
A Low-Power Crossroad Switch Architecture and Its Core
Placement for Network-On-Chip

ABSTRACT
As the number of cores on a chip increases, power consumed
by the communication structures takes significant portion of
the overall power-budget. The individual components of the
SoCs will be heterogeneous in nature with widely varying
functionality and communication requirements. The com-
munication topology should possibly match communication
workflows among these components. In this paper, we first
propose a novel interconnect architecture for SoC, which
uses crossroad switches to dynamically construct a dedi-
cated communication path between any two cores. We then
present a design methodology for constructing network on
chip (NoC) for application-specific computer systems with
profiled communication characteristics. We design a core
placement tool, which automatically maps cores to a com-
munication topology such that the total communication en-
ergy can be minimized. Experimental results show that
the design methodology can generate optimized on-chip net-
works with fewer resources than meshes and tori, and the
power saving approximates to 40%.

1. INTRODUCTION
As parallel chip architectures scale in size, on-chip networks
have becoming the main communication architecture, re-
placing dedicated interconnects and shared buses. NoC ar-
chitectures have to deliver good latency-throughput perfor-
mance in the face of very tight power and area budgets.
These trends make on-chip network design to be one of the
most challenging and significant design problems.

In [11, 13], they design mapping algorithms for regular topolo-
gies, which are suitable for interconnecting homogeneous
cores in a chip multiprocessor. However, varied core func-
tionality, core size and communication requirements are in-
volved in recent SoCs designs. If a regular interconnect such
as mesh or tori is designed to match the requirements of few
high communicative components, it maybe waste much re-
sources with respect to the needs of other components. So it
is attractive for most current SoCs to use irregular topolo-
gies (e.g. Figure 1(d)) to design dedicated high-speed links
between high communicative cores.

Some applications have high point-to-point communications.

If it is not well controlled, large intercommunications across
switches could consume large significant energy of NoCs.
Take a core flow graph for application suite in Figure 1(a)
as an example. Each node in the core flow graph represents
a core, while each weighted edge represents the communica-
tion frequency between a pair of cores. Two possible NoC
topologies for the core flow graph are shown in Figure 1(c)
and Figure 1(d). The topology in Figure 1(c) is a initial
core placement, and there are 27 intercommunications. The
topology in Figure 1(d) is an improved core placement, and
there are 15 intercommunications. We can observe that the
power consumption of random placement will be larger than
the well-controlled placement, because of the high frequency
of inter-communications.

(a) (b)

(c) (d)

1 2 3

4

567

10 4
2

3

2

2

5
7

8

1

S1

1

6

2

4

5

S3

3

S2

7

7

3

1 4

56

2

S1 S2 S3

4

6

1 5

73

2

S1 S2 S3

Figure 1: (a) Core flow graph. (b) Final NoC block
(c) Initial core placement (d) Improved core place-
ment

This paper makes two contributions as follows:

• First, we propose a novel bus architecture named cross-
road interconnect architecture. The architecture con-
sists of several communication blocks, which include a
group of cores, four way bus lines and a local crossroad
switch. There is also a global arbiter to coordinate the
communications between crossroad switches when nec-
essary. By coordinating those arbiters, we can organize
several algorithms either to enhance the performance
or to minimize the power consumption for communi-
cations.

• Second, we also present a design methodology and a
core placement tool to automatically build application-
specific communication topologies, which supports low
intercommunications for well-known communication pat-
terns. It starts from application specifications, con-
tinues through the mapping of the application onto
topologies and ends up with selection of a topology.

The rest of the paper is organized as follows. Section 2
summarizes the related work. In Section 3, we describe the
proposed crossroad interconnect architecture and character-
istics of this design. Section 4 describes the design method-
ology and the power aware core placement algorithm. We
explain the experimental environment and show the results
of our work in Section 5. Finally, we summarize our findings
in Section 6.

2. RELATED WORK
VLSI design for power optimization to satisfy the power
budget is an important research issue [2]. The bus topology
can be changed so that different segments can be split for
the purpose of reducing the power consumption [4, 8, 15].
The early works in [5] pointed out the need of more scalable
architectures for on-chip communication and, therefore, to
progressively replace shared busses with on-chip networks.

