
Tunable Bus Encoder for Off-Chip Data Buses 
Abstract 
Off-Chip buses constitute a significant portion of the total system 

power in embedded systems. Past research has focused on encoding 
contiguous bit positions in data values to reduce the transition activity 
in the off-chip data buses. In this paper, we propose TUnable Bus 
Encoding (TUBE) scheme to reduce the power consumption in the data 
buses, which exploits repetition in contiguous as well as non-contiguous 
bit positions in order to encode data values. We also solve the problem 
of keeping just one control signal for our codec design. 

We compare our results with some of the already existing best 
schemes such as Frequent Value encoding (FVE) and FV-MSB-LSB 
encoding schemes. We find that our scheme achieves an improvement of 
21% on an average and up to 28% on some benchmarks over the FVE 
scheme and up to 84% over unencoded data. In comparison to FV-MSB-
LSB encoding scheme, our scheme improves the energy savings by 10% 
on an average and up to 21% for some media applications at the 
expense of minimal 0.45% performance overhead. We present a 
hardware design of our codec and provide a detailed analysis of the 
hardware overhead in terms of area, delay and energy consumption. We 
find that our codec can be easily implemented in an on-chip memory 
controller with small area requirement of 0.0521 mm2. 
 

1. Introduction 
Off-chip buses are associated with high capacitance values and 

hence, while transmitting bus values, they consume a significant portion 
of the total embedded system power. The energy consumed by the off-
chip bus is in direct proportion to the total number of transitions that 
take place in the bus. Bus encoding schemes are techniques that reduce 
the bus power consumption by encoding and decoding data prior and 
subsequent to transmission.  

Bus encoding schemes exploit properties of bus values in order to 
encode data. It has been shown that a significant portion of the data 
values consists of a few values that have a tendency to repeat every few 
cycles. By storing recently encountered values, subsequent occurrences 
of the same value can be encoded. For a wide range of commonly used 
embedded system applications, we measure the number of repeating 
occurrences of entire data values and their portions. We find that even 
while executing a single program, different bit prefixes tend to repeat 
during different portions of the program. Hence, we present an encoder 
design capable of encoding repeating values of different width to 
achieve better switching reduction. In particular, we present a data bus 
encoding scheme that capitalizes on the following three properties of 
data streams in order to encode data: 1) partial/entire data value locality 
in temporal domain 2) hot bits and 3) silent bits. We will explain each of 
these terms in the subsequent paragraphs. 

For most of the applications, the transition activity in the off-chip 
bus wires is non-uniform: some of the bus wires tend to toggle more 
than the rest. We refer to the set of bits that toggle the least as silent bits. 
Since silent bits remain steady for longer periods of time, the probability 
of silent bits having the same values in different data values is high. The 
complementary bit positions of the silent bits incur a lot of transitions 
and we refer to these bit positions as hot bits. Figure 1 shows the silent 
and hot bit positions in a portion of the data stream. The silent bit 
positions in the figure are shown in bold. The silent bits incur fewer 
transitions than hot bits. Hot bits and silent bits are complementary to 
each other. By encoding both silent and hot bits, the codec can 
efficiently encode data. 

 

In this paper, we present a TUnable Bus Encoder (TUBE) that can 
encode contiguous (prefixes and full data value) and non-contiguous bit 
positions (silent and hot bits) of data values.  The TUBE codec encodes 
data by storing selective bit positions of data values in its segments. 
Each segment is capable of encoding repeating data portions of a fixed 
width. TUBE also has non-contiguous segments that encode data by 
identifying the silent bits and hot bits in data values.  

We explore the design space and evaluate the performance of 
different TUBE codec configurations. We run a set of experiments by 
executing MediaBench[8], NetBench[13] and SPECINT2000 [16] 
benchmarks and we find that our scheme achieves an average energy 
reduction of 66% over unencoded data, which is a 21% improvement 
over FVE [20]. For some media applications, we achieve as much as 
84% reduction in energy over unencoded data. We analyze the impact of 
the codec on the overall performance of the system and we find that 
TUBE provides significant energy savings with an overhead of as little 
as 0.45% of the total execution time. We also present a detailed analysis 
of our hardware design and quantify its overhead. 

The rest of this paper is organized as follows. We describe our 
encoding scheme and its design issues in section 2.  We illustrate our 
experimental framework in section 3. In section 4, we present the results 
obtained using our encoding scheme. We discuss the related work in 
section 5 and in section 6, we conclude. 

