
Improving Energy Efficiency by Making DRAM Less
Randomly Accessed

Abstract— Existing techniques manage power for the main mem-
ory by passively monitoring the memory traffic, and based on which,
predict when to power down and into which low-power state to
transition. However, passively monitoring the memory traffic can
be far from being effective as idle periods between consecutive
memory accesses are often too short for existing power-management
techniques to take full advantage of the deeper power-saving state
implemented in modern DRAM architectures. In this paper, we
propose a new technique that will actively reshape the memory traffic
to coalesce short idle periods — which were previously unusable
for power management — into longer ones, thus enabling existing
techniques to effectively exploit idleness in the memory.

I. INTRODUCTION

This paper focuses on improving energy efficiency of main
memory built with DRAM. This is motivated by a continual
increase in the power budget allocated to the memory subsystem.
For example, it has been reported that as much as 40% of the
total system energy is consumed by the main memory subsystem
in a mid-range IBM eServer machine [8]. As applications are
becoming increasingly data-centric, we expect main memory to
remain as a significant energy consumer because achieving good
overall system performance will be more likely to depend on
having higher-performance and larger-capacity DRAM.

Recently, various power-saving techniques have been proposed
by exploiting power-management capabilities built into modern
DRAM devices. Lebeck et al. [1], [5], [6] studied the effects
of static and dynamic memory controller policies on power and
performance using extensive simulation in a single-process envi-
ronment. Delaluz et al. [3] proposed various threshold predictors
to determine after how long of an idle period should the memory
controller transition a DRAM device to a low-power state. Re-
gardless of which memory controller policy or threshold predictor
we use, the presence of idle period in DRAM is essential for
reducing power. However, not all idle periods can be exploited
because state transitions take non-negligible amount of time and
energy. Rather, it is only beneficial to transition a memory device
to a low-power state if it stays idle for longer than this state’s
break-even time [5]. However, the break-even time can vary
significantly among the different low-power states, but the deeper
power-saving states usually have longer break-even time as more
components are disabled and would take more time and energy
to transition out of these states to service new memory requests.
Therefore, for us to utilize these deep power-saving states, long
idle periods in the memory traffic are essential. Unfortunately
these long idle periods are not commonly found in realistic
workloads as physical memory is usually randomly accessed
and driven completely by the current process’ execution. Since
existing power-management techniques only passively monitor
memory traffic, due to lack of these long idle periods, deep
power-saving states are rarely fully exploited. In this paper, we
propose a new technique that minimizes short and unusable idle
periods and creates longer ones. From such reshaped memory
traffic, existing techniques are able to make better use of the
idleness in the memory, thus saving more energy. Lebeck et al. [1]
briefly mentioned a frequency-based technique that is similar to

our work, but they failed to recognize how such technique can
be used to complement existing power-management techniques.
Furthermore, unlike their work, we propose a practical technique
that could be implemented in real systems using conventional
operating systems and hardware. A more thorough evaluation is
also presented here to fully assess benefits and problems of this
technique.

In addition to these hardware-controlled techniques, some
software-controlled techniques have also been proposed. De-
laluz et al. [4] demonstrated a simple scheduler-based power-
management policy. Huang et al. [7] later implemented Power-
Aware Virtual Memory to improve upon this work. Even though
software techniques usually have less performance impact, hard-
ware techniques can save more energy by leveraging finer-grained
run-time information, which is mostly unavailable to system
software.

In the next section, we will first give some background
information on the current state-of-art of DRAM technology.
Section III describes our memory traffic reshaping mechanism.
Our simulation setup and evaluation are presented in Section IV,
and finally, we conclude the paper in Section V.

II. BACKGROUND

In this paper, we use the terminology of the Double-Data Rate
(DDR) memory architecture to describe our approach, simply
because DDR is becoming the most common type of memory
used in today’s PC and server systems. However, by no means
our approach is limited to only DDR; one can easily apply this
technique to other memory types, e.g., SDR and RDRAM. We
will now give some background information on DDR memory
architecture and discuss its performance–energy tradeoff.

A. Double-Data Rate Memory Model
DDR is usually packaged as modules, or DIMMs, each of

which usually contains either 1, 2, or 4 ranks, which are
commonly composed of 4, 8, or 16 physical devices (shown in
Figure 1). When managing power for the memory, a rank is the
smallest physical unit we can control. Power is reduced on a rank

Device8 bits

64 bits

Module
Rank 1

Rank 0

Top View

Side View

Fig. 1. A memory module, or a DIMM, that is composed of 2 ranks
(front and back), and each with 8 devices.

