
Abridged Addressing: a low power memory
addressing strategy

Abstract— The memory subsystem is known to comprise a
significant fraction of the power dissipation in embedded systems.
The memory addressing strategy, which determines the sequence
of addresses appearing on the memory address bus as well
as the switching activity in the addressing logic, has a major
impact on the memory subsystem power dissipation. We present
a novel addressing strategy, Abridged Addressing, that helps
reduce system power dissipation by substantially reducing both
the address bus switching as well the addressing logic power.
The strategy, which relies on minimizing register accesses in
the addressing logic, helps overcome some of the limitations
of existing approaches: the address bus switching is low; there
is very little area, performance, and power overhead; and the
addressing hardware is simpler, making the technique suitable
for both on-chip and off-chip memory, as well as single-port and
multi-port memories.

I. INTRODUCTION

Memory accesses constitute an important target for power
optimizations since memory accounts for an increasing frac-
tion of the total area and power dissipation of embedded
systems [1], [2]. Since dynamic power dissipation in CMOS
circuits is a function of the total switching capacitance, partic-
ular attention has been paid to the memory address and data
buses because these are wide, and are typically long with high
capacitance. Lower switching on these buses leads to lower
overall power dissipation. Although it may not be possible
to optimize well for the data bus because the relevant data
values are typically not known in advance, the switching on
the address is often known statically and is controllable by the
synthesis process. In typical design descriptions, the access
patterns of the arrays – the loop induction variables and the
array index expressions are known and usually exhibit some
regularity. This regularity results in a strong correlation in the
sequence of addresses placed on the address bus, which can
be exploited by a power optimizing synthesis tool.

The idea of encoding the address bus with the objective
of minimizing switching has been extensively studied [1]. In
Bus-invert coding [3], an additional bit is appended to the
bus to indicate that the bus is inverted – this is invoked if
too many bits (more than half) are switching on the bus. In
[4], the instruction address bus was encoded using Gray code.
The T0 encoding scheme [5], where an extra bit encodes the
information that the following address is the successor of the
previous address, results in zero transitions in the best case –
i.e., where addresses are strictly sequential.

Recognizing that programs tend to spend a lot of time
accessing arrays inside loops, [6] proposed an address en-
coding technique called Working Zone Encoding (WZE). The

technique involves the construction of encoding and decoding
circuits that keep track of currently active memory zones.
During memory accesses, the zone is selected and an encoded
offset is transmitted on the address bus, which is used by
the decoder to recover the actual address. More general
correlations on memory data buses have been studied, which
rely on having static access to data streams so that frequently
occurring patterns can be identified and assigned appropriate
codes [7], [8]. In [9], the authors present an encoding/decoding
strategy consisting of adaptive self-organizing lists to handle
complex interactions arising out of multiplexed address buses.
In [10], the authors first profile an application to determine
which regions of memory are most accessed. To reduce power
dissipation, these regions are assigned to smaller memory
modules. In [11], a strategy was described for arranging
data in memory so that switching on the address bus is
minimized. In works such as [11], [12], the authors propose
an array interleaving strategy which can help sequentialize
the addresses to some extent. However, this strategy does not
generalize well because interleaving requirements in different
loops might conflict. In this paper, we assume that the start
addresses of arrays have been determined, and the structure
of the individual arrays is not modified; interleaving could be
combined with our proposed strategy.

For data memory, the encoding strategies indicated above
work well for sequential addresses, but not for correlated
addresses that are not necessarily sequential, although WZE
and [9] address this deficiency to some extent. In a recent work
[13], the authors present a customized data memory interface
(CDMI) that uses static information about the loop strides and
the order of memory accesses to generate addresses within
the data memory subsystem, thereby minimizing communi-
cation across the processor-memory address bus. Although
proposed in a processor context, a similar strategy can also
be applied to synthesized hardware. The technique requires
a relatively power-expensive decoding circuit in the memory
subsystem, which is justified in case of off-chip power-
memory bus, because power savings on the address bus dwarfs
the decoding overhead. However, in case of on-chip memory,
the address bus capacitances are relatively smaller, and the
decoder hardware’s power overhead becomes significant. We
present a novel strategy, Abridged Addressing, where we
optimize register file accesses and simplify the addressing
logic by harnessing memory address correlations. This not
only reduces address bus energy, but also significantly reduces
power dissipation in the addressing logic, thereby making the
addressing mechanism equally applicable to both the on-chip

as well as off-chip memory interfaces.

