
Efficient Voltage Scheduling and Power-Aware Co-Design
for Real-Time Embedded Systems

ABSTRACT
This paper presents an integrated methodology and a tool for
system-level low power/energy co-synthesis of real-time
embedded systems. Static voltage scheduling (SVS) is being
applied to utilize the inherent slacks in the system. The static
voltage schedule is generated based on a global view of all tasks’
mapping and their energy profiles. The tool explores the three
dimensional design space (performance-power-cost) to find
implementations that offer the best trade-off among these design
objectives. Unnecessary power dissipation is prevented by refining
the allocation/binding in an extra synthesis step. The experimental
results show that our approach remarkably improves the efficiency
of SVS to reduce power consumption, especially, for designs with
stringent design constraints.

General Terms
Design, algorithms.

Keywords
Co-synthesis, scheduling, design-space exploration, power
consumption, evolutionary algorithms, dynamic voltage scaling.

1. INTRODUCTION
Power consumption is one of the major challenges that face nearly
all types of present and future battery-operated and embedded
systems. Reducing the power/energy dissipation makes these
systems more competitive and extends the battery life time. At the
same time, packaging and cooling expenses are directly related to
the power/energy dissipation in the system. Hence, without an
integrated methodology that sharply reduces power consumption,
mobile electronics will suffer from short operation periods or
heavy battery weights.
Surveying the work already done in this area reveals that this
problem has been investigated at different abstraction levels. Low
level methodologies supported by CAD tools, such as SPICE can
barely achieve energy reductions of more than 50%. This is
related to the fact that decisions made at these levels have only
limited and local effect on the consumed power. Moreover,

modifying the design at these levels causes longer design cycle
since different design decisions have been already taken at higher
levels of abstraction. Therefore, high level tools can reduce the
design cycle significantly and can lead to design alternatives that
are more efficient from the power/energy point of view.
Typically, tackling power issues at the highest possible abstraction
level has the most global effect. So, using integrated and
automated co-design methodologies starting at the system level is
recommended to achieve drastic power reduction and best system
optimization. It is worth noticing that system level methodologies
are applied as a preliminary step for low power system
optimization that can be combined with low level approaches.
But, automated co-design set up at high abstraction levels needs at
least two supporting requirements: Firstly, a specification
language that supports automated implementation and verification
of functional and temporal behaviour of real-time embedded
systems [1]. Secondly, the required information for performing
such automated implementation has to be abstracted from low
levels and supplied at the intended high level where it can be used
by automatic synthesis and optimization tools [2].
The methodology proposed in this paper tackles at the first place
the dynamic power consumed in embedded systems. Although, the
proposed algorithms are general and can be extended to handle
issues related to static power. In general, the dynamic power
consumed in a digital device is related to the switched capacitance
C, the applied frequency f and the square of the operating voltage

Vdd; . Therefore, reducing the supply voltage
yields a quadratic energy reduction. Based on this, dynamic
voltage scaling (DVS) was suggested for trading performance for
power without sacrificing the peak performance of the device. At
high levels of abstraction, the voltage level(s) required for
executing each task can be statically planned for applications that
have predictable computational loads and predetermined limits on
computation performance. Considering power profiles of the
allocated components when scaling the voltage is a source of extra
power/energy reduction. This is related to the fact that the higher
the energy consumption of a task the more energy saving it causes
once scaling its supply voltage.

f2
ddVCP ⋅⋅∝

The remainder of this paper is organized as follows: Section 2
presents a summary of selected related work in the area of
power/energy minimization and design space exploration. Section
3 presents our automated co-design methodology for low
power/energy. The experimental results are presented in section 4.
We conclude in section 5 and suggest some issues to be handled in
future work.