2

when some of its subcomponents (i.e., row and column decoders,
sense amplifiers, bus drivers, etc.) are disabled by switching this
rank to one of the several pre-defined low-power states. However,
if a rank is accessed while at a low-power state, performance
penalty, called re-synchronization cost, is incurred to transition
this rank from the current low-power state to an active state so
it can be accessed again.

DDR has many power states defined and even more possible
transitions between them [11]. These states and transitions are
simulated in our memory simulator, which we used to evaluate
our work in Section IV-C. However, for simplicity of presenta-
tion, we only show four of these power states here — Read/Write,
Precharge, Powerdown, and Self Refresh — listed in a decreasing
order of power dissipation. In Figure 2(a), we show the power
dissipation of these states and the state transition delays. Note that
the power numbers shown here are for a single device. Therefore,
to calculate the total power dissipated by a rank, we need to
multiply this power by the number of devices in the rank. For a
512MB registered DIMM consisting of 8 devices, the expected
power draw values are 24.87 W, 3.61 W, 1.12 W, and 0.20 W,
respectively for the four power states considered here. The details
of these power states are as follows.

Pre

SR

IO

PD

ns 5tCK =

ns 5tCK =ns 5t CK =

ns 1000t XSRD =

read/write
State Power

IO Read/Write 1200 mW
PRE Precharge 137.5 mW
PD Powerdown 12.5 mW
SR Self Refresh 10 mW

(a)
PLL Power Register Power

Low-power 0.05 mW Low-power 0.025 mW
High-power 750 mW High-power 117.5 mW

(b)

Fig. 2. Part (a) shows the power dissipation of each state and the
delays to transition between them for a single 512-Mbit DDR device.
For Read/Write state, we show its maximum power dissipation when
all banks on a device are actively reading. Part (b) shows the power
dissipation of a TI PLL device (one per DIMM) and a TI register.

• Read/Write: Dissipates the most power, but it is only briefly
entered when a read/write operation is in progress.

• Precharge: When a rank is neither reading nor writing,
Precharge is the highest power state, or the most-ready state,
in which read and write operations can start immediately at
the next clock edge.

• Powerdown: When this state is entered, the input clock
signal is gated except for the auto refresh signal. I/O buffers,
sense amplifiers and row/column decoders are all deactivated
in this state.

• Self Refresh: In addition to all components that are de-
activated in Powerdown, the phase-lock loop (PLL) device
and registers can also be put to low-power state. This gives
maximum power reduction as the PLL and the registers (Fig-
ure 2(b)) can consume a significant portion of the total
energy on each DIMM. However, when exiting from Self
Refresh, a 11 µsec delay is incurred — 10 µsec is due to re-
synchronizing both the PLL and the registers and the other
1 µsec is due to re-synchronizing DRAM’s internal Delay

Lock Loop (DLL) device with the PLL.1

Precharge
52.57%

PLL
38.90%

Write
0.08%

Register
5.23%

Read
0.25%

Data Queue
0.05%

Auto Refresh
2.08%

Activation
0.47%

Active
0.38%

Fig. 3. Breakdown of the energy consumed by DRAM.

B. Power Management
Even though read and write operations dissipate the most

amount of power, they do not consume a significant amount of
energy due to their short duration. Instead, most of the energy
are consumed when memory is idling. We show in Figure 3
that for a SPECjbb workload (details are given in Section IV),
energy is mostly consumed in Precharge state and by the pe-
ripheral components, i.e., PLL and registers. This power can
be significantly reduced by transitioning memory devices and
the peripheral components to their low-power state during idle
periods.

