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ABSTRACT 
This paper presents an integrated methodology and a tool for 
system-level low power/energy co-synthesis of real-time 
embedded systems. Static voltage scheduling (SVS) is being 
applied to utilize the inherent slacks in the system. The static 
voltage schedule is generated based on a global view of all tasks’ 
mapping and their energy profiles. The tool explores the three 
dimensional design space (performance-power-cost) to find 
implementations that offer the best trade-off among these design 
objectives. Unnecessary power dissipation is prevented by refining 
the allocation/binding in an extra synthesis step. The experimental 
results show that our approach remarkably improves the efficiency 
of SVS to reduce power consumption, especially, for designs with 
stringent design constraints.  
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1. INTRODUCTION 
Power consumption is one of the major challenges that face nearly 
all types of present and future battery-operated and embedded 
systems. Reducing the power/energy dissipation makes these 
systems more competitive and extends the battery life time. At the 
same time, packaging and cooling expenses are directly related to 
the power/energy dissipation in the system. Hence, without an 
integrated methodology that sharply reduces power consumption, 
mobile electronics will suffer from short operation periods or 
heavy battery weights. 
Surveying the work already done in this area reveals that this 
problem has been investigated at different abstraction levels. Low 
level methodologies supported by CAD tools, such as SPICE can 
barely achieve energy reductions of more than 50%. This is 
related to the fact that decisions made at these levels have only 
limited and local effect on the consumed power. Moreover, 

modifying the design at these levels causes longer design cycle 
since different design decisions have been already taken at higher 
levels of abstraction. Therefore, high level tools can reduce the 
design cycle significantly and can lead to design alternatives that 
are more efficient from the power/energy point of view. 
Typically, tackling power issues at the highest possible abstraction 
level has the most global effect. So, using integrated and 
automated co-design methodologies starting at the system level is 
recommended to achieve drastic power reduction and best system 
optimization. It is worth noticing that system level methodologies 
are applied as a preliminary step for low power system 
optimization that can be combined with low level approaches.  
But, automated co-design set up at high abstraction levels needs at 
least two supporting requirements: Firstly, a specification 
language that supports automated implementation and verification 
of functional and temporal behaviour of real-time embedded 
systems [1]. Secondly, the required information for performing 
such automated implementation has to be abstracted from low 
levels and supplied at the intended high level where it can be used 
by automatic synthesis and optimization tools [2].  
The methodology proposed in this paper tackles at the first place 
the dynamic power consumed in embedded systems. Although, the 
proposed algorithms are general and can be extended to handle 
issues related to static power. In general, the dynamic power 
consumed in a digital device is related to the switched capacitance 
C, the applied frequency f and the square of the operating voltage 

Vdd; . Therefore, reducing the supply voltage 
yields a quadratic energy reduction. Based on this, dynamic 
voltage scaling (DVS) was suggested for trading performance for 
power without sacrificing the peak performance of the device. At 
high levels of abstraction, the voltage level(s) required for 
executing each task can be statically planned for applications that 
have predictable computational loads and predetermined limits on 
computation performance. Considering power profiles of the 
allocated components when scaling the voltage is a source of extra 
power/energy reduction. This is related to the fact that the higher 
the energy consumption of a task the more energy saving it causes 
once scaling its supply voltage. 
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The remainder of this paper is organized as follows: Section 2 
presents a summary of selected related work in the area of 
power/energy minimization and design space exploration. Section 
3 presents our automated co-design methodology for low 
power/energy. The experimental results are presented in section 4. 
We conclude in section 5 and suggest some issues to be handled in 
future work.  

