
A system-level approach for delay compensation of
process variability impact on run-time configurable

memory organizations

ABSTRACT
Process variability is increasing with each new technology
node and degrading the performance of electronic systems.
In this paper we present a combined design- and run-time
technique which can guarantee the system-level parametric
yield and optimize the global energy consumption of the
system. The focus is on multimedia applications without a
too strong dynamic behavior, like MPEG2, audio and video
codecs. It is based on measuring the actual impact of vari-
ability on the configurable memories and adjusting them
to the desired system period. It consistently outperforms
conventional module-level worst-case design approaches, the
energy gains range between 20% and 60% for different real
time constraints, even for 65nm process variations of about
10% at transistor level which will become even higher for
future scaled nodes.

1. INTRODUCTION
Technology scaling has historically improved the perfor-

mance of embedded systems, both in energy consumption
and speed. Scaling the minimum feature sizes below 100nm
however, brings a host of problems which cannot be com-
pletely solved at the technology level. Back-end performance
degradation, increased leakage currents and increased pro-
cess variability are a few examples. Process variability is
probably the most important one because it has a direct
negative impact on yield and it has a large impact on all the
characteristics of the system [2]. Due to its stochastic na-
ture the only way to maximize the parametric system yield,
the number of samples that meet the timing constraints, is
either by incorporating corner-point analysis [1] in the de-
signs or run-time techniques which can measure the actual
variability and adapt the operation of the system, because
it is impossible to predict its impact on the system before
the chip is processed.

Memories are among the most variability sensitive compo-
nents of a system. The reason is that most of the transistors
in a memory are minimum-sized and are thus more prone to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
XXXXXX XXXXXX
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

variability[3]. Additionally some parts of the memories are
analog blocks, whose operation and timing can be severely
degraded by variability, see Figure 1 [10]. Furthermore, in
our target domain of multimedia applications memories oc-
cupy the majority of the chip area even in current designs
and contribute the majority of the digital chip energy con-
sumption. Thus they are very important blocks for the sys-
tem.

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

0 0,2 0,4 0,6 0,8 1 1,2 1,4

Memory access delay (relative)

write nominal
write variation
read nominal
read variation

+40%

+45%

Energy per access (relative)

nominal points

corner point design

Figure 1: Impact of process variability on the en-
ergy/delay characteristics of a 1KByte memory at
the 65nm technology node. The solid blocks on the
bottom left indicate the simulated nominal perfor-
mance assuming no process variability. The other
points are the simulation results incorporating the
impact of variability. The energy consumption and
delay of a memory designed using corner-point anal-
ysis is also shown.

Maximizing parametric yield in memories via corner-point
analysis and design will lead to severe overheads in energy
consumption and delay, as indicated in Figure 1 by the size
of the “clouds”. The reason is that the memory design will
use over-sized circuits and conservative timing margins to
improve the predictability of the memory behavior by trad-
ing off performance. We want to alleviate the worst-case
design margins by designing the memory in a way that al-
lows the unpredictability of its behavior even though the
parametric specifications are not met at the module level.
In that case, the energy and delay of the memory will be
much smaller than that of the corner-point with a very high
probability. To maximize parametric yield at the system
level we need to add run-time configuration capabilities to
the memory. The application mapping can then be done

for the nominal low-energy configuration point of the mem-
ories. A controller will configure the memories at run-time
to their high-speed configuration if the application timing
constraints are not met after fabrication.

Our approach (Section 2) includes a design-time and a
run-time phase to accomplish compensation of the impact
of process variability and energy consumption minimiza-
tion. At design-time, the application mapping can distribute
the real-time execution time constraint between the various
parts of the application depending on the required band-
width, neglecting the potential impact of process variability.
At run-time, the architecture which includes a controller and
run-time configurable memories will adjust itself to meet the
application deadlines. This approach is scalable to future
nodes, because it relies on circuit design techniques for the
compensation and not on technology parameters which are
becoming more limiting with each new technology node [5,
18].