II. MEMORY ADDRESSING

When designing optimizations targeting the data memory
interface, particular attention is paid to loops in the specifi-
cation program because most of the execution time is known
to be spent inside loops, irrespective of whether the target is
software or hardware; consequently, most memory accesses
occur during loop executions. Since typical loops in a large
variety of application domains (such as DSP, graphics, vision,
image processing, etc.) have regular loop strides and array
index expressions that are affine (linear) in the loop induction
variables, it is possible to analyze the array access patterns
statically and synthesize power-efficient address generation,
encoding, and decoding circuits that minimize the overall
power consumption during memory accesses. Consider a loop
of the form:

for (i = 0; i < n; i = i + 2)
x = a[i] + b[i+1];
...

Assume that the implementation target uses a dual-port
memory because of performance constraints. The addressing
logic now drives two memory address buses. A straightforward
implementation of the addressing logic section of the datapath
is shown in Figure 1. This architecture suffers from some
serious disadvantages when the memory is physically far apart
from the datapath. For example, when the memory is off-
chip, the power dissipation in the address buses is large due
to the transitions in the off-chip wires with large capacitances.
Several optimization strategies target this interface typically
with encoders on the datapath side, and decoders on the
memory side to minimize the transitions in the address bus.
A simplified version of an example efficient implementation,
based on the CDMI proposal in [13] is shown in Figure 2.
Because of the regular memory access pattern in the loop,
there is no need to send the addresses explicitly on the
address bus in the steady state. Instead, the initial addresses
are sent to registers in the decoders only once, and the registers
are updated after every access so that subsequent memory
addresses are generated in the decoder itself. A small counter-
based FSM (which is initialized before each loop begins) keeps
track of the register updates. The technique is very effective
in minimizing address bus traffic on the datapath-memory
interface because the datapath updates the address only once
for every loop.

The above strategy yields significant power savings when
the datapath-memory interface consists of high capacitance
wires, especially for off-chip memories where the switching
capacitances are about three orders of magnitude higher than
typical on-chip wire capacitances. However, if the memory is
on-chip, then the power overheads of the decoding circuitry
may overwhelm the power savings due to reduced address bus
switching; the overall power savings depends on the physical
placement of the datapath and memory blocks. Since the
addressing decisions are made very early in the design phase,

+
A1 Dual

Port
Memory

Addressing Logic

D2

+

R

Datapath

D1

A2

a

b+1

+MUX

i

2

Fig. 1. The datapath/memory interface

when the physical information is not known, it is important to
design the addressing logic in such a way that power overheads
are minimized.

Datapath Memory Subsystem

Dual
Port

Memory

R

+

MUX

2

R

+

MUX

2

Decoder

Address
Interface

a [i]

b [i+1]

A1

D2

D1

A2

Fig. 2. Minimizing address bus transitions

Figure 3 shows an alternate address generation mechanism,
Abridged Addressing, where the address for ��� ��� is generated
using a register as before, but the address for � � ���
	�� is gener-
ated from that of ��� ��� by just adding ������ ��	�� where � and
� are the start addresses of � and � respectively. For simplicity
of discussion, we have used only word addresses in this paper.
Since ������ ��	�� is a constant known during synthesis, the
addressing logic becomes simpler. In the previous approach
(Figure 2), we need to keep a register in the decoder for
every memory access, and if there are multiple ports, we may
organize them into one register file for each port. However,
reading from and writing to these register files in each cycle is
power-inefficient. Accesses to the decoder’s register file results
in extra power consumption during read/write of the individual
registers as well as during the register file address decoding.
The alternative we propose in Figure 3 maintains only one
address register for a loop body, and derives the remaining
addresses from this register using simple arithmetic operations.
Our experiments show that replacing the expensive register file
access operations by simple additions cause a 23% reduction
in power dissipation for the above example.

Datapath Memory Subsystem

Dual
Port

Memory

R

+

MUX

2

Addressing Logic

Address
Interface

a [i]

A1

D2

D1

A2

+B-A+1

Fig. 3. Abridged Addressing: minimizing address bus transitions and
addressing logic

III. ADDRESS DECODER CIRCUITS

The CDMI-based approach, although proposed in the
processor context in [13], can be extended in a straight-
forward way to synthesized hardware. Consider a gen-
eral � -level nested loop accessing an � -dimensional array
� � ��� � � ��� ���	�
� � ��� � as follows:

for (���������� ���������� �������� �����)
for (������� �!� ���"���#�!� ��������� ���$�)