 
 



2. RELATED WORK 
In recent years, tools have been devised for exploring the design 
space at high abstraction levels. Thiele et al. have suggested a 
system level design space exploration methodology for architec-
tures of packet processing devices [3]. An evolutionary-based 
approach for system level synthesis and design space exploration 
was suggested in [4]. Slomka et al. have presented a tool for 
hardware/software co-design of complex embedded systems with 
real-time constraints, Corsair [5]. The co-synthesis process was 
based on a three-level tabu search algorithm. The above 
mentioned approaches did not handle the power problem at all or 
did not tackle it concretely.  
A power estimation framework for hardware/software System-on-
Chip (SoC) designs was introduced in [6]. The approach was 
based on concurrent execution of different simulators for different 
parts of the system (hardware and software parts). Although, this 
approach could be fairly accurate it is very slow, especially for 
large systems when a huge number of design alternatives is 
available. 
Hybrid search strategies (global/local) for power optimization in 
embedded DVS-enabled multiprocessors were introduced in [7]. 
The approach used a local optimization based on hill climbing and 
Monte Carlo search inside a genetic-based global optimization. 
Although, this approach yields the required voltage levels that 
minimize the energy per computation period, it is time consuming, 
especially when applied at high abstraction levels. In addition, the 
influence of the power profiles of the tasks was not included. 
Gruian has introduced two system level low-energy design 
approaches based on DVS-enabled processors [8]. The first was 
based on performance-energy tradeoffs whereas the second was 
based on energy sensitive scheduling and mapping techniques. In 
this approach, simulated annealing was used for generating task-
processor mappings.    
An energy conscious scheduling method was introduced in [9]. 
This methodology assumed a given allocation and tasks-
processors assignment (DVS-enabled processors). The energy was 
minimized by selecting the best combination of supply voltage 
levels for each task executing on its processor. 
A low power co-synthesis tool (LOPOCOS) was suggested in 
[10]. The objective was to help the designer in identifying an 
energy-efficient application partitioning for embedded systems 
implemented as heterogeneous distributed architectures. This 
approach assumed DVS-enabled architectures. Although it 
performs better than previously suggested approaches, for 
applications with stringent delay constraints, it has moderate 
reduction effect on the consumed power/energy.  
Quite recently, power optimized and performance optimized 
components’ types were suggested in [11]. In an automated co-
design methodology, the allocation/binding were refined by an 
extra step to make benefit of these types. The effect of using 
power optimized components on the overall power consumption 
was studied. The maximum achieved power reduction was about 
20% for the included benchmarks in the study. 
Many of the previously introduced approaches dealt with the 
power problem at high abstraction levels and utilized the power-
performance tradeoffs by using DVS-enabled architectures. 
However, the following issues are not yet solved satisfactorily: 1) 
The special needs of optimizing the co-synthesis process when 
applying DVS. 2) For applications with stringent performance 
constraints, DVS may fail to cause significant power reductions. 
3) The combined effect of using different components’ types and 
voltage scaling was not addressed at all.  

Our proposed methodology for low power/energy co-design deals 
with issues mentioned above. Starting at the level of FDTs (formal 
description techniques), the tool is able to explore the available 
design space while handling design tradeoffs. It yields power 
optimized design(s) under pre-defined stringent performance 
limits with low cost. The voltage schedule is static and based on a 
global view of energy profiles of tasks and their mappings. The 
integrated library is enhanced with a set of special features to 
enable fast design space exploration and to improve the efficiency 
of SVS. Combining these issues together in one system-level tool 
leads to drastic power/energy reduction, especially for real-time 
systems with stringent design constraints.  

3. DESIGN FLOW AND DESIGN SPACE 
EXPLORATION 
To be able to handle the complexity of designing large embedded 
systems with the presence of time constraints, the design process 
is decomposed in our co-design methodology into four phases: 
System specification, co-synthesis, implementation synthesis, and 
evaluation and validation.  These steps are described bellow 
before explaining our voltage scheduling methodology. 

3.1. Design Phases 
The overall automated co-design methodology consists of the 
following steps:  

3.1.1. System Specification 
This phase transforms the informal specifications into formal 
specifications. We use the SDL/MSC which is one of the 
prominent and the successfully applied techniques in 
telecommunication industry [12]. SDL (specification and 
description language) is used to describe the functional 
specification. MSC (message sequence chart) is extended to 
describe timing requirements and other non-functional aspects.  
All (Performance) MSC requirements are automatically 
transformed to SDL to yield an integrated co-design specification 
in SDL*.  