Many NoC architectures have been proposed in the litera-
ture so far, but in most cases, the design methodologies and
tools are still at the early stage. The problem of mapping
cores onto NoC architectures is addressed in [1, 10, 11, 13,
14]. In [10], a branch-and-bound algorithm is used to map
cores onto a mesh-based architecture with the objective of
minimizing energy and satisfying the bandwidth constraints
of the NoC. Murali and De Micheli [13] presented an al-
gorithm that maps cores, or components of a SoC, onto a
mesh NoC architecture, minimizing the average communica-
tion delay. Hu and Marculescu [11] presented an algorithm
for mapping IPs onto a generic regular NoC architecture
consisting of a network of tiles, each consisting of a pro-
cessing core and a router. In [3, 9, 11], the assignment and
scheduling of tasks onto cores were performed first, then
they apply profiling to derive the communication patterns
of the application used in the topology synthesis and routing
algorithms.

However, most of these researches were focused on regular
topologies (e.g. mesh, tori, hypercube), which require large
scale redundant switches in order to meet application re-
quirements of burst point-to-point communication. These
regular topologies do not fit for application-specific SoC de-
velopments, because they are sometimes over-designed. It
is also hard to automatically construct optimized NoCs by
a tool if the switches are heterogeneous.

3. CROSSROAD INTERCONNECT ARCHI-
TECTURE

In this section we present a brief description of the proposed
bus architecture, Crossroad Interconnect, in the aspect of
switches, links and networks. The crossroad interconnect
architecture is similar to the segmented bus architecture [4].
However, it isolates the requirements of long data swing so
as to reduce power consumption. The key idea of the cross-
road interconnect architecture is to partition all cores on
chip as well-organized irregular topologies and use cross-
road switches to dynamically control active paths for those
connections needed between any two cores. In addition to
power optimization, our crossroad interconnect architecture
also gives better performance and parallel communication
by providing two separated virtual paths for different cross-
road blocks at the same time.

3.1 The Proposed Architecture
The basic communication unit of the architecture is the
crossroad communication block (CCB) as shown in Figure
2(a). A communication block comprises a crossroad switch

with an arbiter, a group of cores, and four bus directions
for data transmissions. More than one route can go through
the switch at the same time as long as its input and out-
put ports in the switch are not occupied by another route.
Every crossroad switch only takes care of the requests from
four different ways (up, down, left and right), so the control
of the crossroad switch is independent and scalable, and the
design complexity is low. In this case, users can construct
different structure styles (topology) of the crossroad com-
munication architecture based on the requirements (power,
performance, area) of their SoCs.

--

Global Arbiter

Control Signals

--

-- -- --

Core
1

Core
3

Core
2

Core
4

Request, Address,
Communicate type,

Data

Ack, DataCrossroa
d Switch

(a) (b)

Figure 2: (a)Crossroad communication block (CCB)
(b)The crossroad interconnect architecture

The overall communication architecture is shown as Figure
2(b). Several communication blocks can be connected to
each other to construct a large scale communication net-
work. Only the edge sides of the crossroad switches can be
connected with cores. If two switches connect to each other,
the bus line between the two switches cannot plug any cores,
because it only provides data path between two communi-
cation blocks. The global arbiter is used for special pur-
poses, such as deadlock-free algorithms, routing algorithms,
contention-free algorithms, etc. We can design several al-
gorithms to coordinate all switches to enhance the perfor-
mance or low-power communication depending on the char-
acteristics of different applications. For example, adaptive
routing can dynamically select the exchange path between
two modules to solve the interconnect contention problems.
The overall advantages can be summarized explained in the
following subsections.

3.2 Fully Configurable
The switch in a communication block only takes care of the
control and the data exchanges between four ways. When
a master requests a slave in the local block, it passes the
signals to the target slave. If a master requests a slave in
another remote block, the local arbiter will act as a master
in the remote block and sends the request to the remote
switch. Every crossroad switch only cares about the requests
from four different ways, so the basic element structure and
control can be very regular and simple.

When two switches connect to each other, one of the two
blocks can be viewed as a master or a slave module for an-
other block. And this feature makes the overall architecture
more scalable and highly configurable. Our design can easily
combine the communication block to make up our irregu-
lar network topologies according to the different application
characteristics, as shown in Figure 3. We can employ with
a placement algorithm to explore the best solutions of the
intercommunication for purposes of high performance, low
power consumption and low cost.

