
Multi-Level On-Chip Memory Hierarchy Design for
Embedded Chip Multiprocessors

ABSTRACT
Two trends, increasing importance of memory systems and increasing
use of chip multiprocessing, motivate conducting research on memory
hierarchy optimization for chip multiprocessors. One of the interesting
research topics along this direction is to design an application-specific,
customized, software-managed on-chip memory hierarchy for a chip
multiprocessor. Another important issue is to optimize the application
code and data for such a customized on-chip memory hierarchy. This
paper proposes an integer linear programming (ILP) based solution to
the combined problem of memory hierarchy design and data allocation
in the context of embedded chip multiprocessors. The proposed solu-
tion uses compiler analysis to extract data access patterns of parallel
processors and employs integer linear programming for determining
optimal on-chip memory partitioning across processors and data allo-
cations across memory components. Our experimental results show
that the application-specific on-chip memory hierarchies designed us-
ing this approach are much more energy efficient than conventional
(pure shared or pure private) on-chip memories and those designed by
a prior work that partitions memory space across parallel processors
without designing a multi-level hierarchy.

1. Introduction and Motivation
One of the critical components of an embedded computing system is

its memory architecture. There are several reasons for this. First, many
embedded applications are data intensive and make frequent memory
references. As a result, a significant portion of execution cycles is
spent in memory accesses. Second, this large number of accesses
also contribute to a large fraction of overall power consumption [5].
Third, since on-chip memory structures constitute a significant portion
of overall chip area in embedded designs, they are highly vulnerable to
transient errors, making them an important target for reliability opti-
mizations. Finally, many security leaks are exploited through manipu-
lation of memory space. Based on these observations, there have been
numerous proposals in the last two decades for optimizing memory
behavior of embedded systems and applications. Note that, as embed-
ded applications become more complex and process increasingly large
data sets, the role of the memory system will be even more important
in the future.

Chip multiprocessing is becoming a promising way of utilizing ever-
increasing number of transistors in computer architectures. There are
at least three trends that motivate for chip multiprocessing in embed-
ded computing domain. First, computer architects are finding it in-
creasingly difficult to wring more performance out of single-processor
based approaches. Second, multi-core architectures promise to sim-
plify the increasingly complex design and validation work of proces-
sors. This in turn lowers chip costs and reduces time-to-market. Third,
many embedded applications from image/video processing domain lend
themselves very well to parallel computing. Therefore, they can take
advantage of parallel processing capabilities provided by chip multi-
processors.

These two trends, growing importance of memories and increasing
use for chip multiprocessing, form a strong motivation for conduct-
ing research on memory synthesis and optimization for chip multipro-
cessors. One of the interesting research topics along this direction is
to design an application-specific, software-managed, on-chip memory
hierarchy. Another important issue is to optimize the application code
and data for such a customized on-chip memory hierarchy. This pa-
per proposes a solution to the combined problem of energy-efficient
on-chip memory hierarchy design and data allocation in the context of
embedded chip multiprocessors.

The proposed solution targets array-based embedded applications
from the domain of image/video processing. It is based on integer lin-
ear programming (ILP) and thus determines the optimal on-chip mem-
ory hierarchy for a given application, under the assumed cost model.
It needs to be noted that the optimality of a memory system can be de-

fined based on the goal of the optimization. In this paper, our goal is to
design an software-managed on-chip memory hierarchy for chip mul-
tiprocessors and allocate data across the components of this hierarchy
in such a manner that the energy consumption on the memory system
(during execution of the application) is minimized. The proposed so-
lution is very general and can come up with any on-chip memory hier-
archy. In the most general case, the resulting memory system will have
both private components (i.e., memories that are exclusively accessed
by a single processor) and shared components (i.e., memories that are
shared by multiple processors). Also, in the most general case, each
processor can see a different memory hierarchy (in terms of both the
number of the components in the hierarchy and their sizes). Figure 1
illustrates four different example on-chip memory designs. (a) and (b)
correspond to conventional pure shared memory based and pure pri-
vate memory based designs, respectively. (d) is a typical hierarchy
design returned by our ILP-based approach proposed in this paper. (c)
is a design that would be returned by an approach that partitions the
on-chip memory space across a single level (not a hierarchy).