3.1.2. Co-Synthesis 
An internal system model, a problem graph (PG), and an 
architecture graph (AG) are automatically generated from the 
specification. The PG is a directed acyclic graph Fp(Ψ,Ω), where 
Ψ represents the set of vertices in the graph (ψi∈Ψ) and Ω is the 
set of directed edges representing the precedence constraints 
(ωi∈Ω). The AG is FA(Θ,ℜ), where Θ  represents the available 
architectures (θi∈Θ) and (ρi∈ℜ) represents the available 
connections between hardware components. For each hardware 
component (θi∈Θ), a finite set of resource types (S) is defined. For 
each resource type (si∈S) there is a set of associated ratios (Rs) 
that specify power, delay, and cost scaling when using this type 
for a selected component.  
The automated co-synthesis methodology optimizes the allocation, 
binding and scheduling (time and voltage). So, the co-synthesis 
can be seen as a multi-objective optimization problem that 
searches the design space to find an implementation that satisfies 
the design constraints. The search-space engine we present in this 
article is based on evolutionary algorithm (section 3.3). 
Evolutionary algorithms are able to process a set of different 
implementation candidates at the same time. This inherent 
parallelism made evolutionary algorithms suitable for problems 
which have complex and large search space. Figure 1 shows the 



basic optimization steps. The power estimation and evaluation is 
based on a library of pre-characterized components.  
The components’ library offers hardware and software 
components of different types. Also, components of different 
granularity are modelled. These features improve the performance 
of exploring the design space as well as the estimation accuracy. 
Estimating the power consumed by a design alternative is 
performed by combining the number of accesses to each allocated 
component with the power model of that component. The power 
model of each component is loaded from the library. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Global optimization algorithm 

 
Each individual in the population represents a candidate 
implementation. The allocation/binding refinement step refines the 
allocation and binding to handle power-performance-cost tradeoffs 
in a better way. This step deals with an ordered list of types for 
each component and leads to allocating performance optimized 
instances to execute critical-path tasks and power optimized ones 
for non-critical path tasks. A new schedule is generated after the 
refinement step.  
Since we assume DVS-enabled architectures, the scheduling issue 
in this case is transformed into a two dimensional problem: time 
and voltage. A list-based scheduler performs the time scheduling, 
whereas the voltage schedule is computed in such a way that the 
available slack is utilized efficiently without violating 
performance constraints. The computed voltage schedule is stored 
in a table-like form, which keeps the overhead of voltage 
scheduling at minimum during run-time.  

3.1.3. Implementation Synthesis and Evaluation and 
Validation 

Commercial tools and our own SDL compiler are used for 
translating the SDL* specifications into software implementation 
in C and hardware implementations in VHDL. Compilation for 
VHDL and C is carried out by commercial tools, which are readily 
available from many vendors.  
 

3.2. Applying SVS 
For applications that have predictable computational loads with a 
pre-determined upper constraint on performance, it is possible to 
estimate the benefits of SVS [13], but applying SVS introduces 
two new overheads: Transition time and transition energy that 
represent the required time and energy for changing the voltage 
from level1 to level2, respectively [14]. The overhead of applying 
SVS is considered in our methodology and assumptions related to 
this overhead (energy and cost) are taken from [7]. At the same 
time, reducing the supply voltage increases the circuit delay. The 
following equation shows the relation between circuit delay and 
supply voltage: 
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where: Vsupply is the supply voltage and Vt is the threshold voltage. 
So, the voltage may only be reduced if the corresponding 
degradation in performance can be tolerated. 
Using the introduced notation, the energy consumed by a task 
executed at voltage level Vlevel is calculated as follows:  
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The time needed to execute a task is increased when this task is 
executed at a voltage level lower than the maximum. This in 
return may affect (increase or decrease) the available slack or idle 
time interval for other tasks which are not necessarily mapped to 
the same hardware. This is related to the mapping of these tasks 
and the precedence constraints between tasks. So, in order to take 
into consideration this inter-task relation, we perform the voltage 
level planning based on a global view of all tasks and their energy 
profiles. The voltage scheduling algorithm is depicted in Figure 2.  
 