Powerdown is one of the two low-power states implemented
in DDR memory devices, and it uses 31% of the Precharge
power. Having only a 5 nsec re-synchronization latency, using
Powerdown, power can be reduced even with short idle periods;
however, it is not nearly as power-efficient as Self Refresh where
we can also put the PLL and the registers to their low-power
state. Its benefit is clearly shown in Figure 3. However, due to
having a much longer re-synchronization latency when exiting
from Self Refresh, idle periods of at least 19 µsec are needed
just to break even. This is more than 3 orders of magnitude larger
than the break-even time for entering Powerdown. We calculate
the break-even time using the Energy×Delay metric as shown
in [5]. Its calculation is omitted here due to space limitation.

time

time

Powerdown Standby

Memory accesses

Self Refresh

Existing memory traffic

Altered memory traffic

Fig. 4. In the first case (above figure), the gaps between consecutive
memory accesses are too short for entering low-power states to have any
benefits. In the second case, by delaying and batching memory accesses,
we can create longer idle periods, thus allowing power management to
take advantage of various low-power states.

Unfortunately, due to the randomness in memory accesses,
long idle periods are rarely observed. As a result, it inhibits the
use of Self Refresh, which severely limits the amount of power

1Registered memory is almost always used in server systems to better
meet timing needs and provide higher data integrity, and the PLL and
registers are critical components to take into account when evaluating
registered memory in terms of performance and energy.

3

time

Memory accesses

Powerdown StandbySelf Refresh

time

time

time

Rank 0

Rank 3

Rank 1

Rank 2

Fig. 5. An example showing that if memory traffic is left unshaped,
power management cannot take full advantage of deeper power-saving
states since most idle periods are too short.

time

Memory accesses

Powerdown StandbySelf Refresh

time

time

time

Rank 0

Rank 3

Rank 1

Rank 2

Fig. 6. An example showing that if memory traffic can be loosely
controlled (e.g., by migrating pages), some ranks will, as a result, have
much longer idle periods, thus allowing the use of the deeper power-
saving states.

saved from using existing power-management techniques. This
is illustrated by an example shown in Figure 4, where we show
that simply making power-management decisions based on the
monitored memory traffic is often not enough — the observed
memory traffic might not present the necessary energy-saving
opportunities. However, if we can alter the traffic pattern in a
certain way, it is possible to create longer idle periods, from
which power can be more effectively reduced. Unfortunately,
the particular technique we show in Figure 4 is not very useful
in practice as we cannot control memory accesses at such a
fine granularity. Additionally, by delaying and batching memory
accesses, we pay a severe performance penalty. In the following
section, we illustrate a more practical and low-overhead method
of reshaping memory traffic to improve energy efficiency.

III. MEMORY TRAFFIC RESHAPING

To reshape the memory traffic for our benefit, we must
make memory accesses less random and more controllable.
Conventional memory traffic often seems random because (1)
the operating system arbitrarily maps virtual pages to physical
pages, and (2) different pages are often accessed very differently
at run-time. As a result of such randomness, the interarrival
characteristic of memory requests observed on each rank might
not be favorable for existing techniques to manage power.

To give an example, we use a 4-rank system shown in Figure 5.
Due to the arbitrary OS’s page mapping, memory requests are
likely to be randomly distributed among the 4 ranks. This creates
a large number of small and medium-sized idle periods. The
smaller idle periods are often completely useless and cannot be
used for saving energy. As for the medium-sized ones, we can

transition memory devices to Powerdown and obtain a moderate
amount of power savings. However, to significantly reduce power,
we need to take advantage of Self Refresh’s ultra-low power
property. Unfortunately, as it can be seen from this example, due
to the lack of long idle periods, Self Refresh is very infrequently
utilized.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 50000 100000 150000 200000

N
um

be
r o

f A
cc

es
se

s

Page Number

Low Memory Intensive Workload

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 50000 100000 150000 200000

N
um

be
r o

f A
cc

es
se

s

Page Number

High Memory Intensive Workload

Fig. 7. Number of times each physical page in the memory is
accessed for low memory-intensive workload and high memory-intensive
workload. These workloads are described in Section IV.

A. Hot Ranks and Cold Ranks
To elongate idle periods, we introduce the concepts of hot and

cold ranks. Hot ranks are used to hold frequently-accessed pages,
which leaves infrequently-used and unmapped pages on cold
ranks. Hot ranks are created by migrating frequently-accessed
pages from cold ranks to hot ranks. The mechanism to migrate
pages from one rank to another was previously described in full
detail in [7]. The result of making this differentiation among
ranks is shown in Figure 6. Here we assume that Rank 0 and
1 are used as hot ranks and Rank 2 and 3 are used as cold
ranks. Essentially, we are increasing the utilization of hot ranks
and decreasing the utilization of cold ranks. As a result, the
additional memory requests imposed upon these hot ranks will
“fill-in” between the idle gaps. As most of these gaps were small
and could not be used for saving power, by servicing additional
requests during such times, we are making more efficient use
of the power dissipated by the hot ranks. Although this might
cause hot ranks to lose some energy-saving opportunities to use