. . .
for (��%&�'� %�� ��%(���)%*� ��%�� ��% �+�$%)

READ � � , �-� � � �., ��� � � ���/�0����, � % ��% �+1 � �
� , �2� � � ��, �3� � � �'�0�0� �., � % ��% ��1 � �
. . .� ,4�2� �� ��,4�3� ��� ���/�0� �.,4� % � % �+15� �

The difference in address locations between two successive
iterations of the innermost loop is:

��6 � � � ��78�0�/�� � ��, � % � ��78�0�/�-� � ��, � % ���0�/� �9� � , �0:;� % �9, � %

A’ B’

+SEL

Registers

Offset
MUX

Ad

Bd

Address

Fig. 4. Address decoder for affine array indices

For affine indices, all the ,0<>= ’s and ��< ’s are constants, so � 6
can be computed at compile time and set as an input to the
MUX shown in the generalized addressing circuit shown in
Figure 4. The MUX inputs �"6 , �"6 , etc., represent the address
offsets to the respective arrays in successive iterations of the��% -loop. The values in the registers, �9? , ��? , etc., represent
the addresses for arrays A, B,...respectively from the previous
iteration. The address for the current access is determined by

the SEL signal from a small counter-based FSM selecting both
the appropriate register and the offset input to the adder. The
register file is initialized before the loop execution begins
from the address bus in the datapath interface, but in the
steady state, the bus from the datapath never changes and
addresses to the memory are generated within the decoder
itself. This is the result of an application of a combination
of the strength reduction and induction variable elimination
compiler optimizations.

IV. ABRIDGED ADDRESSING LOGIC STRUCTURE

The structure of the typical addressing logic in Abridged
Addressing is shown in Figure 5. � � ��� , � � @���� , A � 	 	���� , andB � 	 	 � � 	 � represent the address computations required; there
is one address computation output corresponding to every
array access in the loop body. There will be a final level
of multiplexing between these independent computations de-
pending on the number of ports in the memory and on the
assignment of individual addresses to ports. As mentioned
earlier, we store only one value in a register and derive all
the address outputs from it. In this case, we choose to store� , the loop induction variable, which is incremented by the
loop stride every iteration. A network of adders is required
to generate all the memory addresses, as shown. If the array
indices are affine, the multiplicative coefficients are constants
and there is no need to instantiate expensive multipliers. Also,
the shift circuits shown in the figure do not correspond to any
actual hardware; shifting is realized though concatenation of
zeros. Such a structure results in considerably lower power
dissipation than the CDMI-based strategy, which would con-
sist of a register file with four registers – each storing the
updated memory address; the CDMI decoder performs reads
and writes to the register file during every memory access.
In Abridged Addressing, the � register is updated only once
per loop iteration. Even though there may be more adders in
Abridged Addressing, each adder is activated only once per
loop iteration (and not on every memory access), which may
result in only slightly worse power dissipation in adders than
CDMI, where a single adder is activated on every access. In
the example of Figure 5 there are six adders activated once
whereas in CDMI, we would have one adder activated four
times. However, there is a very considerable power saving due
to avoiding the expensive register file accesses.

Although we chose the loop induction variable � for storage
in Figure 5, there are other cases when this choice does
not necessarily result in the most efficient design. A simple
example is shown in Figure 6. To generate the � � 	 	���� andB � 	 	 ��� addresses in every loop iteration, we can just store
� � 	 	 ��� in the register and simply derive

B � 	 	���� from it by
adding the constant

B � � . If the loop stride was ’1’, then we
add ’11’ to the current � � 	 	 ��� address to generate the value
in the next iteration.

V. EFFICIENT ADDRESSING CIRCUITS

We formulate and solve the problem of determining an
efficient addressing logic structure from a given set of array

R

+

MUX

1

+

+

+

B [3i]

C [11i]

3i

D-C+1

+
A [i]A

i

+

B

<<1

<<3

11i +

C

D [11i+1]

Fig. 5. Addressing logic structure

R

+

MUX

11

+
D - A

A [11i]

D [11i]

Fig. 6. Addressing logic for a different example

references, each translating to a memory address output. The
overall strategy is similar in principle to that used in designing
multiplier-less filters with minimum resources (e.g., [14]), but
differs in several important steps.