3.3 Power Optimization by Localization

In shared-bus architectures, every data transfer is broad-
cast, meaning the data must reach each possible receiver at
great energy cost. Because the power consumption of each
bus segment is proportional to the number of devices con-
necting to the segment in splitting bus architecture. In our
design, only one sender, one receiver and one or more than
two switches are involved at each data communication, data
exchanges among devices will result in minimum power con-
sumption. Due to the full programmability, the placement
of all cores will be optimized by profiling the communica-
tion traffic characteristics of applications. We can connect
high communicative cores into several CCBs to provide sep-
arate high-frequency blocks where data are total indepen-
dently transmitted, as shown in Figure 3. In this case, it
can save more energy consumption due to the reduction of
long-distance communications.

Linear-Shape T-Shape

Grid

H-Shape

High-Frequency CCB

Virtual Bus Segments
(VBS)

Figure 3: Interconnect topologies

3.4 Better Communication Parallelism
We design a ”overpass” mechanism that can construct mul-
tiple segments to let different masters communicate with
their target slaves at the same time, as shown in Figure
4(a). Figure 4(b) shows the three possible combinations of
parallel communications in a local communication block. If
those master-slave pairs are different, they may use differ-
ent channels to communicate in the crossroad bus architec-
ture. This behavior is suitable for multiprocessor or multi-
threading, where each processor or thread can work in their
local regions and communicate to other regions by coordi-
nating crossroad switches in each block. Because the ar-
chitecture may provide separate virtual bus segments (VBS)
where data are total independently transmitted, as shown in
Figure 3, it results in more communication parallelism than
conventional shared-bus architectures.

Segment 1

M1

S1 M2

S2

Segment 2

(a) (b)

Figure 4: Three available combinations for parallel
communications

4. DESIGN METHODOLOGY
Crossroad NoC is a structured interconnect architecture such
that it can be integrated into a design flow easily, as shown
in Figure 5. First, the communication characteristics be-
tween cores can be derived by profiling embedded appli-
cations. Then, we can construct suitable communication
topologies according to the profiling results to meet spe-
cific requirements (power, performance, area). Using the
proposed partition algorithms, we can decide which cores
should be put in the same CCB. The hardware specification
specifies the cores (e.g. processing and storage elements)
that are to be connected in the system-on-chip design as
well as the requirements on bandwidth, latency, etc. put
on the communication hardware to support the necessary
transfers. The optimized code can then be used in the be-
havioral simulator to ensure correctness and to generate a
number of different benchmarking information to make sure
that the specification is fulfilled. Designers can get the area,
performance and power estimations of the crossroad com-
munication architecture to estimate their design. Finally
behavioral verification by the structural description is used
as a part in the integration of the system-on-chip design to
achieve the final implementation.

Because crossroad interconnect architecture is a simple struc-
ture, it is easy to automate the design and even build a li-
brary of IP cores for crossroad interconnects with various
self-routing encoding and performance. Also the crossroad
interconnect architecture gives more space on performance,
power, and area along with other useful features such that
designs can be more flexible.

In this section, we present an algorithm to support a power-
aware placement for the crossroad architecture. We will
define the system model in Section 4.1, and present the core
placement algorithm in Section 4.2.

Application
Specification

Bus
Topology
Library

HW Modules
Specification

Profiling

Optimization &
Code Generation

Optimization
Algorithms

Simulation &
Estimation

Implementation

Routing Codes

Module
Wrappers

Configurations

Power

Performance

Area

Partitioning

Core Flow
Graph
(DAG)

Meet requirements ?

Yes

No

Figure 5: Design flow for crossroad NoC

4.1 System Model
Hu et al. [11] proposed a model for power consumption
of tiled-based NoC architectures. The average energy con-
sumption of sending one bit of data from tile ti to tj is:

E
ti,tj

bit = nhops × ESbit + (nhops − 1) × ELbit , (1)

where ESbit , ELbit , nhops represent the energy consump-
tion of a switch, the energy consumption of interconnection
wires and the number of switches the bit passes, respectively.
The basic idea of the paper is to group high communicative
cores into several CCBs, as shown in Figure 3, such that

data exchanges among cores will result in minimum power
consumption calculated by Equation 1. To formulate this
problem more formally, we define the following terms:

Definition 4.1. The Core Flow Graph (CFG) is a undi-
rected graph, G(V,E), where each vertex vi ∈ V represents
a core and the directed edge (vi, vj), denots as ei,j ∈ E,
representing the communication between the cores vi and
vj . The weight of the edge ei,j , denoted by flowi,j , repre-
sents the communication flow or communication frequency
between vi and vj .

