p].
To be a rescheduling candiate, a task should satisfy two conditions
(line 4). First, its WCET (we still only know WCET of remaining
tasks at this moment) is less than the online slack so that the next
task will start no later than its offline decided start time. For example,
in Fig. 5, the WCET ofτ3 is less than the online slack andτ4 is

Algorithm: RM-RS-DVS

Input: - Wnext, WAnext, WCETnext, STnext, Kw ,
CurrT ime, M

Output: - Vnext

01: int k = min(M, size of PE[p].exe Queue);
02: bool search result = false;
03: for j = 1 to k //online rescheduling
04: if PE[p].exe Queue[j] satisfies

rescheduling conditions then

05: search result = true;
06: move exe Queue[j] to the head of exe Queue;
07: break;
08: end if

09: end for

10: if search result == true then

11: call WAD-DVS; // (Fig. 3)
12: else // online remapping
13: for i = 1 to n && i ! = p
14: k = min(M, size of PE[i].exe Queue);
15: for j = 1 to k
16: if PE[i].exe Queue[j] satisfies

remapping conditions then

17: search result = true;
18: fetch task PE[i].exe Queue[j] from PE[i] and

put it to the head of PE[p].exe Queue;
19: break;
20: end if

21: end for

22: end for

23: if search result == true then

24: call WAD-DVS; // (Fig. 3)
25: else

26: let PE[p] be idle;
27: end if

28: end if

Fig. 6. Pseudo code of online rescheduling and remapping

guaranteed to start on time. This condition prevents any deadline
violation. The second condition is that at the time of the search, all
its incoming data communications have arrived so that it can start at
this moment. If these two conditions are true, the found task is moved
to the head of the execution queue and placed before the next task
τnext (line 6). Then the proposed online DVS procedure is called
(line 11) to utilize the otherwise wasted online slack. As indicated
in Fig. 4, if no suitable task for rescheduling has been found, task
remapping will be performed (line 12-28).

Similar to online rescheduling, online remapping checks tasks in
the search window ofexe Queue of other PEs to find a task that
can utilize the available online slack (line 12-22). Nevertheless, the
selection is more strict in remapping phase (line 16). Tasks can
only be fetched from another PE if they fulfill the two conditions
mentioned in the rescheduling phase as well as if their remapping
does not introduce new communications. The reason is that new
data communications may delay the transfer of some other scheduled
communications on the CLs. This, in turn, may cause some tasks not
to start on time and result in the risk of deadlines violation. After a
task is remapped it is removed from the task queue of its originally
mapped PE toexe Queue head of PE[p] (line 18), which then will
call the proposed voltage scaling procedure (line 24). If no task can
be found to be remapped, the idling of PE[p] is not avoided and the
online slack is wasted (line 26).

VI. Experimental Results

In order to validate the effectiveness of the proposed online voltage
scaling and rescheduling/remapping strategies in reducing battery
charge consumption, we conducted several experiments using 30
hypothetical examples as well as 7 real-world benchmakrs. The
hypothetical examples have been automatically generated using TGFF
[17], a pseudo-random task graph generator. The first 5 realistic
examples have been taken from the E3S benchmark suit [16] (auto-
indust, consumer, office-auto, networking and telecomm), while the
task graphs for GSM decoder and encoder have been derived from
publicly available C code [18]. All reported results have been



Bench- battery charge consump. (mAs) Improvem. (%)
mark ASU SF ACD WAD WAD

SF
WAD
ACD

(# task) O(n2X) O(1) O(1) O(1)
Auto-in. (28) 0.248 0.372 0.372 0.247 33.67 33.67

Consum. (27) 4.687 7.136 7.136 4.690 34.28 34.28
Office-au. (5) 0.104 0.126 0.118 0.104 17.86 11.86
Network. (23) 0.873 1.125 1.125 0.863 23.29 23.39
Telecom. (42) 0.289 0.387 0.387 0.287 25.69 25.69
GSMdec. (34) 4.394 6.785 6.595 4.365 35.66 33.81
GSMenc. (53) 5.877 9.044 8.419 5.755 36.36 31.65

TABLE III
RESULTS OF ONLINEDVS IN SINGLE PE SYSTEMS

obtained using the battery model of Section II-B and the evaluation
criterion is the battery charge consumption. Further, the evaluation is
based on the same normal distribution (mean: 0.6 times the WCET,
standard deviation: 0.13 times the WCET) of the actucal execution
times of tasks that has been used in [12].