In this paper, we illustrate this concept of system wide
compensation of process variability effects on the lower level
of the data memory hierarchy of a design for a Digital Audio
Broadcast receiver (Sections 5,6).

2. MOTIVATING EXAMPLE
We illustrate in this section a simple example that shows

how our technique can be applied and why it can provide
robustness against process variability.

We assume that the memories available on the platform
offer run-time configurability (Figure 2 [11], transistor level
simulations at 65nm), a low-power option and a high-speed
option which can be switched at run-time. Process vari-
ability severely impacts the energy/delay behavior of the
memories. After fabrication, the actual energy/delay per-
formance is a point in each cloud. One important property
of these clouds is that they should not overlap in the delay
axis. If this is satisfied then the actual high-speed mem-
ory performance is always faster than the actual low-power
performance irrespective of the impact of variability on de-
lay. This property is exploited by the run-time controller to
guarantee parametric yield and it is also necessary to guar-
antee that the design-time analysis results are accurate no
matter how large the process variability is.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 0.5 1 1.5 2 2.5

Access delay (normalized)

Energy per access (normalized)

high-speed
nominal E/D

low-power
nominal E/D

E/D variation due to
process variability

64%

30%

minimum
guaranteed delay

Figure 2: A configurable memory that offers two
possible configurations, a slow low-energy one and
a fast high-energy one is shown. Its configuration
can change at run-time, but not on an individual
cycle basis. The results come from a transistor-level
simulation of a 1KByte memory with reconfigurable
decoder and wordline drivers.

At design-time the application will be mapped in an op-
timal way given the bandwidth constraints of the memory
organization. The only additional constraint from the plat-
form side is that the resulting cycle time constraint cannot
be lower than the minimum guaranteed delay (Figure ??)
of the critical memory of the system. Essentially we adapt
the cycle time to the application in order to get a guaran-
teed parametric yield and an optimal energy consumption.
At run-time the memory organization performance will be
adapted to the optimal cycle time constraints coming from
the design-time step.

Assume that a purely periodic application exists (e.g. cur-
rent multimedia applications) where for the first N cycles of
the period three data elements are fetched in parallel per
cycle. In the last M cycles the bandwidth is only one ele-
ment per cycle. If EN ,DN and EM ,DM are the energy and
delay for the memory configurations used for the first and
the second part of the code respectively. At design-time we
will determine what are the optimal cycle times (DN , DM)
such that N ∗ DN + M ∗ DM < Dperiod constraint and the
global energy consumption 3 ∗ N ∗ EN + M ∗ EM is mini-
mized, where Dperiod constraint is the real-time application
timing constraint. Given these time varying constraints on
the cycle time over the application period, the run-time con-
troller will adapt the speed of the memory organization by
configuring the memories.

Figure 3 illustrates how the controller adapts the mem-
ory configurations to guarantee parametric yield. The en-
ergy/delay characteristics of two identical memories are shown.
Their nominal behavior is the same, but after fabrication
their actual performance will differ due to process variabil-
ity. Given the cycle time constraint shown memory A has
to be reconfigured to its high-speed configuration to meet
the global timing constraints while the second one does not.
Since the two clouds for the two configuration options of
memory A do not overlap in the delay axis, it is guaran-
teed that this configuration will meet the timing constraints.
Thus parametric yield is guaranteed, as long as the appli-
cation cycle time constraints do not become lower than the
minimum guaranteed delay of the slowest memory.

Delay (ns)

Energy(pJ)

Delay (ns)

Energy(pJ)

x x

x

Delay (ns)

Energy(pJ)

x

Delay (ns)

Energy(pJ)

x

Memory

A

Memory

B

System-level cycle time requirement

Initial configuration Final configuration

Figure 3: Two equal-size memories on the same chip
are shown. Due to variability their access delays are
different. The one that violates the cycle time re-
quirement, should be switched to its fast configura-
tion.

In this paper we focus on the run-time issues of this tech-
nique and the implementation of the required architecture,
the design-time issues will not be discussed in depth.