We implemented the proposed approach using a commercial lin-
ear solver and performed experiments using ten embedded benchmark
codes. The experimental results show that the proposed ILP-based ap-
proach (1) comes up with on-chip memory hierarchies that are much
better (in terms of energy efficiency) than conventional memory de-
signs based on pure shared memory or pure private memories, and (2)
performs better than customized memory architectures that perform
optimal memory space partitioning across processors without design-
ing a hierarchy. The results also indicate that, for the least energy
consumption, memory space partitioning and data allocation should
be handled at concert. We also found that the solution times taken
by our ILP-based approach are not excessive and are within tolerable
limits.

This paper is organized as follows. A discussion of the related work
is given in Section 2. The details of our ILP-based approach are given
in Section 3, and an experimental evaluation is presented in Section 4.
The paper is concluded in Section 5.

2. Related Work
Memory system design and optimization has been a popular area of

research for the last two decades. We can roughly divide the work in
this category into two classes: memory synthesis/design and software
optimizations. Most of the prior work on memory synthesis/design fo-
cus on single processor based systems [19, 1, 20, 3, 15, 17, 13, 5].
In comparison, Abraham and Mahlke focus on an embedded system
consisting of a VLIW processor, instruction cache, data cache, and
second-level unified cache. A hierarchical approach to partitioning the
system into its constituent components and evaluating each compo-
nent individually is utilized. Meftali et al [11] focus on the memory
space allocation (partitioning) problem, which they formulate based
on an integer linear programming model. Their solution permits one
to obtain an optimal distributed shared memory architecture, minimiz-
ing the global cost to access the shared data in the application and the
memory cost. The effectiveness of the proposed approach is demon-
strated by a packet routing switch example. Gharsalli et al [6] present
a new methodology for embedded memory design for application-
specific multiprocessor system-on-chips. Their approach facilitates the
integration of standard memory components. Further, the concept of
memory wrapper they introduce allows automatic adaptation of phys-
ical memory interfaces to a communication network that may have a
different number of access ports. The main difference between our
work and these prior efforts is that our work is very general. Although
we focus on application-specific memory design, the proposed solu-
tion strategy (based on ILP) is applicable to any array-based embedded
application. In addition, we also address the data allocation problem
along with the memory space partitioning problem. [10] proposes a
dynamic memory management scheme for chip multiprocessors. Our

1



Figure 1: Different on-chip memory designs. (a) Pure shared
memory architecture. (b) Pure private memory architecture. (c)
Single level based design. (d) Hierarchy based design. SM = shared
memory; PM = private memory; IN = interconnection network.

work is also more general than the one in [10], as the latter does not de-
sign a hierarchy but only partitions the available memory space across
multiple processors.

On the software side, the prior work considered the optimal use of
the available SPM space. Panda et al [14] present an elegant static data
partitioning scheme for efficient utilization of scratch-pad memory.
Their approach is oriented towards eliminating the potential conflict
misses due to limited associativity of on-chip cache. This approach
benefits applications with a number of small (and highly reused) ar-
rays that can fit in the SPM. Benini et al [2] discuss an effective mem-
ory management scheme that is based on keeping the most frequently
used data items in a software-managed memory (instead of a conven-
tional cache). Kandemir et al [8] propose a dynamic SPM manage-
ment scheme for data accesses. Their framework uses both loop and
data transformations to maximize the reuse of data elements stored in
the SPM. They enhance their approach in [9]. Cooper and Harvey [4]
present two compiler-directed methods for software-managing a small
cache for holding spilled register values. Hallnor and Reinhardt [7]
propose a new software-managed cache architecture and a new data
replacement algorithm. The main difference between these studies and
our work is that, in addition to data allocation, we also focus on cus-
tomized memory hierarchy design.

3. Problem Formulation

3.1 Operation of On-Chip Memory Hierarchy
and Memory Management Granularity

The on-chip memory hierarchy returned by our approach operates
as follows. When a processor executes a memory operation, the mem-

Table 1: The constant terms used in our ILP formulation. These
are either architecture specific or program specific.

Constant Definition

NP Number of processors
NMC Number of possible memory components
NL Number of levels in the memory hierarchy
SM Total on-chip memory size
NB Number of data blocks
SB Size of a data block

NPh Number of program phases
Lsize(i) A function that returns the maximum possible size forith level

ory component that holds the corresponding data is accessed (and its
access latency and energy consumption is incurred). Recall that the
on-chip memory space in our framework is software managed. If the
required data is not located in a memory component connected to the
requester processor and it resides in a remote (but on-chip) memory
component, it is accessed from there (this typically incurs a higher en-
ergy consumption than a local access). If this also fails, the data is
accessed from the off-chip memory.