 

 

 

Input: Fp(Ψ,Ω), FA(Θ,ℜ), mapping, time schedule, step. 
Output: Voltage schedule Vss(t) 
 
Step 0:  

- Calculate ∆ENi of all tasks ψi∈Ψ 
- Assign Ppriority to all tasks ψi∈Ψ 
- Create empty list LS of size y 

Step 1: 
Arrange the tasks in LS in a descending order of Ppriority. 
Step 3:  
Get a (ψj) with the highest non-zero Ppriority  from LS. 

- If (Vdd is no longer > 2Vt ) → remove ψj from LS. 
- Else, extend the task (ψj) in steps of (n*step). 
- Update the tasks profile and propagate delay effects.

Step 4: 
Return if LS is empty OR all tasks have Ppriority = 0 
Step 5: 

- Calculate ∆EN of all tasks in LS. 
- Assign Ppriority to all tasks.  
- Go to step 1. 
Input: Fp(Ψ,Ω), FA(Θ,ℜ), technology library 
Output: allocation/binding, schedule (time and voltage) 
 
Step 0: Generate initial population. 
Step 1: Decode implementation. 
Step 2: Repair infeasible implementations. 
Step 3: Evaluate and refine each implementation: 

- Compute a time schedule (if any). 
- Refine the allocation/binding. 
- Compute a voltage schedule (Figure 2). 
- Compute objective values. 
- Force penalty to reflect design constraints violation. 

Step 4: Check termination (design constraints). 
Step 5: Assign fitness and perform selection (SPEA2). 

- Environmental selection (archive update) 
- Mating selection (produce the mating pool) 

Step 6: Variation: recombination operators  
 (Crossover & mutation) 
Go to Step 1. 
 

Figure 2. Voltage scheduling algorithm 



In the figure above, (y) refers to the number of tasks. ∆ENi refers 
to the energy saving for task (i) when extending its execution time 
(by one time step (Step, n = 1)) by scaling its operating voltage: 

1n)i(ψE)iE(ψi∆EN =′−=             (3) 

The achieved energy reduction is closely related to ∆ENi [15]. So, 
tasks with larger energy profile are given more preference to 
extend their execution. The power priority (Ppriority) for task ψi is 
proportional to the calculated ∆ENi multiplied by sli which is 
defined as: 
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The task which has the maximum effect on the energy 
consumption is selected firstly to extend its execution by scaling 
the voltage. After extending the execution of a task by means of 
reducing the supply voltage, the power value is updated for the 
selected task and the effect of the time extension for this task is 
propagated through other related tasks. The algorithm above 
terminates when one of two conditions is satisfied: 1) When the 
list LS is empty. This case occurs if the voltage level is reduced to 
a value around 2Vt for all tasks. Actually, the minimum possible 
value for Vdd is set relative to the worst case threshold voltage. A 
practical limit for it is about 2Vt [20]. 2) When the Ppriority = 0 for 
all tasks which means there is no available slack to be exploited by 
any of the tasks. 
In the aforementioned algorithm, a task has the opportunity to stay 
in the LS list although it has temporarily no more available slack. 
So, artificial slacks created by other extended tasks can be utilized.   

3.3. Evolutionary Algorithm Design 
We created an evolutionary algorithm based synthesizer by 
integrating the widely used evolutionary multi-objective optimizer 
SPEA2 [16] to our automated co-design framework. The 
optimization goal is to find design alternatives with Pareto-optimal 
objective vectors.  
In Figure 1, the initial population is generated randomly. Repair 
heuristics and penalty functions are used to deal with the 
infeasibility problem in the generated implementations. The repair 
mechanism is based on a priority list of hardware components that 
can be allocated to execute a task.  
Violating design constraints (delay, cost, and power) is handled 
using appropriate penalty functions. Each penalty function takes 
into consideration the number of violations of this design 
constraint’s type and the distance from the feasible region. For 
example, the penalty function for violating power constraints in a 
given path is given by: 
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where  is the forced power constraint on path i in the task 

graph,  is the actual consumed power for a given 

allocation α and binding β,  indicates how crucial violating this 
constraint is, m is related to the number of violations of this type 
of constraint, and µ is a controlling parameter. The fitness 
function f(J), when a certain design constraint is violated, is the 