3. RELATED WORK
The impact of process variability in the operation of sys-

tems is an issue of relatively recent interest. Borkar et al [4]
concluded that a major shift from deterministic to proba-
bilistic design is required and has advocated robust module
design as a solution to the problem. Other approaches advo-
cate solutions at the architectural level including run-time
techniques.

Several papers, especially by circuit designers, have been
implementing a local module level robustness to process
variation [6, 7, 8]. Their goal is to make the modules ro-
bust enough at design time so that no matter how large the
process variability, their functional yield will not be compro-
mised. Their focus is on minimizing the impact of variability
on leakage current and functional yield.

At the architectural level, several techniques have been
proposed. The first one is Razor [12]. It can be currently
applied on the processor pipeline, thus it is still a local tech-
nique, but it takes into account the actual performance of
the circuit after fabrication. Its goal is to find the energy-
optimal operation voltage of the processor, by reducing the
voltage at run-time until the circuit fails to operate. This
eliminates the need for design margins on the supply volt-
age. It is, however, focused on super-scalar microprocessors
which is a different target domain than ours. Furthermore,
the allowable operating Vdd range is reduced with each new
technology node due to reliability issues, eliminating to a
large extent the capability to exploit energy-delay trade-offs
by changing Vdd.

Another architectural approach is the Vth-hopping scheme [9].
This is a technique aiming to reduce leakage power in pro-
cessors by dynamically adapting the threshold voltage of the
all the transistors of the processor using back-gate biasing
techniques. The threshold voltage is configured at run-time
depending on the workload of the processor, but variabil-
ity is not taken into account and it is questionable whether
back-gate biasing is still effective at very deep sub-micron
nodes [5].

The fore mentioned module level approaches all focus on
minimizing the impact of variability on the functional yield
and leakage current at design-time. The architectural ap-
proaches focus on run-time solutions for the minimization
of dynamic or static energy consumption of processors. The
focus of our technique is to maximize parametric yield of the
system and optimize dynamic energy consumption. We tar-
get the entire memory organization, because we can exploit
the multiplicative effect that many memories and the appli-
cation mapping step can offer. Furthermore, all the related
work is either design-time robust circuit/module design or
run-time compensation techniques. Our technique involves
a tightly coupled design-time application mapping step and
a run-time compensation step for globally optimal results.

4. ARCHITECTURE
In order to incorporate the previously described concept

in the architecture we need to extend it with a limited num-
ber of additional blocks. The first required block is a con-
troller which implements the functionality of the system-
level compensation technique. To aid this controller a num-
ber of monitors are required, which will measure the actual
energy/delay characteristics of the various memories on the
chip, see Figure 4. Usually these are already present on
modern chips anyway for test reasons.

Memory

Memory
organization

controller
Switch

FUs

Monitors

Configuration

Calibr/
normal

Vectors

Energy/delay

Data

DataVectors/
address

…….

Figure 4: Simplified architecture of the complete
system including the controller and the monitors.

A Register Transfer Level description of this architecture
has been developed in VHDL. The functionality and imple-
mentation details for each of the modules of the architecture
are discussed next.

4.1 Monitors and communication network
Monitoring circuits are required in order to measure the

actual energy and delay characteristics of the memories. The
delay monitor we used in our simulation is based on the work
of Abas et al [13]. It consists of two separate chains of de-
lay lines and it measures the time difference between the
rising edges of two different signals. The first signal is sent
through a slower delay line chain and the second through
a faster delay line chain in order to catch up with the first
one. Comparators are introduced along these chains. When
the second signal catches up with the first one the respec-
tive comparator output becomes true. The time difference
between the two edges is then calculated as the number of
delay line times the delay difference between the delay lines
of the fast and the slow chain.