2. RELATED WORK
In recent years, tools have been devised for exploring the design
space at high abstraction levels. Thiele et al. have suggested a
system level design space exploration methodology for architec-
tures of packet processing devices [3]. An evolutionary-based
approach for system level synthesis and design space exploration
was suggested in [4]. Slomka et al. have presented a tool for
hardware/software co-design of complex embedded systems with
real-time constraints, Corsair [5]. The co-synthesis process was
based on a three-level tabu search algorithm. The above
mentioned approaches did not handle the power problem at all or
did not tackle it concretely.
A power estimation framework for hardware/software System-on-
Chip (SoC) designs was introduced in [6]. The approach was
based on concurrent execution of different simulators for different
parts of the system (hardware and software parts). Although, this
approach could be fairly accurate it is very slow, especially for
large systems when a huge number of design alternatives is
available.
Hybrid search strategies (global/local) for power optimization in
embedded DVS-enabled multiprocessors were introduced in [7].
The approach used a local optimization based on hill climbing and
Monte Carlo search inside a genetic-based global optimization.
Although, this approach yields the required voltage levels that
minimize the energy per computation period, it is time consuming,
especially when applied at high abstraction levels. In addition, the
influence of the power profiles of the tasks was not included.
Gruian has introduced two system level low-energy design
approaches based on DVS-enabled processors [8]. The first was
based on performance-energy tradeoffs whereas the second was
based on energy sensitive scheduling and mapping techniques. In
this approach, simulated annealing was used for generating task-
processor mappings.
An energy conscious scheduling method was introduced in [9].
This methodology assumed a given allocation and tasks-
processors assignment (DVS-enabled processors). The energy was
minimized by selecting the best combination of supply voltage
levels for each task executing on its processor.
A low power co-synthesis tool (LOPOCOS) was suggested in
[10]. The objective was to help the designer in identifying an
energy-efficient application partitioning for embedded systems
implemented as heterogeneous distributed architectures. This
approach assumed DVS-enabled architectures. Although it
performs better than previously suggested approaches, for
applications with stringent delay constraints, it has moderate
reduction effect on the consumed power/energy.
Quite recently, power optimized and performance optimized
components’ types were suggested in [11]. In an automated co-
design methodology, the allocation/binding were refined by an
extra step to make benefit of these types. The effect of using
power optimized components on the overall power consumption
was studied. The maximum achieved power reduction was about
20% for the included benchmarks in the study.
Many of the previously introduced approaches dealt with the
power problem at high abstraction levels and utilized the power-
performance tradeoffs by using DVS-enabled architectures.
However, the following issues are not yet solved satisfactorily: 1)
The special needs of optimizing the co-synthesis process when
applying DVS. 2) For applications with stringent performance
constraints, DVS may fail to cause significant power reductions.
3) The combined effect of using different components’ types and
voltage scaling was not addressed at all.

Our proposed methodology for low power/energy co-design deals
with issues mentioned above. Starting at the level of FDTs (formal
description techniques), the tool is able to explore the available
design space while handling design tradeoffs. It yields power
optimized design(s) under pre-defined stringent performance
limits with low cost. The voltage schedule is static and based on a
global view of energy profiles of tasks and their mappings. The
integrated library is enhanced with a set of special features to
enable fast design space exploration and to improve the efficiency
of SVS. Combining these issues together in one system-level tool
leads to drastic power/energy reduction, especially for real-time
systems with stringent design constraints.

3. DESIGN FLOW AND DESIGN SPACE
EXPLORATION
To be able to handle the complexity of designing large embedded
systems with the presence of time constraints, the design process
is decomposed in our co-design methodology into four phases:
System specification, co-synthesis, implementation synthesis, and
evaluation and validation. These steps are described bellow
before explaining our voltage scheduling methodology.

3.1. Design Phases
The overall automated co-design methodology consists of the
following steps:

3.1.1. System Specification
This phase transforms the informal specifications into formal
specifications. We use the SDL/MSC which is one of the
prominent and the successfully applied techniques in
telecommunication industry [12]. SDL (specification and
description language) is used to describe the functional
specification. MSC (message sequence chart) is extended to
describe timing requirements and other non-functional aspects.
All (Performance) MSC requirements are automatically
transformed to SDL to yield an integrated co-design specification
in SDL*.