Definition 4.2. The Switch Topology Tree (STT) is a tree,
T (V, E) with each vertex vi ∈ V representing a switch with
at most 4 degrees and the edge (vi, vj), denoted as ei,j ∈
E, representing the communication between the switches vi

and vj . The weight of the edge ei,j , denoted by flowi,j

, represents the communication flow or communication fre-
quency between vi and vj .

In order to achieve low-power design for NoC topologies, we
have to minimize the number of communications traversed
through bus lines and switch hops for each pair of cores. For
this purpose, we define communication distance as follows:

Definition 4.3. The Communication Distance (CDist) be-
tween two switches si, sj , denoted CDist(T , si, sj), on a
switch topology tree T is the number of switch hops and
edges traversed from si to sj on T , where

CDist(T, si, sj) =
∑

e∈P athsi,sj

ELbit
+

∑

switch∈P athsi,sj

ESbit
(2)

For example, as shown in Figure 1(d), cores 1 and 2 are
connected to the same switch, but separated from others
by other switches. When core 1 sends a signal to core 2
(intra-block communicaiton), the signal only flows within
the same switch, instead of all switches, so this avoids charg-
ing or discharging the unnecessary part of the entire NoC
system. Based on Equation 1, the power savings can be
very significant if most data exchanges are performed by
intra-block communication. However, several switches must
be involved for inter-block communication, e.g., switch 1, 2
and 3 of Figure 1(d) must pass signals if core 6 sends a signal
to core 5. The number of switches to be involved for each
inter-block communication depends on the topological rela-
tionships among the cores and the NoC architecture. Thus,
it is important to organize the bus architecture such that
most data exchanges will be performed within CCBs or near
CCBs locally as possible. The NoC topology construction
problem is defined as follows:

Definition 4.4. Given a Core Flow Graph G = (V, E),
the NoC Topology Construction problem is to identify a
Switch Topology Tree T (V, E) whose total communication
cost Cost(T,G) can be minimized. The formula of Cost(T,G)
is defined as follows:

Cost(T, G) =
∑

e(i,j)∈E[G]
and

si,sj∈V [T]

weight(e) × CDist(T, si, sj), (3)

where si and sj are the switches connected by core i and
core j, respectively.

A construction example is shown in Figure 1. In Figure 1(a),
each node in the core flow graph represents a core, while
each weighted edge represents the communication frequency
between a pair of cores. Two possible NoC topologies for

the core flow graph of Figure 1(a) are shown in Figure 1(c)
and Figure 1(d). The topology in Figure 1(c) constructed
by initial core placement, and its communication cost is
([(10+4) + (2+1)] × ESbit + [(2+3)] × (2ESbit+ELbit)
+ [(5+7+8+2)] × (3ESbit+2ELbit) = 93ESbit + 49ELbit).
The topology in Figure 1(d) constructed by the power-aware
core placement, and its communication cost is ([(10+7+5)
+ (2+2+3)] × ESbit + [(2)] × (2ESbit+ELbit) + [(1+4+8)]
× (3ESbit+2ELbit) = 72ESbit + 28ELbit). Obviously the
cost of the initial core placement is large than the cost of the
power-aware core placement, because the inter-communication
flow is too large. Our key idea is to profile the character-
istics of applications and to allocate high communicative
cores in CCBs or near CCBs to minimize the Cost(T, G).
Figure 1(b), shows the placement result block based on the
organization of Figure 1(d).

4.2 Power-Aware Core Placement (PACP)
The objective of the power-aware core placement is to mini-
mize the inter-communications between cores such that the
power can be saved. In order to find efficient methods,
we followed a multi-phase approach, where each phase ad-
dresses a limited instance of the general problem. The suc-
cessive steps are outlined as follows: core clustering, clus-
ter optimizing, and physical switch mapping.