This monitor can measure the delay difference between
two one-bit signals. Five bits for the measurement result
give enough granularity and range to the measurement for
our purposes. Since we want to measure the output of mem-
ories with a maximum bitwidth of 32, the monitor of our ar-
chitecture consists of 32 such one-bit monitors and 36 regis-
ters of 5 bits each. The 32 monitors measure asynchronously
the delay of the different memory output bits and store them
in a register. The maximum delay is then calculated and
stored. For each memory we measure the read and the write
delay of the high-speed and the low-energy configuration so
we need four entries in the memory to store the results for
a total of 36 registers of 5 bits each.

In the implementation of the delay monitor each delay
line comprises 23 stages. The delay of the stages of the fast
line is 50psec, for the stages of the slow line it is 100psec.
Additionally an initial delay offset of 400psec exists before
these delay lines. The range of delays that can be measured
by this circuit is from 400psec to 1.55nsec and the granular-
ity of the measurement is 50psec. Given the performance of
current embedded memories the accuracy of this circuit is
sufficient.

The energy monitor used is a plain current monitor. Kim
et al [16] have proposed a circuit that monitors the current
drawn by a block that supplies the measurement result in
a digital form. Since energy consumption is proportional
to the supply voltage multiplied by the current the block

draws, calculating it is straightforward. In order to reuse
these same current monitor for all the memories in the orga-
nization we need to introduce sleep transistors in the voltage
supply and the ground of each one. When one memory is
measured, all the other memories have their sleep transistors
in cut so they do not draw current, making the measurement
as accurate as possible. Furthermore, a small register file of
4 entries is required to store the current measurements for
the read and write operations for each of the two configura-
tions of the memory under measurement.

The switch shown in Figure 4 is implementing a commu-
nication network based on segmented buses. The memory
organizations of low-power systems are typically distributed
so a centralized switch implementation would be a bad de-
sign choice. This communication network provides a band-
width of three parallel transfers per cycle. The buses are
bi-directional shared connections among a number of blocks
and the long wires are split into segments using switches.

A small network controller with a look-up table controls
the configurations of these switches. Based on the source
and the destination blocks of the communication the con-
troller finds the correct entry in the table and applies it to
the switches. This information should come from the other
system blocks. The two sources for this information are ei-
ther the memory organization controller in the measurement
phase or the memory management unit of the functional
units during normal operation.

4.2 Memory organization controller
This block is responsible for the control of the entire mem-

ory organization. It synchronizes the operation of all the
other blocks and changes the phase of operation. It is im-
plemented as a Finite State Machine comprising 6 major
states, see Figure 5. Its full functionality will be discussed
next.

Normal
operation

reset apply test
vector

measure
energy

and delay

next vector

compare
memory delay
to constraint

Measurement phase

communicate
measurements

all vectors
applied

all memories
measured

configure
memory

next memory

new cycle time constraint

Calibration phase

next memory

Figure 5: The operation of the controller can be
divided into 6 major states.

The operation of the system is divided into three phases,
namely the measurement, the calibration and the normal
operation phase. As the names suggest, during the mea-
surement phase the characteristics of all the memories will
be measured. In the calibration phase the controller selects
the appropriate configurations for the memories and applies
them. Normal operation is the phase where the target ap-
plication is ran on the platform.

4.3 Measurement phase
In the measurement phase the main goal is to measure

the energy and delay characteristics of all the possible con-

figurations of all the memories and update the controller
with this information. Furthermore, for each of these con-
figurations we need to extract the worst case access delay
and energy consumption. A methodology has been proposed
in [10] to generate the test vectors based on two vector tran-
sitions that can excite the memory addresses which exhibit
the worst-case access delay and energy consumption. These
test vectors are generated in a BIST-like manner.