3.1.2. Co-Synthesis
An internal system model, a problem graph (PG), and an
architecture graph (AG) are automatically generated from the
specification. The PG is a directed acyclic graph Fp(Ψ,Ω), where
Ψ represents the set of vertices in the graph (ψi∈Ψ) and Ω is the
set of directed edges representing the precedence constraints
(ωi∈Ω). The AG is FA(Θ,ℜ), where Θ represents the available
architectures (θi∈Θ) and (ρi∈ℜ) represents the available
connections between hardware components. For each hardware
component (θi∈Θ), a finite set of resource types (S) is defined. For
each resource type (si∈S) there is a set of associated ratios (Rs)
that specify power, delay, and cost scaling when using this type
for a selected component.
The automated co-synthesis methodology optimizes the allocation,
binding and scheduling (time and voltage). So, the co-synthesis
can be seen as a multi-objective optimization problem that
searches the design space to find an implementation that satisfies
the design constraints. The search-space engine we present in this
article is based on evolutionary algorithm (section 3.3).
Evolutionary algorithms are able to process a set of different
implementation candidates at the same time. This inherent
parallelism made evolutionary algorithms suitable for problems
which have complex and large search space. Figure 1 shows the

basic optimization steps. The power estimation and evaluation is
based on a library of pre-characterized components.
The components’ library offers hardware and software
components of different types. Also, components of different
granularity are modelled. These features improve the performance
of exploring the design space as well as the estimation accuracy.
Estimating the power consumed by a design alternative is
performed by combining the number of accesses to each allocated
component with the power model of that component. The power
model of each component is loaded from the library.

Figure 1. Global optimization algorithm

Each individual in the population represents a candidate
implementation. The allocation/binding refinement step refines the
allocation and binding to handle power-performance-cost tradeoffs
in a better way. This step deals with an ordered list of types for
each component and leads to allocating performance optimized
instances to execute critical-path tasks and power optimized ones
for non-critical path tasks. A new schedule is generated after the
refinement step.
Since we assume DVS-enabled architectures, the scheduling issue
in this case is transformed into a two dimensional problem: time
and voltage. A list-based scheduler performs the time scheduling,
whereas the voltage schedule is computed in such a way that the
available slack is utilized efficiently without violating
performance constraints. The computed voltage schedule is stored
in a table-like form, which keeps the overhead of voltage
scheduling at minimum during run-time.

3.1.3. Implementation Synthesis and Evaluation and
Validation

Commercial tools and our own SDL compiler are used for
translating the SDL* specifications into software implementation
in C and hardware implementations in VHDL. Compilation for
VHDL and C is carried out by commercial tools, which are readily
available from many vendors.

3.2. Applying SVS
For applications that have predictable computational loads with a
pre-determined upper constraint on performance, it is possible to
estimate the benefits of SVS [13], but applying SVS introduces
two new overheads: Transition time and transition energy that
represent the required time and energy for changing the voltage
from level1 to level2, respectively [14]. The overhead of applying
SVS is considered in our methodology and assumptions related to
this overhead (energy and cost) are taken from [7]. At the same
time, reducing the supply voltage increases the circuit delay. The
following equation shows the relation between circuit delay and
supply voltage:

()2tVsupplyV

supplyV
dkdelay

−
= (1)

where: Vsupply is the supply voltage and Vt is the threshold voltage.
So, the voltage may only be reduced if the corresponding
degradation in performance can be tolerated.
Using the introduced notation, the energy consumed by a task
executed at voltage level Vlevel is calculated as follows:

supplyVV)iE(ψ
2
supplyV

2
levelV

)i(ψE ==′
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
 (2)

The time needed to execute a task is increased when this task is
executed at a voltage level lower than the maximum. This in
return may affect (increase or decrease) the available slack or idle
time interval for other tasks which are not necessarily mapped to
the same hardware. This is related to the mapping of these tasks
and the precedence constraints between tasks. So, in order to take
into consideration this inter-task relation, we perform the voltage
level planning based on a global view of all tasks and their energy
profiles. The voltage scheduling algorithm is depicted in Figure 2.