75 90 95 99
Percentile Percentile Percentile Percentile

LowMem Workload 5.68% 14.27% 18.60% 25.81%
HighMem Workload 0.53% 1.49% 4.98% 16.38%

TABLE I
SHOWS WHAT PERCENTAGE OF ALL PAGES IS RESPONSIBLE FOR 75%,

90%, 95% OR 99% OF ALL MEMORY ACCESSES.

4

Component Parameter
Processor 64-bit 2.0 GHz PowerPC
DCache 64KB 2-way Set-Associative
ICache 32KB 4-way Set-Associative

L2-Cache 1.5MB 4-way Set-Associative
DTLB 512 entries 2-way Set-Associative
ITLB 512 entries 2-way Set-Associative

DERAT 128 entries 4-deep
IERAT 128 entries 4-deep
SLB 16 entries

Memory DDR-400 768MB (64Mbx8)
Linux Kernel 2.6.5-rc3 w/ PAVM patch

TABLE II
SYSTEM PARAMETERS USED IN MAMBO. ALL CACHE LINES ARE 128

BYTES LONG.

Powerdown (e.g., Rank 1 shown in Figure 5 and Figure 6),
but as a result of that, more valuable opportunities are created
on cold ranks where Self Refresh can be more utilized. In our
experiments, we found that the average interarrival time elongated
by almost 2 orders of magnitude on cold ranks.

B. Reducing Migration Overhead
Migrating pages causes additional memory traffic, which re-

sults in more queuing delays and contentions. Therefore, only a
small number of pages can be moved without causing noticeable
overhead. Fortunately, empirical observations from our experi-
ments gave us some hints that allow us to do just that and still
be able to reshape the memory traffic according to our needs.
Memory traces collected from several workloads indicate that
only a small percentage of pages are responsible for a majority of
the memory traffic. This is shown in Figure 7, and we summarize
the results in Table III. From this table, it is clear that we can
reshape the memory traffic to meet our needs by migrating only
a very small percentage of pages. For example, if we want to
control 90% of all memory traffic, we only need to control 1.5–
14.3% of all pages. Only half of these pages would need to be
migrated because pages are randomly allocated, and on average,
50% of the frequently-accessed pages should have already been
allocated on the hot ranks and do not need to move. Furthermore,
since migration overhead is only a one-time cost, the longer a
migrated page stays hot, the more we can amortize its migration
cost over time. We can also think of other heuristics that we can
use to further reduce the number of migrations and the migration
overheads. For example, we can use process profiling to better
predict the appropriate initial location where we should allocate
pages for each process so that the number of page migrations
can be reduced. Additionally, we can reduce migration overhead
by avoiding moving heavily-shared pages, page-cache pages, and
buffer-cache pages as there are more overheads in moving these
types of pages. In particular, to move a shared page, we would
need to change the page table entries of each of the processes
sharing this page; the more processes sharing this page, the
more page tables we would need to modify. Therefore, the best
candidate pages to migrate are frequently-accessed private pages.

IV. EVALUATION

In this section, we evaluate the energy benefits in reshaping
the memory traffic. We first describe our simulation setup and
the workloads we used, in Section IV-A and IV-B, respectively.
In Section IV-C, we show results from our simulations.

A. Simulation Setup
Mambo [12] is a full-system simulator that can simulate

various PowerPC R© machine architectures, and it is currently

Pre

AR

SR ACT

IO

PPD APD

ns 15t RP =>

ns 15t RCD =

I/O burst

ns 40tRAS =>

ns 5t CK =

ns 5tCK =ns 5tCK =

ns 5t CK =

nsec 70tRFC =

Every 7.8125 us

ns 5tCK =

ns 1000t XSRD =

State Power
PRE Precharge 137.5 mW
PPD Precharge-Powerdown 12.5 mW
ACT Active 150 mW
APD Active-Powerdown 112.5 mW
SR Self-refresh 10 mW
AR Auto-refresh 27.5 mW
IO Read/Write 1200 mW