In the beginning of this phase the communication network
is configured so that only the controller and the monitors
have access to the memories under measurement, decou-
pling the functional units from this procedure. Then the
controller generates the test vectors and applies them to the
memory under measurement. Each vector is applied twice,
once in a write operation and once in a read operation. Ac-
cess delays and energy of each operation is measured and
locally stored in the monitor. This measuring operation is
actually very similar to what a BIST scheme would do to
determine whether the functionality of the memory is pre-
served, thus the measurement phase and testing phase could
be combined. After all the test vectors have been applied
to a memory, the monitor compares all the measurement re-
sults and finds the maximum read and write access delays
and the maximum read and write energy per access and re-
ports these values to the controller. The same procedure
is repeated for each memory that should be measured. It
is clear that this is a rather tedious and time consuming
procedure. Each word in the memory organization has to
be accessed 4 times to measure read and write performance
of the high-speed and the low-power configuration and the
total number of words is about 22K. This means that about
94K cycles are required to measure the memory organization
of our architecture, which has nine memories. It is sufficient
to perform it every time the system starts-up. The tempo-
ral effects due to process variability, related to reliability for
instance, can be assumed to be very slow.

After the measurement phase is complete the memory or-
ganization controller has collected all the information about
the accessed delay and the energy consumption of all the
configurations of all the memories.

4.4 Calibration and normal operation phases
The next phase is the calibration phase. During this phase

the controller configures the memories based on the actual
timing requirements of the application, using dedicated con-
trol lines.

The controller itself includes a memory-mapped register
file where information about the platform and the applica-
tion are stored. Apart from the delay and the energy con-
sumption of each memory, information about the current
cycle time constraint for the given part of the application is
given. This constraint is generated during the design-time
analysis of the application. The distribution of the execution
time throughout the application according to the bandwidth
requirements yields a varying constraint, which is stored in
one of these registers and updated every time it changes.
The Pareto controller then has to adjust the memory con-
figurations based on this system level cycle time target. This
is a simple operation and it adds a negligible time overhead
in the application execution time. Thus the configuration
phase can be performed often. The RTL implementation of
the controller in our system performs the comparison of the
memory performance to the cycle time constraint and the

memory configuration in parallel for the different memories.
This is feasible because no dependencies between the vari-
ous memories exist. As a result, the calibration of the entire
memory organization can be done in a single cycle. This
enables a very frequent re-configuration of the memory or-
ganization, which provides freedom to the design-time anal-
ysis to do a more fine-grain cycle time adaptation enabling
further energy gains.

During the normal operation phase the target application
is executed on the functional units of the platform. The rest
of the blocks can be virtually hidden by an appropriate con-
figuration of the communication network. During this phase
the memory management unit of the functional units takes
care of supplying the source and destination block informa-
tion to the network. The memory organization controller
and the monitors can be kept completely transparent to the
functional units.

5. EXPERIMENTAL SETUP
To demonstrate the architecture and the concepts that

we propose we have developed the architecture of Figure 4
in RTL. The application that is running on the functional
units is a Digital Audio Broadcast (DAB) receiver [15], see
Figure 6.

FFT
processor

Frequency
deinterleaver

Time
deinterleaver

Viterbi
processor

digitized
input
stream

decoded
output

Figure 6: Block diagram of the Digital Audio Broad-
cast receiver

The transmission system in the DAB standard is based
on an Orthogonal Frequency Division Multiplex (OFDM)
transportation scheme using up to 1536 carriers (Mode I)
for terrestrial broadcasting. At the DAB receiver side the
OFDM carrier spectrum is reconstructed by doing a forward
2048-point FFT (Mode I) on the received OFDM symbol.
This functionality is assigned to the FFT processor shown
in Figure 6.

Forward error correction and interleaving in the transmis-
sion system greatly improve the reliability of the transmitted
information by carefully adding redundant information that
is used by the receiver to correct errors that occur in the
transmission path. The frequency and time de-interleaver
blocks unscramble the input symbols and the Viterbi proces-
sor is the one performing the error detection and correction
based on the redundant information.

The energy optimal mapping of the DAB results in a
distributed data memory organization that consists of nine
memories, seven of them have a capacity of 1 KByte, one of
2 KByte and the last one of 8 KByte. Their bitwidths are
either 16 or 32 bits. These memories have been simulated
in HSPICE using the BPTM transistor model [17] for the
65nm technology node. A wrapper was developed in VHDL
in order to include the impact of process variability on the
energy and delay of the memories simulated at RT level.