Input: Fp(Ψ,Ω), FA(Θ,ℜ), mapping, time schedule, step.
Output: Voltage schedule Vss(t)

Step 0:

- Calculate ∆ENi of all tasks ψi∈Ψ
- Assign Ppriority to all tasks ψi∈Ψ
- Create empty list LS of size y

Step 1:
Arrange the tasks in LS in a descending order of Ppriority.
Step 3:
Get a (ψj) with the highest non-zero Ppriority from LS.

- If (Vdd is no longer > 2Vt) → remove ψj from LS.
- Else, extend the task (ψj) in steps of (n*step).
- Update the tasks profile and propagate delay effects.

Step 4:
Return if LS is empty OR all tasks have Ppriority = 0
Step 5:

- Calculate ∆EN of all tasks in LS.
- Assign Ppriority to all tasks.
- Go to step 1.
Input: Fp(Ψ,Ω), FA(Θ,ℜ), technology library
Output: allocation/binding, schedule (time and voltage)

Step 0: Generate initial population.
Step 1: Decode implementation.
Step 2: Repair infeasible implementations.
Step 3: Evaluate and refine each implementation:

- Compute a time schedule (if any).
- Refine the allocation/binding.
- Compute a voltage schedule (Figure 2).
- Compute objective values.
- Force penalty to reflect design constraints violation.

Step 4: Check termination (design constraints).
Step 5: Assign fitness and perform selection (SPEA2).

- Environmental selection (archive update)
- Mating selection (produce the mating pool)

Step 6: Variation: recombination operators
 (Crossover & mutation)
Go to Step 1.

Figure 2. Voltage scheduling algorithm

In the figure above, (y) refers to the number of tasks. ∆ENi refers
to the energy saving for task (i) when extending its execution time
(by one time step (Step, n = 1)) by scaling its operating voltage:

1n)i(ψE)iE(ψi∆EN =′−= (3)

The achieved energy reduction is closely related to ∆ENi [15]. So,
tasks with larger energy profile are given more preference to
extend their execution. The power priority (Ppriority) for task ψi is
proportional to the calculated ∆ENi multiplied by sli which is
defined as:

⎩
⎨
⎧ ≠

=
otherwise0,

0islack1,
isl (4)

The task which has the maximum effect on the energy
consumption is selected firstly to extend its execution by scaling
the voltage. After extending the execution of a task by means of
reducing the supply voltage, the power value is updated for the
selected task and the effect of the time extension for this task is
propagated through other related tasks. The algorithm above
terminates when one of two conditions is satisfied: 1) When the
list LS is empty. This case occurs if the voltage level is reduced to
a value around 2Vt for all tasks. Actually, the minimum possible
value for Vdd is set relative to the worst case threshold voltage. A
practical limit for it is about 2Vt [20]. 2) When the Ppriority = 0 for
all tasks which means there is no available slack to be exploited by
any of the tasks.
In the aforementioned algorithm, a task has the opportunity to stay
in the LS list although it has temporarily no more available slack.
So, artificial slacks created by other extended tasks can be utilized.

3.3. Evolutionary Algorithm Design
We created an evolutionary algorithm based synthesizer by
integrating the widely used evolutionary multi-objective optimizer
SPEA2 [16] to our automated co-design framework. The
optimization goal is to find design alternatives with Pareto-optimal
objective vectors.
In Figure 1, the initial population is generated randomly. Repair
heuristics and penalty functions are used to deal with the
infeasibility problem in the generated implementations. The repair
mechanism is based on a priority list of hardware components that
can be allocated to execute a task.
Violating design constraints (delay, cost, and power) is handled
using appropriate penalty functions. Each penalty function takes
into consideration the number of violations of this design
constraint’s type and the distance from the feasible region. For
example, the penalty function for violating power constraints in a
given path is given by:

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛ ⎟
⎠
⎞⎜

⎝
⎛ −

∑
=

⋅⋅=

iMAXP
iMAXP)(iPm

i iαmµ,J)ip(g
βα ,

1
 (5)

where is the forced power constraint on path i in the task

graph, is the actual consumed power for a given

allocation α and binding β, indicates how crucial violating this
constraint is, m is related to the number of violations of this type
of constraint, and µ is a controlling parameter. The fitness
function f(J), when a certain design constraint is violated, is the

sum of the penalty function and the objective function h(J). The
obtained fitness function represents the new objective function

iMAXP

),(βαiP

iα

)(Jh′ . So, the problem is transformed into another problem with
)()(JhJf ′= . The optimization process is guided by the

objective function)(Jh′ and the fitness of an implementation is
calculated based on the Pareto-optimization scheme (SPEA2).
The variation process includes applying reproduction rules
(crossover and mutation) to change the genetic material of
individuals. Different types of crossover (such as uniform and
single point) and mutation (such as one-point and independent) are
implemented. The types of these operators are specified by the
user. Different controlling parameters have been experimentally
specified. The selection process is performed by SPEA2. The
termination condition is the satisfaction of design constraints or
exceeding a pre-specified number of generations.

4. BENCHMARKS AND EXPERIMENTAL
RESULTS
To investigate the effectiveness of our integrated methodology, we
applied it to a set of benchmarks, part of them are taken from real-
life examples. The benchmarks themselves can be categorized into
two groups: The first group includes: the one dimensional FFT,
the Gaussian Elimination (GE), both taken from [17], and the
Optical Flow Detection (OFD) which is part of an autonomous
model of a helicopter [18]. The OFD algorithm runs originally on
two DSPs with an average current of 760 mA at 3.3V. It uses a
repetition rate of 12.5 frames of 78× 120 pixels per second. The
original data for power consumption and performance are partially
taken from [10]. The second group includes a set of benchmarks
originally generated using the “Task Graphs For Free” TGFF [19].
The results are reported using the achieved power/energy
reduction in percent. These results are categorized in three groups:
The benefit of using power optimized types and architectures by
using allocation/binding refinement [11], the benefit of applying
SVS, and the achieved benefit by combining both SVS and the
allocation refinement step. To clearly demonstrate the effect of
allocation refinement using different hardware types on the
performance of SVS, extra experiments are performed by forcing
more stringent performance constraints while applying our design
methodology.

4.1. Using Power Optimized Types
Column two in Table 1 shows the obtained power reduction when
applying the methodology presented in [11]. The results indicate
that the maximum power reduction that can be achieved is barely
exceeding 20%. Nevertheless, this extra refinement step is
valuable when combined with voltage scaling. The influence of
this combination is presented bellow in more details.

4.2. The Effect of Applying SVS
The benefit of applying SVS is shown in column 3 of Table 1. The
minimum benefit when applying SVS is obtained by the GE. This
can be related to the stringent performance constraints forced on
this application and the data dependency in the task graph. For the
first group of benchmarks, the FFT achieves a power reduction of
about 42% when applying SVS whereas TGFF6 seems to make
the best benefit of SVS (83.5%). It is clearly seen that SVS is
superior to only refining the allocation.

4.3. Using Allocation Refinement Combined
with SVS
When delay constraints provide enough slack intervals to be
utilized by the SVS, the effect of refining the allocation/binding is
extremely limited. TGFF1 is an example on this case. Column 4 of
Table 1 shows the effect of the allocation refinement step on SVS.
It is clearly seen that the performance of SVS is improved, but in
varying degrees.