We construct an adder network graph �������� � , with a set
of nodes � and edges � . Each node corresponds to an array
access, and there is an edge ���
	 with edge weight � � � 	 �
if it is possible to derive the address corresponding to 	
from the address corresponding to � using � � � 	 � adders.
An example adder network graph is shown in Figure 7(a).
The edges � � 1 ��� � � 1 � , � � 1 �� � � 1 � , � � 1 �� � � 1 � 	 � , etc.,
have weight 1 because it is possible to derive the target
address from the source address using just one adder. The edge
� � 1 ��� � � 1 ��	 � , has weight 1 because we also need only
one adder to generate � � 1 � 	 � from � � 1 � (add the constant
’ � � � � 	 ’ to � � 1 �). The edge � � 1 ��� � � @51 � , has weight 3
because we need three additions – first subtract � to get 1 , then
add 1 ��� 1 to get @51 , finally add � to get � � @ 1 � . Edges such
as � � @51 ��� � � 1 � , have a higher weight because the derivation
requires more expensive circuitry – in the worst case, an
appropriate divider. The multiplication operation corresponds
to an appropriate number of adders, since the multiplicative
coefficients are all constants. The edge weights in the graph
are a measure of how many adders would be activated to get
from one memory address to another, and reflect the relative
power dissipation of the circuit compared to a simple adder.
The same metric can be used for modeling the area of the
addressing logic, and with small modifications, the delay also.

From the adder network graph, we can derive the simplest

All edges not shown

B[k] B[k+1]

A[k]

11

A[3k] B[3k]

1

1 1

1

1

3 3 1010

B[k] B[k+1]

A[k]

1

A[3k] B[3k]

1

1

3

(a) (b)

Fig. 7. (a) Adder network graph (b) Directed minimum spanning tree

adder network covering all the nodes by finding the minimum
spanning tree in the graph. The minimum spanning tree is a
subset of the edges of the graph that connects all the nodes and
minimizes the sum of the weights of the edges selected. The
standard minimum spanning tree algorithms (which operate on
undirected graphs) cannot be used for this purpose because our
adder network graph is directed. This is because the circuit to
generate � from 	 may be more complex than the reverse. For
example, @�� can be generated from � by just one addition, but
generating � from @�� requires more complex hardware. In other
words, � � � 	 ���� � 	 � � � in general.

To obtain the minimum spanning tree of a directed graph,
we can use Chu-Liu’s algorithm [15], an efficient polynomial
time algorithm for computing the directed minimum spanning
tree (DMST). The algorithm works by first selecting, in an
outer loop, different nodes of the graph as the possible root,
deleting all incoming edges to it, and then choosing the lowest
cost incoming edge to all the other nodes. If no cycle is
formed, we have the DMST. If there is a cycle, it is collapsed
into a super-node � and the incoming edge weight to each node
� in the cycle from nodes � outside the cycle is recomputed
according to the equation:

� ������ � � � ���� � � � � pred � � � � � � min < �� pred � � � � � �

where pred() is the predecessor node of 	 in the cycle. For
each super-node, we select the incoming edge with smallest
updated weight, which replaces the original incoming edge.
We repeat the the procedure for the collapsed graph. The root
of the resulting tree corresponds to the element we wish to
store in the register of the addressing circuit. The DMST for
the adder network graph of Figure 7(a) is shown in Figure 7(b).

There may be cases when the addition of an auxiliary
node to the adder network graph results in a more efficient
addressing logic structure (i.e., a lower cost DMST). In the
example graph shown in Figure 8(a), the cost of deriving each
node from the other is high. In such cases, it is beneficial to
augment the graph with the node 1 corresponding to the loop
induction variable, add the edges from this node to the others,
and compute the DMST, which may result in lower overall
cost. The addition of the new node results in the graph of

Figure 8(b), and the resulting DMST is shown in Figure 8(c),
which has lower overall cost than the DMST of the original
graph. Note that the addition of the loop variable 1 node
automatically results in the implicit (zero cost) addition of
nodes �51 , � 1 , � 1 , etc., since no extra hardware is required
to generate them. The weights of edges from 1 to the other
nodes takes this into account. There is no need to explicitly
add these other nodes.

(a)

(c)

B [11k] B [5k]

20

10

B [11k] B [5k]

k

20

10

23

B [11k] B [5k]

k

23

(b)

Fig. 8. (a) Example graph (b) Augmented graph (c) DMST of augmented
graph

The overall strategy in Abridged Addressing is to find the
DMST for both the original graph � and the augmented graph
� ? (with the loop variable node), and choose the solution
with the lower overall cost. The addressing logic structure is
inferred directly from the DMST.