4.2.1 Phase 1: Core Clustering
The first phase to construct a NoC topology is to character-
ize the hardware structure that can be mapped into a graph,
called a ”backbone graph” or ”switch topology tree.” It can
be obtained by applying Gomory and Hu [7]. That is, given
a weighted and undirected graph, the Gomory-Hu algorithm
can find a tree whose communication cost is minimum and
the entire process is guaranteed to be finished in polynomial
time. Figure 6 gives an example of the Gomory Hu cut tree
of Figure 1(a). It can be proven that the tree generated has
the minimum Cost(T,G) using polynomial computing time.

Next, we have to collect high communicative cores into the
same clusters to minimize the intercommunications. Sys-
tematically partitioning the Gomory Hu cut tree into smaller
clusters is the key point of the clustering. By the min-cut
theorem, we can select the minimum cut to make the GH-
tree into two clusters, shown as Figure 7(a). By this way,
we can make sure that the flow of the backbone between
the two clusters C1 and C2 is minimum. By recursively ap-
plying the above process to clusters C1 and C2 until each
cluster contains at most 3 nodes, we can finally have the
cluster tree as shown in Figure 7(b).

Because each switch can connect at most 3 cores and the
other link connects to another switch. We can merge adja-
cent clusters if there are sufficient empty core connections in
one of the adjacent clusters, shown as Figure 7(b). Finally,
we can get the cluster tree (Figure 7(c)), which can be used
to allocate switches to connect all cores.

1 2 3

4

56

7

15 16 13 5

2 5

Figure 6: GH-cut tree derived from Figure 1(a)

4.2.2 Phase 2: Cluster Optimization

1 2 3

4

56

7

15 16 13 5

2 5

3 4,51,2,6

7

2

13 5 3,4,51,2,6

7

2

13

(a)

(b) (c)

C1
C2

merge

Figure 7: (a) Recursively cut the GH-cut tree into
several clusters (b) Merge adjacent super nodes (c)
The final cluster tree

In previous phase, the high communicative cores can be
mapped into low-intercommunication clusters, however, the
flows between clusters may not be minimum. There are
some special cases, where clustering results are not the op-
timal when the weights of edges are too close. We have to
optimize these clusters to get more power savings. For ex-
ample, the Figure 8(b) is the clustering result topology of
Figure 8(a), and its flow is 6. However, we can see another
topology in Figure 8(c), its flow is 5. This is because that
more than two adjacent clusters of the topology in Figure
8(b) can be merged into a cluster to make more intracom-
munications. We name this behavior as cluster shifting. If
there are more than two non-fulfilled clusters (less than 3
nodes), we will try to adjacency-pair shift combination one
cluster at a time to merge some adjacent clusters into less
clusters.

(a)

(b)
1

1 3 6 54

2

4 5 2 1

17

2, 3, 41 5,6
4 2

1,2, 3 4,5,6
5

(c)
4

Figure 8: (a)A GH-cut tree example (b)Cluster
shifting (c)Results after cluster shifting

4.2.3 Phase 3: Physical Switch Mapping
Because a switch only has four connection links, we have
to allocate switches to clusters carefully. From the cluster
tree, we can regard each cluster as a super node and recur-
sively select three adjacent clusters containing the maximum
weight sum as a super cluster. By the way, there will gen-
erate several layered super clusters containing at most three
clusters. Finally, we assign switches to clusters and super
clusters to connect all cores, as shown in Figure 9(a). Next,
we merge adjacent switches which are not full connected
until no adjacent switches can be merged, shown as Figure
9(b). Figure 9(c) is the final NoC infrastructure. Since the
switch just have four way to connect cores or other switches,
our topology looks like 3-nary tree structure, as shown in
Figure 10. The internal nodes are switches and the leaf
nodes are cores. If the number of cores is Cn, the minimum
number of needed switches(SWn) to construct the topology
is SWn = �(Cn − 2)/2�.

5. EXPERIMENTAL EVALUATION
We use Modelsim to simulate our NoC RTL code design, and
verify the correctness by some experiments. Then, we uti-
lize Synopsys Design Analyzer to synthesize our crossroad

S1

S2

S3S4

7

1

4
5

6
2

3
S1

S2

S3S4

7

1

4

5

6

2

3

S1 S3S4

71

4
5

6
2

3

(a) (b) (c)

merge

Figure 9: (a) Assign switches to clusters and super
clusters (b) Combine adjacent switches (c) The final
NoC infrastructure

SWSW

SW

SW

SWSWSWC C C

C C C

Figure 10: 3-nary tree structure

bus components and get the netlist schematic file. Before we
start the simulation of power consumption, we must trans-
late the netlist schematic file to SPICE model and use the
simulation patterns that automatically generated by Mod-
elsim. Next, we use Nanosim to do detailed low level simu-
lation and gain the average power consumption.