Table 1. Power reduction in %

Benchmark

Allocation
Refinement [11]

SVS

SVS &
Allocation
Refinement

TGFF1 19,7 68,1 69,1
TGFF2 14,8 36,4 45,1
TGFF3 12,7 64,6 77,1
TGFF4 10,8 82,6 88,1
TGFF5 13,1 60,1 64,9
TGFF6 18,1 83,5 93,6
TGFF7 13,8 30,2 70,4
TGFF8 20,3 76,6 78,9
TGFF9 16,7 37,3 83,6
TGFF10 2,7 19,6 49,5

FFT 17 42 66
GE 15 18 26

OFD 6 22 27

The effect of this refinement step increases and becomes clearer as
the performance constraints get more and more stringent. Table 2
shows the achieved power reduction when more stringent
performance constraints are forced by scaling the original
constraints. In order to enable fair comparison, the power
reduction obtained under these tight performance constraints when
applying SVS are evaluated and presented in column 2 of the
same table. The last column of this table shows the joint influence
of SVS and the extra refinement step on the attained power
reduction.
The results presented in Table 2 obviously show that the potential
benefit of applying SVS is sharply limited under tight
performance constraints. The maximum power reduction that
could be achieved in this experiment is about 25% only.
It is clearly seen that under this condition, the effect of applying
SVS can be noticeably improved when combined with the
suggested allocation refinement step. For example, the effect of
using SVS is almost tripled when combined with the extra
allocation refinement step for TGFF4*, whereas the power
reduced is improved by a factor of 15 for TGFF10*. This justifies
the need for this extra optimization step.

Table 2. Power reduction in %

Benchmark SVS SVS& Allocation
Refinement

TGFF1* 25,4 36,8
TGFF2* 20,4 43,6
TGFF3* 11,9 53,6
TGFF4* 22,3 61,4
TGFF5* 16,2 53,6
TGFF6* 20,0 84,9
TGFF7* 5,7 34,5
TGFF8* 17,3 76,5
TGFF9* 7,2 64,3

TGFF10* 3,1 45,3

As we pointed out previously, system level power optimization is
not suggested to replace but to aid low level system optimization
methodologies. Throughout the design process, the system will
undergo other optimization steps at low abstraction levels.

5. CONCLUSIONS AND FURTHER WORK
This paper adds a new dimension to the multi-objective
optimization problem of system co-synthesis, by optimizing the
voltage schedule as an integrated part in the co-synthesis process.
The proposed automated co-design tool for low power/energy
real-time embedded systems is of valuable help for system level
designers. The tool is able to explore the performance-power-cost
design space. It guides the design process to low power design
alternatives that satisfy other design constraints.
SVS has been successfully integrated in the co-synthesis process
and its performance is remarkably enhanced by using the
suggested extra refinement step. All benchmarks included in this
study showed the effectiveness of the presented approach.
Currently, we are developing methodologies to reduce the
overhead related to switching the voltage level when applying
SVS. Further on, it is part of the future work to find out how to
encode the voltage level in the gene itself.

6. REFERENCES
[1] Münzenberger, R., Dörfel, M., Hofmann, R., and Slomka, F.

A General Time Model for the Specification and Design of
Embedded Real-Time Systems. Microelectronics Journal,
vol. 34, 2003, pp. 989-1000.

[2] Mohsen, A., and Hofmann, R. Characterizing Power
Consumption and Delay of Functional/Library Components
for Hardware/Software Co-design of Embedded Systems. In
the 15th IEEE Int. Workshop on Rapid System Prototyping
(RSP’04), Geneva, 2004, pp. 45-52.

[3] Thiele, L., Chakraborty, S., Gries, M., and Künzli, S. Design
Space Exploration of Network Processor Architectures. In
Network Processor Design: Issues and Practices, Vol. 1,
October, 2002.

[4] Teich, J., Blickle, T., and Thiele, L. An Evolutionary
Approach to System-Level Synthesis. In the 5th International
Workshop on Hardware/Software Co-Design (Codes/CASHE
'97), March, 1997.

http://csdl.computer.org/comp/proceedings/codes/1997/7895/00/7895toc.htm
http://csdl.computer.org/comp/proceedings/codes/1997/7895/00/7895toc.htm
http://csdl.computer.org/comp/proceedings/codes/1997/7895/00/7895toc.htm

[5] Slomka, F., Dörfel, M., Münzenberger, R., and Hofmann, R.
Hardware/Software Codesign and Rapid Prototyping of
Embedded Systems. IEEE Design & Test of Computers,
2000, pp-28-38.