In our approach, the data transfers across the memory components
take place at phase (epoch) boundaries. Specifically, the program is di-
vided into phases and profiled. The profile data gives us the data blocks
(considering all array data in the application) accessed by each proces-
sor at each phase, and an estimation of the number of accesses to each
data block by processors. This information is then passed to the ILP
solver (which will be discussed in detail shortly), which in turn deter-
mines the locations of data blocks for each phase and optimal on-chip
memory hierarchy. After that, this information is passed to the com-
piler which modifies the application code accordingly to insert explicit
data transfer calls. In this paper, our main focus is on ILP formulation
of the problem and an experimental evaluation of the resulting frame-
work. We do not focus on the details of the code modification phase,
which is rather straightforward. Also, we do not address the problem
of optimal phase partitioning or data block size selection.

3.2 ILP Formulation
ILP provides a set of techniques that solve those optimization prob-

lems in which both the objective function and constraints are linear
functions and the solution variables are restricted to be integers. The 0-
1 ILP is an ILP problem in which each (solution) variable is restricted
to be either 0 or 1 [12]. It is used in this paper for determining the
multi-level on-chip memory hierarchy for a chip multiprocessor archi-
tecture and data allocation. Table 1 gives the constant terms used in
our ILP formulation. We usedXpress-MP[21], a commercial solver,
to formulate and solve our ILP problem, though its choice is orthog-
onal to the focus of this paper. The goal of our ILP formulation is to
minimize the energy consumption in the memory subsystem of a chip
multiprocessor. Specifically, our solution decides how on-chip mem-
ory components are being shared among processors, what the size of
each memory component is, and what level in the hierarchy each mem-
ory component is located.

Our objective is to minimize the energy consumption within the
memory subsystem, and this can be achieved by dividing the avail-
able memory space in such a way that each processor can access the
most frequently used data (by itself) from the closest memory loca-
tion of the right size. By doing so, we can reduce the energy cost of
accessing lower levels of the memory or accessing a remote memory
component. There areNMC = 2NP −1 memory components possible
for any level in the hierarchy, each of which can be accessed by differ-
ent set of processors (NP is the number of processors). For example,
if there are two processors, there are possibly three on-chip memory
components. These arem1 (accessed by only processor 1),m2 (ac-
cessed by only processor 2), andm3 (accessed by both processors 1
and 2). Note that, we are not restricted to have only one copy of each
memory component type1, that is it is possible to have the same type of
memory component at different levels of the memory hierarchy, except
that these same memory component types at different levels should get
larger as we move from the higher level to the lower level. This follows

1A “type” in this context corresponds to a memory component ac-
cessed by a specific set of processors.

2



from the fact that having a smaller or equal size memory component at
a lower level in a hierarchy does not provide any energy benefits.

We assume for now that the entire data manipulated by the appli-
cation can be stored in the on-chip memory hierarchy (we relax the
assumption in Section3.2.1). We use an access matrixA as an input
to hold the number of accesses made by each processor to each data
block. Mathematically, we define:

• Ap,ph,b : the number of accesses to data blockb by processorp
during program phaseph2.

Our approach uses 0-1 variables to specify the size of each on-chip
memory component (C) possible. Specifically,

• Cl,u,m : indicates whether memory componentu at levell is of
sizem.

We useM to identify the location of a data block during the course of
execution. More specifically,

• Mph,b,l,u,m : indicates whether data blockb at program phase
ph is located in memory componentu of sizem at levell.

Note that bothCl,u,m andMph,b,l,u,m are 0-1 variables whose values
we want to determine.E is used to capture the energy consumption of
a processor at a specific program phase. That is,

• Ep,ph : captures the energy consumed by processorp during
program phaseph.

Since the available on-chip memory space is limited, the following
constraint must be satisfied:

NLX

i=1

NMCX

j=1

SMX

k=0

k × Ci,j,k = SM . (1)

In the above expression, memory components are allowed to have sizes
of 0, which indicates that these memory components do not actually
exist (in the final hierarchy designed).