In the first set of experiments, we evaluate the efficiency of our
workload-ahead-driven DVS algorithm (WAD, Fig. 3) by means of
a comparison with 4 different online DVS techniques, summarized
for reference in the following:1. ASU: This heuristic is based on
the slack distribution techniqueAlterSlackUtilizationpresented in [5].
Although this technique was originally proposed as offline technique,
we have extended it towards online DVS by calculating voltage
setting each time before a task starts execution. The satisfaction of
deadlines is imposed by considering WCET for each executing task.
It is important to note that this approach has a high computational
run-time overhead (for each finishing taskO(n2X), where n is
the number of the remaining tasks andX reflects the complexity
of the battery model). However, we use this approach due to its
solution quality as a baseline for comparison.2. SF: The slack
forwarding approach is based on the technique presented in [12]. Its
time complexity is constant (O(1)). 3. ACD: The average current-
based distribution is a heuristic that leverages information regarding
the task discharge currents to distribute slack: if the current of the
next task to be executed is less than or equal to average current of
tasks, it gets no slack; else, it gets some slack such that its current
decreases to the average value. When there is only one task left,
all slack is assigned to it. The time complexity of this method is
constant, too. We use this heuristic to underline the importance of
the workload-driven technique that considers discharge currents as
well as remaining task execution times.4. WAD: This represents
our workload-ahead-driven distribution technique, as introduced in
Section IV-B. It has also a complexity ofO(1).

Since the slack forwarding idea [12] is most suitable for task sets
without data communications, we executed the 7 realistic benchmarks
on single PE systems1, in which the inter-PE communications be-
tween tasks can be neglected. Table III gives the results in terms of
battery charge consumption. In the table, the first column gives the
benchmark name and the number of tasks in the benchmark. The
results of the 4 online DVS techniques are given in Columns 2–5.
In the last two columns we show the percentage of improvement in
battery charge consumption using the proposed WAD method over
methods SF and ACD. We can observe that ASU yields consistently
the lowest battery consumption when compared to SF and ACD,
while the results produced by our WAD technique are very close to
ASU and in some cases even slightly better. Consider, for instance,
the GSM decoder benchmark. Here ASU obtains a battery charge
consumption of 4.394mAs, while SF and ACD result in 6.785mAs
and 6.595mAs, respectively. Nevertheless, WAD achieves the lowest
value with 4.365mAs, resulting in improvements of 35.66% and

1Note that not all these benchmarks can be executed on a single PE without
violating timing constraints. We therefore adjusted the deadlines such that no
violation occurred under WCETs.
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Fig. 7. Influence of search window size on rescheduling/remapping results

33.81% over SF and ACD, respectively. This clearly indicates the
high solution quality of the proposed approach at low computational
complexity.

The second set of experiments was conducted to validate the
workload-ahead-driven DVS as well as the rescheduling/remapping
techniques in the context of systems consisting of multiple processing
elements. We used LOPOCOS [15], an academic system-level synthe-
sis tool, to find suitable multiple PE implementations and to generate
the offline mappings and schedules for all 36 benchmarks (GSM
decoder and encoder have been combined into a single benchmark).
In all experiments we set the search window size (M ) of the
rescheduling/remapping algorithm to 10, empirically found to be a
good value. Nevertheless, due to the importance of the window size
on the solution quality we have devoted an extra set of experiments on
this subject, presented later in this section. Since the slack forwarding
technique [12] was particularly introduced for independent tasks, we
refrain in these experiments from a direct comparison.

The results of our experiments are summarized in Table IV.
The first, second, and third columns give the benchmark name,
the number of tasks/communication edges, and the number of
PEs in the system, respectively. Columns 4–7 show the battery
charge consumptions in 4 different scenarios. Column 4 (No DVS)
represents the nominal charge consumption, i.e., when no online
voltage scaling is employed; Column 5 (WAD) shows the results
of the proposed workload-ahead-driven DVS technique; Columns 6
(WAD+RS) and 7 (WAD+RS+RM) give the charge consumption
when integrating WAD with online rescheduling and rescheduling
with remapping, respectively. Columns 8–10 summarize the achieved
battery charge savings in percent. Consider, for instance, benchmark
tgff17. Here the nominal and the WAD-based charge consump-
tions are 5.941610×10−2mAs and 4.4459×10−2mAs, respectively,
representing a saving of 25.17%. This can be further improved
by using rescheduling as well as rescheduling with remapping to
4.1119×10−2mAs and 4.0206×10−2mAs, respectively, obtaining
further saving of 7.78% and 9.83% when compared to using WAD
only.

As mentioned above, the window size used by the rescheduling
and remapping technique has an influence on the achievable savings
in battery charge consumption as well as on the online complexity.
The following experiment is used to clarify this aspect and to provide
an insight into which window size should be typically used. Fig. 7
shows the battery charge consumption of benchmark tgff27 depending
on the window sizeM . As it can be observed, a window size
of zero, i.e. no rescheduling/remapping is performed, results in a
charge consumption of 7.43×10−2mAs. However, with an increasing
window size this value decreases to 6.7×10−2mAs. In general, we
have observed that a window size of 10 provides a good trade-
off between solution quality and complexity for all investigated
benchmarks.