[6] Ljolo, M., Raghunathan, A., Dey, S., Lavagno, L., and
Sangiovanni-Vincentelli, A. Efficient Power Estimation
Techniques for HW/SW systems. In Proc. of the IEEE
VOLTA'99 International Workshop on Low Power Design,
Italy, 1999, pp. 191-199.

[7] Bambha, N., Bhattacharyya, S., Teich, J., and Zitzler, E.
Hybrid Global/Local Search for Dynamic Voltage Scaling in
Embedded Multiprocessor. In Proc. of the 1st int. symposium
on Hardware/Software Co-design (CODES’01), 2001, pp.
243-248.

[8] Gruian, F. System-Level Design Methods for Low Energy
Architectures Containing Variable Voltage Processors. In
Proc. of Power-Aware Computing Systems Workshop,
November 12, Cambridge (MA), US, 2000.

[9] Gruian, F., and Kuchcinski, K. LEneS: Task-Scheduling for
Low Energy Systems Using Variable Supply Voltage
Processors. In proc. of Asia and South Pacific Design
Automation Conference (ASP-DAC’01), 2001, pp. 449-455.

[10] Schmitz, M., Al-Hashimi, B., and Eles, P. Synthesizing
Energy-efficient Embedded Systems with LOPOCOS. Design
Automation for Embedded Systems, 6, 2002, pp 401-424.

[11] Mohsen, A., and Hofmann, R. Power Modelling, Estimation,
and Optimization for Automated Co-Design of Real-Time
Embedded Systems. In Proc. of the 14th International
Workshop on Power and Timing Modelling, optimization and
Simulation, (PATMOS’04), Greece, 2004, pp. 643-651.

[12] Mitschele-Thiele and Slomka, F. Co-design with SDL/MSC.
IT Press, 1999.

[13] Pering, T., Burd, T., and Broderson, R. The Simulation and
Evaluation of Dynamic Voltage Scaling Algorithms.
ISELPED 98, (Monterey, CA USA, August 10-12, 1998),
ACM, 2000, pp. 76-81.

[14] Burd, T., and Broderson, R. Design Issues for Dynamic
Voltage Scaling. In Proc. of the 2000 international
symposium on Low power electronics and design, Italy, 2000,
pp. 9 – 14.

[15] Schmitz, M. and Al-hashimi, B. Considering Power Variation
of DVS Processing Elements for Energy Minimization in
Distributed Systems. In Proc. of the international symposium
on System Synthesis (ISSS’01), 2001, pp. 250-255.

[16] Zitzler, E., Laumanns, M., and Thiele, L. SPEA2: Improving
the Strength Pareto Evolutionary Algorithm for
Multiobjective Optimization. Evolutionary Methods for
Design, Optimization, and Control, CIMNE, Barcelona,
Spain, 2002, pp. 95-100.

[17] Topcuouglu, H., Hariri, S., and Wu, M. Performance-
effective and Low-complexity Task Scheduling for
Heterogeneous Computing. IEEE trans. on Parallel and
Distributed Systems, Vol. 13, No. 3, 2002, pp 260-274.

[18] The Wallenberg Laboratory for Research on Information
Technology and Autonomous Systems. Available at
http://www.ida.liu.se/ext/witas.

[19] Dick, R., Rhodes, D., and Wolf, W. TGFF: Tasks Graphs for
Free. In proc. of Intl. Workshop on Hardware/Software
Codesign, March, 1998.

[20] Landman, P. Low-Power Architectural Design
Methodologies, Ph.D. Thesis, U.C. Berkeley, Aug. 1994.

http://www.ida.liu.se/ext/witas

	Design Phases
	System Specification
	Co-Synthesis
	Implementation Synthesis and Evaluation and Validation

	Applying SVS
	Evolutionary Algorithm Design
	4.1. Using Power Optimized Types
	4.2. The Effect of Applying SVS
	4.3. Using Allocation Refinement Combined with SVS