Figure 11 shows the experiment NoC topology, which in-
cluded two masters and three slaves. M1, M2 and M2 will do
the ”read” and ”write” operations both once to S1, S2 and
S3, respectively. For the power estimations, we first model
another bus architecture, wishbone [16], and apply the same
workload to compare with the estimated crossroad architec-
ture. We use the simplescalar to simulate the MPEG4 de-
coder, and collect the 15 frames’ cache access information.
These frames include one I-frame and 40 P-frames. We also
perform the evaluation by choosing two application cases:
Video Object Plane Decoder (VOPD) and Multi-Window
Displayer (MWD), presented in [12, 6], to show the resource
improvement for the custom NoC. The two evaluation met-
rics are ”power” and ”performance”. The power is estimates
by Nanosim, and the performance is the cycles for complet-
ing the workloads.

5.1 Comparison of Power and Performance
The experimental results of the experiment NoC topology
and the wishbone are shown in Table 1. Because the energy
consumption is power × cycles, and the crossroad bus archi-
tecture is 507uW × 130 = 65910 uW, and wishbone is 528
uW × 180 = 95040 uW. The crossroad bus architecture can
save the energy consumption approximated to 31%.

M1

S1 S3

M3

S2

M2 M2 S2: 1 Read + 1 Write

M3 S3: 1 Read + 1 Write

M1 S1: 1 Read + 1 Write

Figure 11: Experimental topology of the crossroad
NoC

The profiled core flow graph of application MPEG4 is shown
as Figure 12(a). The Figure 12(b) is our compared initial
generated topology, and the PACP topology generated by
our power-aware placement tool is shown as Figure 12(c).
The experimental results for power consumption and perfor-
mance of placement algorithms are shown in Table 2. The
ratio of the power saving approximates to 40%. Obviously it
saves power consumption if we carefully construct the NoC
topology.

mc

Transfer

S2S1

idctPredict
_acdc

decoder
mbintra

iq

mc

Transfer

S2S1idct

Predict
_acdc

decoder
mbintra

iq

(c)(b)

(a)

idct

mc

iq

transfer

predict_acdc

decoder_mbintra

40

38072

65

9072

89856

107880
24

72

2778

12

Figure 12: (a)Core flow graph of the MPEG4 de-
coder(b)Initial Topology(c)Power-aware Topology

Table 1: Estimates of bus architectures
Simulation Metric

Power Performance
Bus Architecture (uW) (cycles)

Crossroad NoC 507.39 130
Wishbone 528.23 180

5.2 Comparison of Resources
The communication characteristics of applications VOPD
and MWD are shown in Figure 13(a) and Figure 13 (b), re-
spectively. We automatically developed customized application-
specific topologies by our tool that closely matches the ap-
plications’ communication characteristics. Figure 13(c) and
Figure 13(d) show the generated topologies for applications
VOPD and MWD, respectively. We can observe that al-
though the cores of the two applications are both 12, how-
ever the topology will optimized for each specific-application
communication characteristics. For both applications we
need relatively small number of switches (5 crossroad switches)
compared to mesh network (16 switches). We can obtain sig-
nificant resource improvement for the custom NoC. Because
we group high communicative cores into CCBs, the parallel
communication can be achieved to enhance the communica-
tion performance.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented crossroad interconnection
architecture and its design methodology. The key point of
the design flow is to profile the application characteristics,
and to connect high communicative cores in a local com-
munication block to reduce the intercommunications as less
as possible. The network architectures are highly optimized

Table 2: Estimates of core placement algorithms

Simulation Metric

Power Performance
Placement Approach (uW) (cycles)

Random placement 365.27 315994
PACP placement 260.59 310487

S6

S7

S2 S4

S5in

me
m1

nr
me
m2

vs

hs

hvs

se

Ju
g1

Ju
g2

me
m3

Ble
nd

(a)