Four distinct functionalities are performed in the decod-
ing of the input signal as shown in Figure 6. In the actual
implementation the frequency and time de-interleaving are
performed in a single processor and we have dedicated hard-
ware for the FFT and the Viterbi processing. The energy
consumption of these units as well as the communication
network will not be reported in this paper. The goal of this
work is to keep the input/output behavior of the memory
organization unchanged, so the processing elements are not
affected by the architecture we propose. The impact on the
communication network is negligible because the segmented
buses architecture has the characteristic of scaling without
a significant energy penalty, since the parts of the bus that
are not needed are not activated.

6. RESULTS
Using the experimental setup described in the previous

section we have performed a number of experiments on the
architecture to evaluate how it adapts to the impact of pro-
cess variability and varying timing constraints. Additionally
we have evaluated the behavior of the same architecture
when the corner-point design approach would be used and
the behavior of a system fabricated in an ideal technology
without variability.

The architecture we propose contains run-time configurable
memories, so for fairness of comparison we have assumed
that the corner-point and the nominal design approaches
also have such memories available. The main difference is
that these two approaches lack the controller to adapt the
configurations at run-time, so one timing constraint has to
be fixed at synthesis-time and no run-time adaptation is
possible.

The results of the simulations are shown in Figure 7. They
show the relative execution time and energy consumption for
decoding a DAB audio frame using our approach compared
to the “worst-case” design approach. The application map-
ping in all three case is the same, thus the number of cycles
is constant. The dashed line shows the behavior of the sys-
tem without variability, the nominal design. The dotted line
represents the system design under worst case margins in the
corner-point design fashion. Finally, the fine lines represent
a number of statistical simulations of our architecture as-
suming different random drifts in the characteristics of the
memories each time.

The nominal design, which is a non-implementable option,
is obviously faster and more energy-efficient than the other
two. The corner-point design is slower and less energy effi-
cient, due to the overhead in energy and delay that is caused
per memory by the worst-case design margins. Note that
the points shown on the figure are all the available system-
level energy/execution time points for these two design ap-
proaches assuming configurable memories are available. The
actual implementation will, however, only correspond to one
of these points, because these approaches cannot exploit the
run-time configuration capabilities of the memories. In other
words, each die can only implement one of the points. Fur-
thermore, we have assumed that the corner-point memory
design produces an accurately predictable memory behavior,
thus a fully predictable system behavior, which is shown in
the figure. In reality small statistical variations can still
exist in the individual memory and the system behavior.

The characteristics of the proposed architecture, on the
other hand, are less predictable. A number of experiments

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2
Execution Time for one audio frame(relative)

Energy consumption for one audio frame (relative)

nominal design
corner point design

our approach incl. random variations

Figure 7: Global system-wide energy vs. delay
trade-off points. The more tight the application
timing constraint is the more energy needs to be
consumed. The upper curve represents the result
of corner-point design with configurable memories.
The lower curve shows the result, assuming process
variability does not exist. The middle curves are
the results for various random injections of process
variability on the system.

were performed assuming random injections of process vari-
ability each time to assess these characteristics. Each solid
line in the figure represents a system with a given variability
injection (a single die) working under a number of different
timing constraints. The different lines represent different
variability injections (different dies). The proposed system
performs much better than the corner-point designed one
and it approaches the ideal curve of the nominal system for
some execution time constraints. For a given cycle time con-
straint it always consumes less energy or for a given energy
budget it always has a faster execution time, compared to
the curve of the corner-point design methodology; our ap-
proach leads to an energy gain ranging from 20% to 60%. If
the execution time constraint is very tight, around 1-1.3 in
Figure 7, the energy gains are around 20%. For more relaxed
constraints (1.5-1.7) the energy consumption of our architec-
ture can be as much as 60% lower than the worst-case. So
even for a not that large transistor level process variability
range of about 10%, large gains are observed. For future
scales nodes even more variation hence gain is expected.