sum of the penalty function and the objective function h(J). The 
obtained fitness function represents the new objective function 

iMAXP

),( βαiP

iα

)(Jh′ . So, the problem is transformed into another problem with 
)()( JhJf ′= . The optimization process is guided by the 

objective function )(Jh′  and the fitness of an implementation is 
calculated based on the Pareto-optimization scheme (SPEA2).  
The variation process includes applying reproduction rules 
(crossover and mutation) to change the genetic material of 
individuals. Different types of crossover (such as uniform and 
single point) and mutation (such as one-point and independent) are 
implemented. The types of these operators are specified by the 
user. Different controlling parameters have been experimentally 
specified. The selection process is performed by SPEA2. The 
termination condition is the satisfaction of design constraints or 
exceeding a pre-specified number of generations. 

4. BENCHMARKS AND EXPERIMENTAL 
RESULTS 
To investigate the effectiveness of our integrated methodology, we 
applied it to a set of benchmarks, part of them are taken from real-
life examples. The benchmarks themselves can be categorized into 
two groups: The first group includes: the one dimensional FFT, 
the Gaussian Elimination (GE), both taken from [17], and the 
Optical Flow Detection (OFD) which is part of an autonomous 
model of a helicopter [18]. The OFD algorithm runs originally on 
two DSPs with an average current of 760 mA at 3.3V. It uses a 
repetition rate of 12.5 frames of 78× 120 pixels per second. The 
original data for power consumption and performance are partially 
taken from [10]. The second group includes a set of benchmarks 
originally generated using the “Task Graphs For Free” TGFF [19].  
The results are reported using the achieved power/energy 
reduction in percent. These results are categorized in three groups: 
The benefit of using power optimized types and architectures by 
using allocation/binding refinement [11], the benefit of applying 
SVS, and the achieved benefit by combining both SVS and the 
allocation refinement step. To clearly demonstrate the effect of 
allocation refinement using different hardware types on the 
performance of SVS, extra experiments are performed by forcing 
more stringent performance constraints while applying our design 
methodology. 

4.1. Using Power Optimized Types 
Column two in Table 1 shows the obtained power reduction when 
applying the methodology presented in [11]. The results indicate 
that the maximum power reduction that can be achieved is barely 
exceeding 20%. Nevertheless, this extra refinement step is 
valuable when combined with voltage scaling. The influence of 
this combination is presented bellow in more details.  

4.2. The Effect of Applying SVS 
The benefit of applying SVS is shown in column 3 of Table 1. The 
minimum benefit when applying SVS is obtained by the GE. This 
can be related to the stringent performance constraints forced on 
this application and the data dependency in the task graph. For the 
first group of benchmarks, the FFT achieves a power reduction of 
about 42% when applying SVS whereas TGFF6 seems to make 
the best benefit of SVS (83.5%). It is clearly seen that SVS is 
superior to only refining the allocation.  
 
 



4.3. Using Allocation Refinement Combined 
with SVS 
When delay constraints provide enough slack intervals to be 
utilized by the SVS, the effect of refining the allocation/binding is 
extremely limited. TGFF1 is an example on this case. Column 4 of 
Table 1 shows the effect of the allocation refinement step on SVS. 
It is clearly seen that the performance of SVS is improved, but in 
varying degrees. 

 
Table 1. Power reduction in % 

 

 
Benchmark 

Allocation 
Refinement [11] 

 
SVS  

SVS & 
Allocation
Refinement 

TGFF1 19,7 68,1 69,1 
TGFF2 14,8 36,4 45,1 
TGFF3 12,7 64,6 77,1 
TGFF4 10,8 82,6 88,1 
TGFF5 13,1 60,1 64,9 
TGFF6 18,1 83,5 93,6 
TGFF7 13,8 30,2 70,4 
TGFF8 20,3 76,6 78,9 
TGFF9 16,7 37,3 83,6 
TGFF10 2,7 19,6 49,5 