CL = 15 ns

ns 10t RRP =>

To different
banks

Fig. 8. Detailed DDR state machine that we simulate in our memory
simulator. Some minor states and transitions are omitted from this graph
for better viewing.

in active use by multiple research and development groups at
IBM. We used it for running workloads and collecting memory
traces. In our simulation study, the Mambo-simulated machine is
parameterized as that shown in Table II. We also implemented a
trace-driven main memory simulator using the CSIM [9] library.
It can accurately model performance and power dissipation of
the memory by simulating a detailed DDR state machine (shown
in Figure 8). Furthermore, it can also simulate the effect of
queuing and contention occurring at the memory controller,
synchronous memory interfaces (SMIs), and on various buses.
Power dissipation of memory devices is calculated by keeping
track of the state information for each bank on a per-cycle basis,
as was described by [10].

B. Workloads
In our evaluation, we use two workloads, classified as either

“low memory-intensive” or “high memory-intensive”, based on L2
miss rates [2]. For the low memory-intensive workload, we run
SPECjbb having 8 warehouses in parallel with bzip2 and crafty
from the SPEC CPU2K benchmarks, and for the high memory-
intensive workload, we run SPECjbb in parallel with mcf and
art from the SPEC CPU2K benchmarks. Reference input sets are
used for all the SPEC CPU2K benchmarks.

C. Results
Our memory simulator can simulate various power-

management techniques. To compare our technique with
the previously-proposed ones, we evaluate five techniques in
power and performance, which are listed as follows.
• No Power Management (NOPM): Here, no power-

management technique is used, and ranks are transitioned
to Precharge when they are idle.

• Immediate Powerdown (IPD): This is the simplest form
of hardware power management. It is a static technique
where the memory controller immediately transitions a rank

5

 value thresholdMaximum Th
rank xon Refresh Selfenter toThreshold Th[x]

rank xon T within accessesmemory ofNumber [x]N
intervalrefresh 1)(i and ibetween interval Time T

usec) (7.8 intervalrefresh Auto t

Max

1ii 1ii

thth
1ii

REFI

=
=
=

+=
=

++
+

Refresh) enter(Self
 thenTh[x]) exceeded has time(idle if

rdown)enter(Powe
Refresh) Selfin currently not is(rank x if

Th Th[x]
)Th (Th[x] if

 t[x]N Th[x] Th[x]
else

 t- Th[x] Th[x] else
Th[x]/2 Th[x]

 then) t (Th[x] if
 then0)[x]N(if

 rank x each For
intervalrefresh i theof end At the

:Algorithm Prediction Threshold

Max

Max

REFI1ii

REFI

REFI

1ii

th

=
>

∗+=

=
=
<
==

+

+

Fig. 9. Threshold prediction algorithm used in the hardware-controlled
power-management technique.

to Powerdown when all memory requests on this rank have
completed.

• Immediate Self Refresh (ISR): Same as IPD, but transitions
to Self Refresh instead of to Powerdown.

• Dynamic Hardware Technique (HW): This is a dynamic
hardware power-management technique and is similar to the
History-Based Predictor described in [3]. It monitors past
memory accesses, and based on which, predictions after
how long of an idle period should it transition a rank to
Self Refresh (the threshold prediction algorithm is shown in
Figure 9). Transitions to Powerdown have a zero threshold,
which was previously shown to be the most efficient [1].

• HW with a Reshaped Memory Traffic (HWx): Using the
same HW technique as above but with a reshaped memory
traffic. The x in HWx represents the percentage of all pages
that we migrate when reshaping the memory traffic, i.e.,
HW0 is the same as HW.

Results for the low memory-intensive and the high memory-
intensive workloads are shown in Tables III and IV, respectively.
In these tables, we show the average power dissipation, the
normalized runtime (with respect to no power management), and
the average response time of memory accesses for each of the
power-management techniques. We can see that even with the
simplest static power management, IPD, a significant amount of
power (45.73–48.89%) can be reduced without causing much
impact on the performance (1.8–5.0%). Using ISR, additional
power can be reduced. However, due to having a static policy to
transition into Self Refresh and a much higher resynchronization
latency when exiting from Self Refresh, ISR’s overwhelming
performance penalty (99.2–279.5%) makes it almost impractical
to use in realistic workloads. On the other hand, using the
dynamic hardware technique (HW), we show that if Self Refresh
is utilized more carefully, a significant amount of power can be
reduced (71.64–78.57%) but without significantly affecting the
performance (3.5–5.6%).