(d)

in
me
m1nr

me
m2vs hs hvs

se

Ju
g1

Ju
g2

me
m3

Ble
nd

64

64

6464

96
96

9696

96

96

96

128

64

vld

Arm

idctRun
Le dec iquan

Inv
scan

acdc
pred

up
samp

vop
rec

vop
mem

pad

Stripe
mem

70 357

16
362

362

27

500

313

94

313
300

353

49

362

vld

Arm

idct

Run
Le dec

iquan

Inv
scan

acdc
pred

up
samp

vop
rec

vop
mem

pad

Stripe
mem

S2S1 S3

S5S4

(b)

(c)

Figure 13: (a)Core flow graph of applica-
tion VOPD(b)Core flow graph of application
MWD(c)VOPD NoC topology(d)MWD NoC topol-
ogy

for the particular NoC design, providing savings in power,
switches for example designs. In the future, we will continue
to build a tool chain, which automatically instantiates an
application-specific NoC in SystemC and verilog, and then
the system can automatically completes the whole design
flow and simulations for heterogeneous NoCs.

7. REFERENCES
[1] N. K. Bambha and S. S. Bhattacharyya. Joint application

mapping/interconnect synthesis techniques for embedded chip-scale
multiprocessors. IEEE Transaction on Parallel and Distributed Systems,
16(2):99–112, Feb. 2005.

[2] A. Bellaouar, I. Abu-Khater, and M. I. Elmastry. An ultra-low-power cmos
on-chip interconnect architecture. In Symposium on Low Power Electronics.
Digest of Technical Papers, pages 52–53, Oct. 1995.

[3] D. Bertozzi, A. Jalabert, S. Murali, R. Tamhankar, S. Stergio, L. Benini,
and G. D. Micheli. NoC synthesis flow for customized domain specific
multiprocessor systems-on-chip. IEEE Transaction on Parallel and Distributed
Systems, 16(2):113–129, Feb. 2005.

[4] J. Y. Chen, W. B. Jone, J. S. Wang, H. I. Lu, and T. F. Chen. Segmented
bus design for low-power systems. IEEE Transactions on VLSI Systems,
7(1):25–29, Mar. 1999.

[5] W. Dally and B. Towles. Route packets, not wires: On-chip
interconnection networks. In Proceedings of Design and Automation Conference
DAC 2001, pages 684–689, June 2001.

[6] E. V. der Tol and E. Jaspers. Mapping of mepg-4 decoding on a flexible
architecture platform. In SPIE2002, pages 1–13, Jan. 2002.

[7] R. E. Gomory and T. C. Hu. Multi-terminal network flows. Journal of Soc.
Industrial Appl. Math., 9(4):551–569, Dec. 1961.

[8] C.-T. H. and M. P. Architectural energy optimization by bus splitting.
IEEE Transactions on Computer-Aided Design on Integrated Circuits and Systems,
21(4):408–414, Apr. 2002.

[9] W. Ho and T. Pinkston. A methodology for designing efficient on-chip
interconnects on well-behaved communication patterns. In Proceedings of
Ninth Int’l Symp. High-Performance Computer Architecture, pages 377–388, Feb.
2003.

[10] J. Hu and R. Marculescu. Energy-aware mapping for tile-based noc
architectures under performance constraints. In Proceedings of Asia and South
Pacific Design Automation Conference, pages 233–23, Jan. 2003.

[11] J. Hu and R. Marculescu. Exploiting the routing flexibility for
energy/performance aware mapping of regular noc architectures. In
Proceedings of DATE Conference, Mar. 2003.

[12] E. Jaspers and P. de With. Chip-set for video display of multimedia
information. IEEE Transaction on Consumer Electronics, 45(3):707–716, Aug.
1999.

[13] S. Murali and G. D. Micheli. Bandwidth constrained mapping of cores
onto noc architectures. In Proceedings of Conference DATE, 2004.

[14] S. Murali and G. D. Micheli. Sunmap: A tool for automatic topology
selection and generation for nocs. In Proceedings of Design Automation
Conference, 2004.

[15] J. Plosila, T. Seceleanu, and P. Liljeberg. Implementation of a self-timed
segmented bus. IEEE Journals on Design and Test of Computers, 20(6):44–50,
2003.

[16] Silicore Corporation. WISHBONE System-On-Chip Interconnection Architecture
for Portable IP Cores, 2001.