The next constraint indicates that a memory component can have
one and only one size:

SMX

i=0

Cl,u,i = 1, ∀l, u. (2)

As we go to the higher levels in the hierarchy, the sizes of the mem-
ory components decrease due to space and cost issues. We use the
following expression to set a maximum capacity limit for each level in
the on-chip memory hierarchy:

NMCX

i=1

SMX

j=0

j × Cl,i,j ≤ Lsize(l), ∀l. (3)

Although it is possible to come up with different functions to obtain
the level size constraint, in our current implementation, we use the
following expression forLsize(l):

Lsize(l) = d(SM × l)/

NLX

i=1

ie. (4)

A lower level memory component connected to a higher level mem-
ory component should be at least accessible by the processors of the
higher level memory component. That is, the connections between
higher and lower levels of memories should be in such a way that as
the level of the memory component decreases, the number of proces-
sors that can access it should increase. For example, if a memory com-
ponent at level 3 is connected to processors 1 and 2, it should not be
connected to a memory component only connected to processor 1 at
level 2. We use the termsubset(m1, m2) to indicate that the proces-
sors accessing memory componentm1 is a subset of the processors
accessing memory componentm2. This is a matrix given as an input

2This matrix is filled after profiling and analyzing the application code.

to the ILP solver, which represents all possible memory component
pairs in mathematical terms.

Cl,u,m ≤
NMCX

i=1

SMX

j=m

Cl,i,j ,

∀l, u, m : l ≤ NL − 1 ∧ subset(u, i). (5)

As it is stated earlier, it is possible that a memory component type
(for example a memory component accessed by processors 1 and 2)
can appear at different levels in the hierarchy. In this case, the size of
the memory component at a higher level should be less than the one at
the lower level. This can be captured as follows:

Cl1,u,m1 ≤ 1 − Cl2,u,m2 ,

∀l1, l2, u, m1, m2 : m1 ≥ m2 ∧ l1 ≥ l2 + 1. (6)

Having defined the necessary constraints for the memory compo-
nents in the hierarchy, we can now give the constraints for locating the
data blocks within the memory components. We start by observing
that a data block should be mapped to a single memory component.
This is expressed as:

NLX

i=1

NMCX

j=1

SMX

k=0

Mph,b,i,j,k = 1, ∀ph, b (7)

If a memory component is used for a data block, that memory com-
ponent should exist in the final hierarchy. Consequently, we have:

Cl,u,m ≥ Mph,b,l,u,m, ∀ph, b, l, u, m. (8)

The data stored in a memory component should be less than the
size of the memory component. In mathematical terms, this can be
captured as:

NBX

i=1

Mph,b,l,u,m × SB ≤ m, ∀ph, b, l, u, m. (9)

Energy consumption of processorp at program phaseph can be cal-
culated by summing up the energy consumptions due to data accesses
performed byp:

Ep,ph =

NBX

i=1

NLX

j=1

NMCX

k=1

SMX

l=0

Mph,i,j,k,l × Ap,ph,i

×AE(local(p, k), j, l, ports(k)) ∀p, ph. (10)

In the above expression,Ap,ph,i returns the number of data accesses
to data blocki by processorp during program phaseph. There are
four parameters that affect the energy consumption. These are data
locality, the level of the memory component, the size of the memory
component, and the number of ports the memory component has. In
addition to accessing the non-local data (i.e., a data in a remote on-chip
memory component), accessing a lower level memory component will
require a higher interconnect energy consumption. Similarly the size
of the memory component being accessed is another key parameter in
energy consumption. As the number of processors sharing the mem-
ory component increase, the required number of ports will increase.
This in turn will increase the energy consumption. We use function
AE(location, level, size, ports) to capture the energy consumption
of a specific access. In the above expression, locality is denoted by
usinglocal(p, k) which returns 1 if data blockk is local to processor
p; that is, it is stored in one of the memory components connected to
processorp.

Having specified the necessary constraints in our ILP formulation,
we next give our objective function:

min

NPX

i=1

NPhX

j=1

Ei,j . (11)

SinceEi,j denotes the energy consumption of processori at program
phasej, the total energy consumed by all processors throughout the
entire program execution (i.e., over all program phases) can be calcu-
lated by summing them up.

3



Table 2: The number of data block accesses made by different
processors.