1) Effect of Reshaping on Memory Traffic: Among these four
techniques, HW is by far the most effective because it can dy-
namically adapt its power-management decisions as the memory
traffic’s characteristic changes. To understand the implications of
memory traffic reshaping, we re-evaluated HW with a reshaped

Normalized Average
Power Management Power Runtime Response Time
NOPM 49.97 W 1.000 50.71 ns
IPD 25.54 W 1.018 58.61 ns
ISR 6.23 W 1.992 474.72 ns
HW 10.24 W 1.035 65.80 ns
HW5 6.26 W 1.056 72.62 ns

TABLE III
SUMMARY OF THE ENERGY AND PERFORMANCE RESULTS FOR THE

LOW MEMORY-INTENSIVE WORKLOAD.

Normalized Average
Power Management Power Runtime Response Time
NOPM 52.15 W 1.000 52.65 ns
IPD 28.30 W 1.050 58.59 ns
ISR 14.47 W 3.795 385.09 ns
HW 14.79 W 1.056 59.34 ns
HW5 9.52 W 1.190 74.89 ns

TABLE IV
SUMMARY OF THE ENERGY AND PERFORMANCE RESULTS FOR THE

HIGH MEMORY-INTENSIVE WORKLOAD.

memory traffic. However, before we delve into that, we will
first look at the effects of migrating frequently-accessed pages
from cold ranks to hot ranks on the existing memory traffic.
In Figure 10, we show how the idle time characteristic (i.e.,
the distribution of the total idle time among different-sized idle
periods) on a hot rank and a cold rank has changed after we
reshaped the memory traffic. Due to the need to serve more
memory requests, the average idle period on hot ranks decreased
from 3630 nsec to 472 nsec. This causes some opportunities to
be lost for entering low-power state, but since we can benefit
from entering Powerdown even with short idle periods, not much
is really lost here. Moreover, by redirecting a significant number
of memory accesses from cold ranks to these hot ranks, much
longer idle periods are created on cold ranks. We found that
after the migration, the average idle period increased from 1520
nsec to 122210 nsec (Figure 10(b)). This created more valuable
opportunities where Self Refresh can be exploited.

Results of using HW to manage power on a reshaped mem-
ory traffic are shown in Tables III and IV, labeled as HW5,
for the low memory-intensive and the high memory-intensive
workloads, respectively. Here, we migrated 5% of pages to
reshape the memory traffic. By doing so, we achieved 35.63–
38.87% additional power savings than the original HW technique.
However, due to the additional contention created at the hot ranks
and the extra memory accesses needed to migrate pages, the
performance is degraded. In the low memory-intensive workload,
the performance degradation is only 2.0% compared to HW.
However, in the high memory-intensive workload, performance
is degraded by 12.7%. The reason for this is that pages are
much more frequently accessed in the high memory-intensive
workload,2 and therefore, as a result of migrating frequently-
accessed pages onto the hot ranks, the contention created on
hot ranks is much more severe in the high memory-intensive
workload.

To study the effect of memory traffic reshaping in more detail,
we compare the results of migrating 1%, 5%, and 10% of pages.
These are shown in Figure 11, where we normalized the average
power and average runtime to that of HW with a unshaped

2Both workloads run for the same amount of time, but the high
memory-intensive workload has 6 times more memory accesses than the
low memory-intensive workload.

6

103 104 105 106 107
0

2

4

6

8

10

12

14
x 107

Interarrival Time (ns)

Id
le

 T
im

e
 (

n
s)

103 104 105 106 107
0

2

4

6

8

10

12

14
x 107

Interarrival Time (ns)

Id
le

 T
im

e
 (

n
s)

(a)

105 106 107 108 109
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 108

Interarrival Time (ns)

Id
le

 T
im

e
 (

n
s)

106 107 108 109
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 108

Interarrival Time (ns)

Id
le

 T
im

e
 (

n
s)

(b)

Fig. 10. Part (a) shows idle time characteristic of a hot rank
before (left) and after (right) migrating frequently-accessed pages.
Part (b) shows idle time characteristic of a cold rank before (left) and
after (right) migrating frequently-accessed pages. These are derived
from the low memory-intensive workload. High memory-intensive
workload gives similar result, thus is omitted here.

memory traffic. Here we can see, migrating only 1% of pages
gives only limited benefits in power reduction. On the other hand,
migrating 10% of pages does not give any additional energy
benefit beyond that of migrating 5%. In addition, it also suffers
from more performance penalty due to having to migrate more
pages. Therefore, migrating 5% of pages gives the best result for
the workloads we ran.