Bench- # task/ # Battery charge consumption (10−2mAs) Percentages (%)
marks edge PE No DVS WAD WAD+RS WAD+RS+RM NoDV S

WAD
WAD+RS

WAD
WAD+RS+RM

WAD
Auto-ind. 28/25 2 22.134 17.317 17.317 17.317 21.76 0 0
Consum. 27/30 3 851.32 613.38 613.38 613.38 27.94 0 0
Office-au. 5/5 1 15.578 12.768 12.768 12.768 18.03 0 0
Network. 23/19 2 12.295 10.404 10.404 10.404 15.38 0 0
Telecom. 42/40 2 46.181 36.118 36.054 36.031 21.79 0.17 0.24

GSM 87/138 6 10.399 7.581 7.458 7.458 27.09 1.62 1.62
tgff1 14/17 2 0.0403 0.0351 0.0349 0.0349 12.97 0.51 0.51
tgff2 40/51 2 1.3795 0.9642 0.9334 0.9334 30.10 3.18 3.18
tgff3 45/49 2 1.7483 1.2703 1.2301 1.2060 27.34 3.17 5.06
tgff4 65/77 3 2.4312 1.8067 1.7682 1.7352 25.68 2.13 3.96
tgff5 36/50 2 1.3206 0.9508 0.9493 0.9039 27.99 0.16 4.94
tgff6 46/62 2 0.9061 0.6869 0.6805 0.6805 24.18 0.93 0.93
tgff7 97/114 2 1.9721 1.4557 1.3656 1.3398 26.18 6.18 7.95
tgff8 121/145 4 3.6957 2.6453 2.4891 2.4189 28.42 5.90 8.55
tgff9 94/115 4 1.8398 1.3622 1.2417 1.2276 25.95 8.84 9.88
tgff10 60/85 3 1.8431 1.3428 1.3007 1.2716 27.14 3.14 5.30
tgff11 51/67 3 1.9460 1.4395 1.3534 1.3511 26.03 5.97 6.14
tgff12 102/132 4 4.0853 2.9851 2.8718 2.8128 26.93 3.79 5.77
tgff13 71/91 2 1.5975 1.1866 1.1695 1.1687 25.72 1.44 1.51
tgff14 128/166 5 5.3594 3.9473 3.8053 3.7664 26.34 3.59 4.58
tgff15 145/187 4 2.5630 1.9432 1.8382 1.8221 24.18 5.40 6.23
tgff16 84/109 3 1.6536 1.2294 1.2060 1.1407 25.65 1.90 7.21
tgff17 196/236 3 5.9416 4.4459 4.1119 4.0206 25.17 7.78 9.83
tgff18 149/180 3 4.2885 3.2265 3.0185 2.9791 24.76 6.44 7.66
tgff19 81/103 3 2.4865 1.8633 1.7925 1.7306 25.06 3.81 7.12
tgff20 149/167 5 5.3703 4.0737 3.8586 3.8368 24.14 5.28 5.81
tgff21 70/94 2 1.0458 0.7840 0.7249 0.7248 25.02 7.54 7.55
tgff22 102/152 3 3.9872 2.8624 2.6778 2.6188 28.21 6.45 8.50
tgff23 117/170 3 3.9352 2.9009 2.7473 2.7429 26.28 5.29 5.44
tgff24 316/413 4 8.3134 6.0926 5.7592 5.6844 26.71 5.47 6.70
tgff25 269/348 3 5.4967 4.1520 3.8301 3.8114 24.46 7.75 8.20
tgff26 331/408 4 8.1994 6.0464 5.5650 5.4978 26.25 7.96 9.07
tgff27 280/341 4 10.097 7.4264 6.8689 6.7069 26.45 7.50 9.68
tgff28 378/443 4 1.3623 9.9426 9.1701 8.9537 27.01 7.77 9.94
tgff29 252/312 4 6.6971 5.0638 4.7497 4.6449 24.38 6.20 8.27
tgff30 210/234 3 0.3786 0.3183 0.2746 0.2735 15.92 13.71 14.08

Ave. percents 24.80 4.36 5.59

TABLE IV
EXPERIMENTAL RESULTS IN MULTI-PE SYSTEMS

VII. Conclusion

In this paper, we have presented a workload-ahead-driven voltage
scaling technique which explicitly takes the discharge current and
execution times into account to make battery-aware scaling deci-
sions. To further improve the battery charge consumption, we have
presented an online rescheduling/remapping technique that aims to
reduce the waste of online slack when using static schedules and map-
pings. To the best of our knowledge, this is the first online approach
that addresses voltage scaling as well as rescheduling/remapping in
conjunction. All presented techniques are of constant time complexity
(O(1)), making them suitable for applications with hard real-time
systems. The efficiency of the proposed techniques have been exper-
imentally validated using automatically-generated as well as real-life
benchmarks. It has been demonstrated that significant savings of up
to 36% in the battery charge can be obtained when compared to
approaches that delay the slack utilization as late as possible.
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