These gains come purely from the alleviation of the energy
and delay overheads that the worst-case design margins in-
troduce in corner-point design. The reason is the statistical
nature of process variability. If the memories are designed
using worst-case assumptions their behavior is more pre-
dictable, but a penalty in energy and delay has to be paid.
In nominal memory design the memory behavior is less pre-
dictable, but no overheads exist. Given that the points in
the cloud in Figure 1 follow an almost normal distribution,
the nominally designed memories are faster and less energy
consuming than the worst-case ones with an extremely high
probability. This difference propagated to the system level
is the one seen in Figure 7.

Furthermore, due to the existence of the controller this
system can be configured at run-time to any of the points
on a single solid line (Figure 7). So parametric yield is also
100% which is possibly an even more important property
of our approach. This provides run-time level adaptation
to varying timing constraints. Only a calibration phase is
required to re-configure the memories to meet the new con-

straint, which inserts negligible overhead in energy and de-
lay, as discussed in section 4.

7. CONCLUSIONS
A novel way to tackle the impact of process variability

has been described. It is based on a run-time controller,
which measures the actual performance of the various mem-
ories in the design and independently per memory adapts
their energy/delay characteristics in order to meet the cy-
cle time constraints. These have been extracted in a design
time phase, where the application is analyzed. The resulting
execution time and energy consumption of this approach is
consistently better than that of the existing industrial solu-
tion, the energy gains range from 20 to about 60% depending
on the timing constraints.

8. REFERENCES
[1] P. Gelsinger, “Giga-scale integration for Tera-ops

performance: opportunities and new frontiers”, Keynote
speech at the 41st DAC, 2004.

[2] H. Chang et al., “The certainty of uncertainty: randomness
in nanometer design”, Proc. of PATMOS, pp. 36-47, 2004.

[3] J. Croon et al., “Physical modeling and prediction of the
matching properties of MOSFETs”, Proc. of ESSDERC, pp.
193-196, 2004.

[4] S. Borkar et al., “Design and reliability challenges in
nanometer technologies”, Proc. of DAC, pp.75, 2004.

[5] A. Keshavarzi et al., “Effectiveness of reverse body bias for
leakage control in scaled dual Vt CMOS ICs”, Proc. of
ISLPED, pp. 207-210, 2001.

[6] M. Yamaoka et al., “A 300MHz 25um/Mb leakage on-chip
SRAM module featuring process-variation immunity and
low-leakage-active mode for mobile phone application
processor”, Proc. of ISSCC, Feb 2004.

[7] C. Kim et al., “A process variation compensating technique
for sub-90nm dynamic circuits”, VLSI Symp. Digest, pp.
205, 2003.

[8] A. Agarwal et al., “Process variation in nano-scale
memories: failure analysis and process tolerant
architecture”, Proc. of CICC, pp. 353-356, 2004.

[9] K. Nose et al., “Vth-hopping scheme to reduce subthreshold
leakage for low-power processors”, JSSC, vol.37, no.3, pp.
413-419, March 2002.

[10] omitted for blind review
[11] omitted for blind review
[12] T. Austin et al., “Making typical silicon matter with

Razor”, IEEE Computer, pp.57, March 2004
[13] M.A. Abas et al., “Design of sub-10-picoseconds on-chip

time measurement circuit”, Proc. DATE, vol.2, pp. 804-809,
Feb. 2004.

[14] omitted for blind review
[15] Radio broadcasting systems; digital audio broadcasting to

mobile, portable and fixed receivers. Standard
RE/JTC-00DAB-4, ETSI, ETS 300 401, May 1997.

[16] C. Kim et al., “An on-die CMOS leakage current sensor for
measuring process variation in sub-90nm generations” VLSI
Symposium Digest 2004, pp.250 - 251

[17] Y. Cao et al., “New paradigm of predictive MOSFET and
interconnect modeling for early circuit design”, Proc. of
CICC, pp. 201-204, May 2000 .

[18] K. von Arnim et al., “Efficiency of body biasing in 90 nm
CMOS for low power digital circuits”, Proc. of ESSCIRC,
pp. 175-178, Sept. 2004.