FFT 17 42 66 
GE 15 18 26 

OFD 6 22 27 

 
The effect of this refinement step increases and becomes clearer as 
the performance constraints get more and more stringent. Table 2 
shows the achieved power reduction when more stringent 
performance constraints are forced by scaling the original 
constraints. In order to enable fair comparison, the power 
reduction obtained under these tight performance constraints when 
applying SVS are evaluated and presented in column 2 of the 
same table. The last column of this table shows the joint influence 
of SVS and the extra refinement step on the attained power 
reduction.  
The results presented in Table 2 obviously show that the potential 
benefit of applying SVS is sharply limited under tight 
performance constraints. The maximum power reduction that 
could be achieved in this experiment is about 25% only.  
It is clearly seen that under this condition, the effect of applying 
SVS can be noticeably improved when combined with the 
suggested allocation refinement step. For example, the effect of 
using SVS is almost tripled when combined with the extra 
allocation refinement step for TGFF4*, whereas the power 
reduced is improved by a factor of 15 for TGFF10*. This justifies 
the need for this extra optimization step. 
 
 
 
 
 
 

Table 2. Power reduction in % 
 

Benchmark SVS SVS& Allocation 
Refinement 

TGFF1* 25,4 36,8 
TGFF2* 20,4 43,6 
TGFF3* 11,9 53,6 
TGFF4* 22,3 61,4 
TGFF5* 16,2 53,6 
TGFF6* 20,0 84,9 
TGFF7* 5,7 34,5 
TGFF8* 17,3 76,5 
TGFF9* 7,2 64,3 

TGFF10* 3,1 45,3 

 
As we pointed out previously, system level power optimization is 
not suggested to replace but to aid low level system optimization 
methodologies. Throughout the design process, the system will 
undergo other optimization steps at low abstraction levels.  

5. CONCLUSIONS AND FURTHER WORK 
This paper adds a new dimension to the multi-objective 
optimization problem of system co-synthesis, by optimizing the 
voltage schedule as an integrated part in the co-synthesis process. 
The proposed automated co-design tool for low power/energy 
real-time embedded systems is of valuable help for system level 
designers. The tool is able to explore the performance-power-cost 
design space. It guides the design process to low power design 
alternatives that satisfy other design constraints.  
SVS has been successfully integrated in the co-synthesis process 
and its performance is remarkably enhanced by using the 
suggested extra refinement step. All benchmarks included in this 
study showed the effectiveness of the presented approach.  
Currently, we are developing methodologies to reduce the 
overhead related to switching the voltage level when applying 
SVS. Further on, it is part of the future work to find out how to 
encode the voltage level in the gene itself.  

6. REFERENCES 
[1] Münzenberger, R., Dörfel, M., Hofmann, R., and Slomka, F. 

A General Time Model for the Specification and Design of 
Embedded Real-Time Systems. Microelectronics Journal, 
vol.  34, 2003, pp. 989-1000. 

[2] Mohsen, A., and Hofmann, R. Characterizing Power 
Consumption and Delay of Functional/Library Components 
for Hardware/Software Co-design of Embedded Systems. In 
the 15th IEEE Int. Workshop on Rapid System Prototyping 
(RSP’04), Geneva, 2004, pp. 45-52. 

[3] Thiele, L., Chakraborty, S., Gries, M., and Künzli, S. Design 
Space Exploration of Network Processor Architectures. In 
Network Processor Design: Issues and Practices, Vol. 1, 
October,  2002. 

[4] Teich, J., Blickle, T., and Thiele, L. An Evolutionary 
Approach to System-Level Synthesis. In the 5th International 
Workshop on Hardware/Software Co-Design (Codes/CASHE 
'97), March, 1997. 

http://csdl.computer.org/comp/proceedings/codes/1997/7895/00/7895toc.htm
http://csdl.computer.org/comp/proceedings/codes/1997/7895/00/7895toc.htm
http://csdl.computer.org/comp/proceedings/codes/1997/7895/00/7895toc.htm


[5] Slomka, F., Dörfel, M., Münzenberger, R., and Hofmann, R. 
Hardware/Software Codesign and Rapid Prototyping of 
Embedded Systems. IEEE Design & Test of Computers, 
2000, pp-28-38. 