A. Analysis

The key idea in Abridged Addressing is to minimize the
storage of redundant information in the addressing logic.
For example, the continuous updation of two address reg-
isters ��� ��� and � � ��� within a loop is unnecessary because
the same pattern is repeated. Minimizing the storage helps
reduce power-expensive register file access operations. It is
important to note that the addressing logic is not an overhead
– the computation would performed in the datapath in any
case. We have merely transferred the address computation to
the memory subsystem. The Abridged Addressing strategy is
independent of the number of ports in the memory. There is
only one address bus in the interface between the datapath and
the memory subsystem. There is a final level of multiplexing
of the computed addresses depending on the number of ports
and the port assignment.

In the addressing logic, we have relied on the start addresses
of the arrays and loop strides being constants known at
synthesis time. If this is not the case, then the inputs to
the adders come from registers which are initialized by the
datapath through the single address bus. Note that although
this increases the number of registers in the addressing logic,
it does not affect the power dissipation adversely because these
registers are not updated during the loop iterations. When there
are multiple loops, the analysis of each loop is performed

independently and sharing decisions of common parts of the
addressing are taken later. For example, in Figure 5, if the
strides of the two loops are different (say 1 and 2), the input
to the adder that updates the register comes from a multiplexer
whose inputs are 1 and 2, and whose select signal comes
from the small FSM in the decoder that also controls the
final address output. The power overhead of this FSM is
small in comparison the typical power dissipation in adders.
Conditionals in loop bodies do not require any additional
support. The addresses of all memory accesses in the loop are
computed, and the FSM selects the final output depending on
the current state of the datapath subsystem, which is presented
to the memory interface through the single address bus (as
in [13]). When we have array accesses that are not part of
loop bodies, then the address is sent over the address bus and
presented as it is to the memory. In this case, there might be
a small theoretical performance overhead because Abridged
Addressing presents only one address bus to the datapath
instead of two for a dual-port memory, but such cases occur
a relatively small number of times – most memory accesses
occur within loop bodies.

On investigating the possible performance overhead due
to the addressing structure, we found that: (1) the cascaded
structure leads to a very minimal increase in delay over a
single adder. Note that the critical path delay of two cascaded
adders is only marginally more than that of a single adder –
e.g., the delay of two cascaded 32-bit ripple carry adders is
that of one 33-bit adder; (2) more importantly, the critical path
in a loop body never passes through the addressing structure,
since the addresses are generated as soon as the loop index
is updated, independent of when they are needed. In our
experiments, we found that the addresses were generated in
the first one or two cycles of a loop, whereas the remaining
computation (which was on the critical path) took much longer.

VI. EXPERIMENTS

We verified the addressing optimization strategy using sev-
eral examples from literature, an IBM ASIC library with a
dual-port RAM as the data storage element, and the Synopsys
synthesis tools. Behavioural synthesis was first performed to
determine the schedule of memory accesses and the memory
port assignment. Following this, the addressing logic was
generated and synthesized. The synthesized designs were
simulated, and the resulting switching activity file was fed
into a power simulation framework (Synopsys Prime Power)
to generate the total power dissipation for the application.
SOR (Succesive Over Relaxation) and Compress are popu-
lar examples from numerical/scientific computing. MM and
Dprod are the matrix multiplication and dot product functions.
Laplace and Lowpass (accentuating low frequencies in an
image) are frequently used in the image processing domain.
The examples are data-intensive and have arrays indexed by
affine expressions accessed in the inner loop bodies.

In our first experiment, we compared the relative power
dissipation of the synthesized design examples. Here, the
memory is on-chip, and the address bus capacitances, while

still significant, are not orders of magnitude larger than
typical nets. The results are summarized in Figure 9. For
each example, we compare the power dissipation for three
different implementation strategies: WZE, the CDMI method,
and Abridged Addressing. WZE is used because it is tuned
for data memory accesses and we found that it performs better
than other simpler techniques such as Gray code, T0, etc. for
data memory.

We notice that the CDMI, in spite of eliminating address
bus switching activity during the inner loop array accesses
to a large extent, gives better results than WZE in only 3
out of the 6 examples. This is primarily because the decoder
overhead is significant compared to the address bus power
saved. Abridged Addressing results in average power savings
of 40% over WZE and 44% over CDMI. The difference is
significant in examples such as SOR with a large number of
array accesses in the inner loop because in such cases, CDMI
maintains a register file with many registers, thereby incurring
a larger overhead due to the register accesses. We found that
the addressing logic occupied, on an average, almost 65% less
area than the CDMI decoder. This shows that, although there
may be some extra adders in the addressing logic, the area
saved due to reduced registers is more significant. The details
are omitted due to lack of space. There was no performance
overhead because of the reasons described in Section V-A.