Processor D1 D2 D3 D4 D5 D6 D7

Phase 1
1 0 0 1 16 2 2 3
2 9 6 3 0 2 1 2
3 8 6 1 0 3 2 2

Phase 2
1 12 0 2 0 1 3 2
2 0 7 1 8 2 2 3
3 0 7 3 9 2 1 2

3.2.1 Incorporating Off-Chip Memory
Recall that so far we assumed the entire data manipulated by the ap-

plication can be stored in on-chip memory hierarchy. If we are to relax
this assumption by allowing a smaller on-chip memory space than the
total data size, then off-chip memory accesses have to be included in
the total energy consumption expression. In order to do that, first, Ex-
pression (7) has to be replaced with:

NLX

i=1

NMCX

j=1

SMX

k=0

Mph,b,i,j,k ≤ 1, ∀ph, b (12)

In the above expression, a data block is ensured to reside in at most one
on-chip memory component. That is, it is possible that a data block is
not in one of the on-chip memory components. In addition to this
modification, the energy consumed during off-chip memory accesses
needs to be calculated.Oph,b in the expression below captures whether
a data block is in the off-chip memory or not:

Oph,b ≥ 1 −
NLX

i=1

NMCX

j=1

SMX

k=0

Mph,b,i,j,k ∀ph, b. (13)

The energy consumption due to off-chip accesses can then be calcu-
lated as follows:

OEp,ph =

NBX

i=1

Oph,b × Ap,ph,i × AEoff ∀p, ph. (14)

In this expression,AEoff denotes the energy consumption of a sin-
gle off-chip data block access. Based on these modifications, the ob-
jective function given in Expression (11) is replaced with:

min

NPX

i=1

NP hX

j=1

(Ei,j + OEi,j). (15)

3.2.2 Example
We now give an example showing how our approach works in prac-

tice. We assume that there are 3 processors and 2 program phases with
7 data blocks, each with a size of 1K. The total on-chip memory space
is assumed to be 7K with 2 levels. Table 2 shows the number of data
block accesses made by different processors at each of the two phases.

In Figure 2 the memory hierarchy generated by our approach is
shown. The data allocation for phase 1 is shown on the left-hand-
side and that for phase 2 is shown on the right-hand-side. As can be
seen from this figure, data blockD4 is privately used by processorP1

during phase 1, whereas it is shared by processorsP2 andP3 during
phase 2. Since data blocksD3, D5, D6 andD7 are used by all the
processors during both the phases, they are placed into a shared mem-
ory component residing at level 2. Note that these four data blocks
are used by all the processors but not as frequently as the other data
blocks.

4. Experimental Evaluation
Our goal in this section is two-fold. First, we want to show that it

is possible to apply our ILP-based approach to realistic embedded ap-
plication codes. For this purpose, we test our approach using ten real-
world application codes extracted from the domain of embedded im-
age/video processing. Our second goal is to compare our approach to

Figure 2: An example on-chip memory hierarchy design and data
allocation. (a) After phase 1 and data allocation. (b) After phase 2.
The numbers within the memory components are data block ids.

Table 3: Application codes and their important properties.
Number of Memory Energy

Brief Number Memory Consumption (mJ)
Benchmark Description of C References Pure Pure

Lines (M) Shared Private
Compress Digital Image Compression 127 625.2 196.2 183.1
Conv-Spa Convolution in Spatial Domain 231 811.4 113.4 109.6

Filter Triangular Filter 270 118.6 106.7 115.7
Laplace Morphological Laplacian 438 109.6 310.3 301.0

LU-Decomp LU Decomposition 86 227.3 256.7 280.3
Minkowski Image Dilation and Erosion 455 839.5 576.8 602.2

Seg-02 Image Segmentation 622 107.1 605.2 584.7
Text Texture Analyzer 1018 144.9 899.3 813.9

Img-Trans Image Transformation 972 222.9 1142.8 1228.5
Verifier Image Verifier 1353 196.3 986.7 976.9

alternate on-chip memory design schemes and check whether it really
makes sense to employ this approach. Such an evaluation is important
given that the ILP solvers usually take more time than fast heuristic
solutions.

4.1 Setup
Table 3 gives the important properties of the ten application codes

used in this study. These benchmark codes are collected from several
research groups who work on embedded image/video application de-
velopment. The second column of this table gives a description of each
benchmark and the next one shows the number of source code lines
(all these codes are array-based and are written in the C language).
The fourth column gives the number of memory references made by
each application. Note that this number is an inherent characteristic of
an application and is independent of the particular memory hierarchy
used during execution. The next two columns give the memory energy
consumption (i.e., the energy consumption due to memory references
including both on-chip components and off-chip memory) for the pure
private memory based and pure shared memory based on-chip memory
architectures (see Figure 1) under the default (base) simulation param-
eters given in Table 4.