2) Discussion: When memory is extensively accessed, as in
the high memory-intensive workload, performance degradation
due to contention on hot ranks can be more of a concern.
However, this can be alleviated by implementing a detection
mechanism that stops migration or even triggers a “reverse
migration” when excessive contention is observed on hot ranks.
However, this only minimally alleviates the problem. As we can
see from Figure 11, migrating 1% as opposed to 5% of pages
does not give much benefit in reducing performance penalty.

To solve the problem at its root, it calls for an alternative
main memory design, where we should use high-performance,
highly parallel memory on hot ranks and low-performance/low-
power memory on cold ranks. This allows faster access time for
more frequently-accessed pages and minimization of contention
on hot ranks. It also allows for more energy savings with
the use of low-power memory on cold ranks. Additionally, by
using low-performance memory on cold ranks, this heterogenous
main memory design can potentially lower the monetary cost of
building the main memory subsystem.

V. CONCLUSION

In this paper, we propose how to actively reshape memory
traffic to produce longer idle periods so we can more effectively
exploit idleness in the memory. Our extensive simulation in a

�

�����

�����

�����

�����

	

	 ���

��
���	
���

���	 �
������������� ����������� ��� ��� � �!� ��� ������������� ����� "�� #�� �

$

$�%�&

$�%�'

$�%�(

$�%�)

*

* %�&

+�, +�,�* +�,�- +�,�* $
.�/�0�1�2�3�4 5�6�798�6�: ;�/ <�: 6 =!4 1�6 .�/ 0�1�2�3�4 5�6�7 >�/�?�6 0

Fig. 11. Effects of actively reshaping memory traffic by migrating 1%,
5%, and 10% of pages for the low memory-intensive workload (above)
and high memory-intensive workload (below).

multitasking system shows that a 35.63–38.87% additional energy
can be saved by complementing existing power-management
techniques with this proposed technique. Our result also indicates
that an alternative main memory design could be more efficient
than today’s homogenous design in power efficiency, performance
and cost.

REFERENCES

[1] A. R. Lebeck et al. Power aware page allocation. In Architec-
tural Support for Programming Languages and Operating Systems
(ASPLOS), pages 105–116, 2000.

[2] Karthikeyan Sankaralingam et. al. Exploiting ilp, tlp, and dlp with
the polymorphous trips architecture. In ISCA, 2003.

[3] V. Delaluz et al. Hardware and software techniques for controlling
dram power modes. IEEE Transactions on Computers, 50(11):1154–
1173, 2001.

[4] V. Delaluz et al. Scheduler-based DRAM energy power manage-
ment. In Design Automation Conference 39, pages 697–702, 2002.

[5] X. Fan, C. S. Ellis, and A. R. Lebeck. Memory controller policies
for DRAM power management. In International Symposium on Low
Power Electronics and Design (ISLPED), pages 129–134, 2001.

[6] X. Fan, C. S. Ellis, and A. R. Lebeck. Modeling of DRAM power
control policies using deterministic and stochastic petri nets. In
Workshop on Power-Aware Computer Systems, 2002.

[7] H. Huang, P. Pillai, and K. G. Shin. Design and implementation
of power-aware virtual memory. In USENIX Annual Technical
Conference, pages 57–70, 2003.

[8] C. Lefurgy, K. Rajamani, F. Rawson, W. Felter, M. Kistler, and
Tom Keller. Energy management for commercial servers. In IEEE
Computer, pages 39–48, Dec 2003.

[9] Mesquite Software. http://www.mesquite.com.
[10] Micron. http://download.micron.com/pdf/technotes/tn4603.pdf.
[11] Micron. http://www.micron.com.
[12] H. Shafi, P. J. Bohrer, J. Phelan, C. A. Rusu, and J. L. Peterson.

Design and validation of a performance and power simulator for
PowerPC systems. In IBM Journal on Research and Development,
volume 47, 2003.