SOR Compress Dprod Lowpass Laplace MM
0

1

2

3

4

5

Po
w

er
 d

is
si

pa
tio

n
(x

 e
-4

 W
at

ts
) WZE

CDMI-based
Abridged

Fig. 9. Summary of experimental results

In our second experiment, we observed the variation of the
power dissipation due to changes in the address bus capaci-
tance for one of the examples (SOR). In the power simulation,
the bus capacitances were set to different values to simulate
longer wires. As the wire capacitance increases, we expect
that the decoder overhead in techniques such as CDMI will
be a relatively smaller fraction of the address bus power. This
variation is observed in the comparison of WZE and CDMI
curves in Figure 10. Abridged Addressing performs well in
comparison, because on one hand it uses the same strategy as
CDMI to reduce the address bus power, and on the other, it
uses a simpler addressing logic that results in lower overall
power. Lower capacitance values in Figure 10 correspond to
on-chip memory, and higher capacitances correspond to either
off-chip memory, or long on-chip address buses. Abridged
Addressing performs well throughout the range because the
technique results in just a logical transfer of the addressing
computation from the datapath into the memory subsystem;

there is very little extra encoding and decoding involved. This
makes the technique suitable for both on-chip and off-chip
memory.

0.001 0.01 0.1 1 10

Address bus capacitance (pf)
0

5

10

15

Po
w

er
 D

is
si

pa
tio

n
(x

 e
-4

 W
at

ts
)

WZE
CDMI-based
Abridged

Fig. 10. Variation of power dissipation with address bus capacitance

VII. CONCLUSION

We presented Abridged Addressing, a strategy for gen-
erating efficient memory addressing circuits that minimize
power in both the address buses and the addressing logic.
Instead of updating address registers during each array access,
we maintain only one address register throughout the loop
execution and generate the other addresses through simple
arithmetic computations off this register, which minimizes
power-expensive register file accesses. Address bus switching
is minimized by generating the addresses in the memory sub-
system itself. Experimental results indicate that the addressing
technique is suitable for both the off-chip as well as on-chip
memory because there is very little decoding overhead. Future
work in this direction includes handling multiple memory
modules in a design, and analyzing the impact of static power.

REFERENCES

[1] L. Benini and G. De Micheli, “System level power optimization:
Techniques and tools,” ACM TODAES, Apr. 2000.

[2] F. Catthoor et al., Custom Memory Management Methodology, Kluwer
Academic Publishers, 1998.

[3] M. R. Stan and W. P. Burleson, “Bus-invert coding for low power I/O,”
IEEE TVLSI, Mar. 1995.

[4] C.-L. Su and A. M. Despain, “Cache design trade-offs for power and
performance optimization: a case study,” in ISLPD, 1995.

[5] L. Benini and G. de Micheli, Dynamic power management: Design
Techniques and CAD Tools, Kluwer Acad. Publ., 1998.

[6] E. Musoll et al., “Working-zone encoding for reducing the energy in
microprocessor address buses,” IEEE TVLSI, Dec. 1998.

[7] S. Ramprasad et al., “A coding framework for low power address and
data buses,” IEEE TVLSI, July 1999.

[8] L. Benini et al., “Power optimization of core-based systems by address
bus encoding,” IEEE TVLSI, Dec. 1998.

[9] M. Mamidipaka, D. Hirschberg, and N. Dutt, “Low power address
encoding using self-organizing lists,” in ISLPED, Aug. 2001.

[10] L. Benini, A. Macii, and M. Poncino, “A recursive algorithm for low-
power memory partitioning,” in ISLPED, Aug. 2000.

[11] P. R. Panda and N. D. Dutt, “Low-power memory mapping through
reducing address bus activity,” IEEE TVLSI, Sept. 1999.

[12] C. Kulkarni, F. Catthoor, and H. De Man, “Advanced data layout
organization for multi-media applications,” in PDIVM’2000, May 2000.

[13] P. Petrov and A. Orailoglu, “Low-power data memory communication
for application-specific embedded processors,” in ISSS, 2002

[14] K. Muhammad and K. Roy, “A novel design methodology for high
performance and low power digital filters,” in ICCAD, Nov. 1999.

[15] E. Lawler, Combinatorial optimization: networks and matroids, Saun-
ders College Publishing, Cambridge, MA, 1976.