[6] Ljolo, M., Raghunathan, A., Dey, S., Lavagno, L., and  
Sangiovanni-Vincentelli, A. Efficient Power Estimation 
Techniques for HW/SW systems. In Proc. of the IEEE 
VOLTA'99 International Workshop on Low Power Design, 
Italy, 1999, pp. 191-199. 

[7] Bambha, N., Bhattacharyya, S., Teich, J., and Zitzler, E. 
Hybrid Global/Local Search for Dynamic Voltage Scaling in 
Embedded Multiprocessor. In Proc. of the 1st int. symposium 
on Hardware/Software Co-design (CODES’01), 2001, pp. 
243-248. 

[8] Gruian, F. System-Level Design Methods for Low Energy 
Architectures Containing Variable Voltage Processors. In 
Proc. of Power-Aware Computing Systems Workshop, 
November 12, Cambridge (MA), US, 2000.  

[9] Gruian, F., and Kuchcinski, K. LEneS: Task-Scheduling for 
Low Energy Systems Using Variable Supply Voltage 
Processors. In proc. of Asia and South Pacific Design 
Automation Conference (ASP-DAC’01), 2001, pp. 449-455. 

[10] Schmitz, M., Al-Hashimi, B., and Eles, P. Synthesizing 
Energy-efficient Embedded Systems with LOPOCOS. Design 
Automation for Embedded Systems, 6, 2002, pp 401-424. 

[11] Mohsen, A., and Hofmann, R. Power Modelling, Estimation, 
and Optimization for Automated Co-Design of Real-Time 
Embedded Systems. In Proc. of the 14th International 
Workshop  on Power and Timing Modelling, optimization and 
Simulation, (PATMOS’04), Greece, 2004, pp. 643-651. 

[12] Mitschele-Thiele and Slomka, F. Co-design with SDL/MSC. 
IT Press, 1999. 

[13] Pering, T., Burd, T., and Broderson, R. The Simulation and 
Evaluation of Dynamic Voltage Scaling Algorithms. 
ISELPED 98, (Monterey, CA USA, August 10-12, 1998), 
ACM, 2000, pp. 76-81. 

[14] Burd, T., and Broderson, R. Design Issues for Dynamic 
Voltage Scaling. In Proc. of the 2000 international 
symposium on Low power electronics and design, Italy, 2000, 
pp. 9 – 14. 

[15] Schmitz, M. and Al-hashimi, B. Considering Power Variation 
of DVS Processing Elements for Energy Minimization in 
Distributed Systems. In Proc. of the international symposium 
on System Synthesis (ISSS’01), 2001, pp. 250-255. 

[16] Zitzler, E., Laumanns, M., and Thiele, L. SPEA2: Improving 
the Strength Pareto Evolutionary Algorithm for 
Multiobjective Optimization. Evolutionary Methods for 
Design, Optimization, and Control, CIMNE, Barcelona, 
Spain, 2002, pp. 95-100. 

[17] Topcuouglu, H., Hariri, S., and Wu, M. Performance-
effective and Low-complexity Task Scheduling for 
Heterogeneous Computing. IEEE trans. on Parallel and 
Distributed Systems, Vol. 13, No. 3, 2002, pp 260-274. 

[18] The Wallenberg Laboratory for Research on Information 
Technology and Autonomous Systems. Available at 
http://www.ida.liu.se/ext/witas. 

[19] Dick, R., Rhodes, D., and Wolf, W. TGFF: Tasks Graphs for 
Free. In proc. of Intl. Workshop on Hardware/Software 
Codesign, March, 1998. 

[20] Landman, P. Low-Power Architectural Design 
Methodologies, Ph.D. Thesis, U.C. Berkeley, Aug. 1994.  

 

 

http://www.ida.liu.se/ext/witas

	Design Phases
	System Specification
	Co-Synthesis
	Implementation Synthesis and Evaluation and Validation

	Applying SVS
	Evolutionary Algorithm Design
	4.1. Using Power Optimized Types
	4.2. The Effect of Applying SVS
	4.3. Using Allocation Refinement Combined with SVS