To conduct our experiments, we modified the Simics [18] tool-set
(running on Solaris 9 operating system) and simulated the different
schemes. The default configuration parameters are given in Table 4,
and these are the values that are used unless explicitly stated/varied
in the sensitivity experiments. The energy consumption values for the
different memory components (i.e., theAE values used in our formu-
lation) are obtained using the CACTI tool [16] under the 0.07µ pro-
cess technology. The two most important factors that affect the energy
consumption of a memory components are the size (capacity) and the
number of ports. We modeled using CACTI memory components of
different capacities and ports. A few necessary changes were needed
to be made to the basic CACTI model to obtain the energy model for
software-managed memory (as against conventional caches).

For each of the ten applications shown in Table 3, we performed
experiments with five different schemes. Pure Shared (PS) and Pure
Private (PP) are the two conventional schemes. In PS, there is a sin-
gle monolithic on-chip memory space shared by all the processors.
In PP, each processor has its private on-chip memory, i.e., the total
on-chip memory space is divided equally among the parallel proces-

4



Table 4: Important base simulation parameters used in our exper-
iments.

Parameter Default Value

Number of Processors 8
Total On-Chip Memory Space 2MB

Data Block Size 128 bytes
Off-Chip Memory Capacity 32MB

Off-Chip Memory Access Latency 100 cycles
Bus Arbitration Delay 5 cycles

Replacement Policy LRU
Maximum Number of Levels in Hierarchy 5

Figure 3: Normalized energy consumptions.

sors. ILP-ML represents the ILP-based multi-level on-chip memory
hierarchy design and data allocation strategy discussed in this paper.
ILP-SL is similar to ILP-ML; the difference is that it uses only a sin-
gle level (i.e., the available on-chip memory space is partitioned across
the processors optimally without having a hierarchy, as exemplified in
Figure 1(c)). It is important to emphasize that all these versions use
optimized data allocation across memory components, which is deter-
mined using integer linear programming. Our goal in making experi-
ments with the ILP-SL version is to isolate the energy benefits that are
coming explicitly from memory hierarchy design. Our next scheme,
ILP-ML* is similar to ILP-ML, except that it does not perform opti-
mal data allocation. Instead, it allocates data based on the following
heuristic. The program is profiled and the frequently accessed data
by each processor is placed into the memory components which is di-
rectly accessible by that processor. The idea is to minimize the energy
consumption spent in accessing frequently used data. The reason why
we make experiments with this version is to isolate the benefits that
are coming from optimal data allocation; that is, to demonstrate that
optimal memory hierarchy design alone is not sufficient for achieving
maximum energy reductions, and a unified approach that combines
data allocation and memory hierarchy design is necessary.

Before presenting our energy savings, we want to remark on our
ILP solution times. The largest solution time we experienced during
our experiments was 5.5 minutes (for application Verifier). Therefore,
since memory hierarchy design is an offline process, we can say that
our solution times are not excessive.

4.2 Base Results
We start by presenting the energy and performance results with the

schemes explained above. Figure 3 gives the energy consumption val-
ues with different schemes. All energy results are normalized with
respect to the fifth column of Table 3. Our first observation from these
results is that there is no clear winner between the PS and PP schemes.
The relative performance of one scheme to another depends mostly on
the amount of data shared by parallel processors and how these data are
shared. When we look at the remaining three versions, we see that ILP-
ML generates the best results for all the applications tested. The av-
erage energy reduction it brings is 21.3%. In comparison, the average
energy reductions with the ILP-SL and ILP-ML* schemes are 12.1%
and 9.9%, respectively. This result clearly emphasizes the importance
of exploiting multiple levels (in designing memory hierarchy) and of
optimal data allocation. In particular, when we compare the ILP-SL
and ILP-ML schemes, we see that they generate the same results in
only two benchmarks (Text and Verifier). On the other hand, the rest

Figure 4: Normalized execution cycles.

Figure 5: Impact of processor count.

of the applications in our experimental suite take advantage of multiple
levels. The reason why the ILP-ML* scheme performs poorly as com-
pared to ILP-ML is lack of optimal data allocation. This means that
optimal memory space partitioning and optimal data allocation should
be carried out together if we are to minimize energy consumption.

While our memory partitioning and data allocation approach is de-
signed for minimizing energy consumption rather than optimizing per-
formance, it is also important to consider its performance. This is be-
cause the resulting memory design may not be acceptable if it causes a
significant increase in original execution cycles (as compared to con-
ventional memory designs such as PP or PS), even though it could re-
duce memory energy consumption significantly. The normalized exe-
cution cycles achieved by the different schemes are shown in Figure 4.
While these results are not as good as those shown in Figure 3 from the
perspective of our ILP-based approach, we still observe important ben-
efits. In fact, the ILP-ML scheme brings nearly 15% improvement in
original execution cycles over the pure shared memory based scheme.
We also need to mention that, to reduce execution cycles even further,
the ILP-based approach can be targeted, with some modifications, at
minimizing execution cycles as well (instead of minimizing energy
consumption), though this option is not evaluated in this paper. Still,
when we consider the results shown in Figures 3 and 4 together, we
see that the ILP-ML scheme is very useful from both performance and
energy perspectives.

4.3 Sensitivity Analysis
In this section, our goal is to vary some of the default (base) values

of the simulation parameters (shown in Table 4), and check how do-
ing so affects our energy savings. We present our results for a single
application only (Minkowski), due to space concerns. The first param-
eter we change is the number of processors (processor count), and the
results are given in Figure 5. We see that all three ILP-based schemes
evaluated take advantage of increased number of processors. The main
reason for this behavior is the fact that, when the number of processor
is increased, careful partitioning of on-chip memory space becomes
more important, and all three ILP-based schemes allow us to achieve
that to different extents.

The second parameter whose value we vary is the total on-chip
memory size. The results are given in Figure 6. M/4 on the x-axis

5



Figure 6: Impact of on-chip memory ca-
pacity.

Figure 7: Impact of the number of levels
in the memory hierarchy.

Figure 8: Impact of data block size.

of this graph corresponds to the default on-chip memory capacity used
so far in our experiments (M is the total amount of data processed by
this application). We see that all the three ILP-based schemes start to
converge as the on-chip memory capacity is increased. This can be
explained as follows. When the memory space is small, partitioning is
important for minimizing energy consumption. However, when mem-
ory space is large, it becomes more of a problem of data allocation.
Therefore, the benefits brought by the ILP-ML scheme are more em-
phasized with small memory sizes. This is in a sense an encouraging
result though. This is because embedded applications are growing in
terms of both complexity and data sizes, and the fact that our approach
performs better with smaller memory spaces means that we can expect
it to be even more successful in the future.

The third parameter we study is the number of levels in the on-chip
memory hierarchy. Recall from Table 4 that in our experiments so far
we allowed at most five memory levels. In the results shown in Fig-
ure 7 we give energy consumptions with different number of levels
(from 1 to 5). Obviously, when we have only one level, ILP-ML re-
duces to ILP-SL. We see from these results the importance of working
with large number of levels if it is possible to do so. This is because
the energy savings reduce as we reduce the maximum number of al-
lowable levels. However, not all the applications really use all the
available levels. In fact, we observed during our experiments that, for
any given application, there is a number of maximum levels beyond
which we do not see any further energy reductions.

The last parameter we investigate is the data block size. Figure 8
gives the energy results with different block sizes (B represents the
default block size, which is 128 bytes as given in Table 4). We see
that both ILP-ML and ILP-SL take better advantage of smaller block
sizes as compared to the ILP-ML* scheme. This is mainly because
ILP-ML* does not employ optimal data allocation.

To summarize, our experimental analysis shows that the ILP-ML
scheme performs really well from both energy and execution time per-
spectives. Also, our experiments with different parameters emphasize
the importance of employing both optimal memory space partitioning
and optimal data allocation (together in a unified setting) for the best
energy savings.

5. Conclusions
One of the most important issues in designing a chip multiprocessor

is to decide its on-chip memory organization. A poor on-chip mem-
ory design can have serious power and performance implications when
running data-intensive embedded applications (e.g., those from the do-
main of embedded image/video processing). This paper proposes an
integer linear programming (ILP) based solution to the combined prob-
lem of on-chip memory hierarchy design and data allocation across
the components of the designed hierarchy. We measured the benefits
of this approach by designing custom memory hierarchies for ten em-
bedded applications. Our experience with this approach shows that, in
order to minimize memory energy consumption, memory space parti-
tioning and data allocation should be done in concert. The results also
indicate that the memory hierarchies designed by this approach are
much more energy efficient than all the alternate schemes evaluated in
this work.

6. REFERENCES
[1] F. Angiolini, L. Benini, and A. Caprara.Polynomial-Time Algorithm for On-Chip

Scratch-Pad Memory Partitioning.In Proceedings of the International Conference
on Compilers, Architectures and Synthesis for Embedded Systems, San Jose, CA,
2003.

[2] L. Benini, A. Macii, E. Macii, and M. Poncino. Increasing energy efficiency of
embedded systems by application-specific memory hierarchy generation.IEEE
Design & Test of Computers,pages 74–85, April-June, 2000.

[3] Y. Cao, H. Tomiyama, T. Okuma, and H. Yasuura.Data Memory Design
Considering Effective Bit-width for Low-Energy Embedded Systems.In
Proceedings of the 15th International Symposium on System Synthesis, Kyoto,
Japan, October 2002.

[4] K. D. Cooper and T. J. Harvey. Compiler-controlled memory. In Proc.the
International Conference on Architectural Support for Prog. Lang. and Operating
Systems,CA, November 1998.

[5] F. Catthoor, S. Wuytack, E. D. Greef, F. Balasa, L. Nachtergaele, and A.
Vandecappelle.Custom Memory Management Methodology – Exploration of
Memory Organization for Embedded Multimedia System Design.Kluwer
Academic Publishers, 1998.

[6] F. Gharsalli, S. Meftali, F. Rousseau, and A. A. Jerraya.Automatic Generation of
Embedded Memory Wrapper for Multiprocessor SoC.In Proceedings of the 39th
Design Automation Conference, New Orleans, Louisiana, 1999.

[7] E. G. Hallnor and S. K. Reinhardt. A fully-associative software-managed cache
design. In Proc.International Conference on Computer Architecture,pp. 107–116,
Vancouver, British Columbia, Canada, 2000.

[8] M. Kandemir, J. Ramanujam, M. Irwin, N. Vijaykrishnan, I. Kadayif, and A.
Parikh. Dynamic management of scratch-pad memory space. In Proc.the 38th
Design Automation Conference, Las Vegas, NV, June 2001.

[9] M. Kandemir and A. Choudhary.Compiler-Directed Scratch-Pad Memory
Hierarchy Design and Management.In Proceedings of the Design Automation
Conference, New Orleans, LA, June 2002.

[10] M. Kandemir, O. Ozturk, and M. Karakoy.Dynamic On-Chip Memory
Management for Chip Multiprocessors.In Proc. International Conference on
Compilers, Architectures, and Synthesis for Embedded Systems, Washington D.C.,
September 2004.

[11] S. Meftali, F. Gharsalli, F. Rousseau, and A. A. Jerraya.An Optimal Memory
Allocation for Application-Specific Multiprocessor System-on-Chip.In
Proceedings of the International Symposium on Systems Synthesis, Montreal,
Canada, 2001.

[12] G. Nemhauser, L. Wolsey.Integer and Combinatorial Optimization,
Wiley-Interscience Publications, 1988.

[13] P. R. Panda and L. Chitturi.An Energy-Conscious Algorithm for Memory Port
Allocation.In Proceedings of the 2002 IEEE/ACM International Conference on
Computer-Aided Design, San Jose, California, November 2002.

[14] P. R. Panda, N. D. Dutt, and A. Nicolau.Architectural Exploration and
Optimization of Local Memory in Embedded Systems.In Proceedings of the 10th
international Symposium on System Synthesis, Antwerp, Belgium, September
1997.

[15] A. Ramachandran and M. F. Jacome.Xtream-Fit: An Energy-Delay Efficient Data
Memory Subsystem for Embedded Media Processing.In Proceedings of the 40th
Design Automation Conference, Anaheim, CA, June 2003.

[16] G. Reinman and N. P. Jouppi.CACTI 2.0: An Integrated Cache Timing and Power
Model.Compaq, WRL, Research Report 2000/7, February 2000.

[17] W.-T. Shiue and C. Chakrabarti.Memory Exploration for Low-Power Embedded
Systems.In Proceedings of the 36th Design Automation Conferences, New
Orleans, LA, 1999.

[18] SIMICS Tool-set. http://www.virtutech.com/
[19] G. E. Suh, L. Rudolph, and S. Devadas.Dynamic Partitioning of Shared Cache

Memory.Journal of Supercomputing, 2002.
[20] S. Udayakumaran and R. Barua.Compiler-Decided Dynamic Memory Allocation

for Scratch-Pad Based Embedded Systems.In Proceedings of the International
Conference on Compilers, Architectures and Synthesis for Embedded Systems,
San Jose, CA, 2003.

[21] Xpress-MP, http://www.dashoptimization.com/pdf/Mosel1.pdf, May 2002.

6