 
2. TUBE Design 
In this section, we present TUBE design and explain various design 

parameters, codec algorithm, and hardware design. TUBE uses tables at 
the encoder and decoder ends. The table consists of various segments, 
where each segment extracts a predefined set of bit positions from the 
data values. Each segment consists of a finite set of segment entries and 
each segment entry, in turn, comprises of a code field and a data field. 
The code field in the segment entry contains an M-hot code. M-hot code 
is defined as a value whose binary representation has a high value (logic 
‘1’) only in M different bit positions, where M is a small number 
(usually one or two).   The data field of the segment entry stores selected 
bit positions of the incoming data value.  For a segment storing codes of 
width k-bits, containing up to M-hot codes, the maximum number of 
allowable segment entries is given by 
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During the first occurrence of a full or partial bit-pattern, the encoder 
stores the bit-pattern in its segments and transmits the data value over 
the data bus without encoding. Upon receiving the unencoded value, the 
decoder stores the bit-pattern from the data value in its segments. Thus 
at the end of every bus cycle, the encoder and decoder’s table contents 

 
Figure 1 shows silent and hot bits in a 
data stream. Silent bits are shown in bold. 



are exact replicas of each other For subsequent occurrences of the 
repeating bit pattern, the codec sends an M-hot code for the repeating 
portion. For each unique bit-pattern-width, the codec requires a new 
segment. While sending encoded values on the bus, an external control 
signal is used to let the destination know that the first k-bits of the data 
bus value corresponds to a code. As used in other techniques [20], a pair 
of correlator and decorrelator is added to the two ends of the buses. 
They are inverse functions of each other and their purpose is to reduce 
the correlation between successive values. 

2.1 TUBE Segments 
TUBE uses two kinds of segments in order to encode data- 

contiguous segment and non-contiguous segment. Contiguous segments 
exploit repetition in contiguous bit positions across different data values 
while non-contiguous segments exploit repetition in non-contiguous bit 
positions. Contiguous segments include full-value segment, most 
significant bits (MSB) segments, and least significant bits (LSB) 
segments, whereas non-contiguous segments include hot bits segment 
and silent bit segments. By profiling the applications in advance, 
TUBE’s non-contiguous segment is loaded with a mask for the silent 
bits and hot bits. However, masks can be changed at runtime in our 
hardware design using programmable CAM and complete re-
initialization of the codec. Hot bits tend to have a lot of transitions and 
hence, encoding them would yield significant energy savings. Silent bits 
are bit positions that incur fewer transitions than the rest. However, 
fewer bit patterns tend to repeat in silent bit positions and they can hence 
be encoded more often than hot bits. 

We find the number of simultaneous MSB and least significant bits 
LSB hits to be significantly higher than the hits in LSB segment only 
(miss in MSB). Hence, we choose to encode an LSB hit only if it 
happens to be an MSBLSB hit. Likewise, a hot segment hit is encoded 
only if there is a hit in the silent segment also. TUBE uses codes of two 
different widths and these codes are sent in the upper and lower bus 
wires of the off-chip data bus. The code for the MSB, entire data portion 
and silent bit segment hits are sent on the upper portion of the data bus 
while the code for the LSB and hot bits are sent on the lower portion of 
the data bus. Hence, during an MSBLSB hit or a silent/hot hit, a code is 
sent in both the upper and lower bus wires. For the remainder of this 
paper, we will refer to the segments that send code in the upper bus 
wires as upper segments. Likewise, lower segments are segments whose 
code is sent along the lower set of bus wires. In order to ensure that the 
destination can decode data without any ambiguity, the upper segments 
and the lower segments do not have any overlapping bus wires for code 
transmission. To ensure the integrity of the codec’s operation, all upper 
segments use the same code width. Likewise, all the lower segments use 
the same code-width.  

2.2 Table Codes 
In order to facilitate easy decoding of bit positions, the code is of a 

fixed width and is always sent in a predetermined set of bus wires. For 
example, irrespective of the width of the portion being encoded, the 
codec can always choose to send a code of width 12-bits in the upper 12 
bus wires. When using codes of width ‘w’, all bit patterns of width w or 
greater can be encoded by the codec. If the code-width were to be 
greater than the number of bits being encoded, enough bus wires will not 
be available to transmit the unencoded bit positions. Hence, in order to 
ensure integrity of the encoded data values, a segment’s code-width 
should always be smaller than the width of the segment’s data field. 

2.3 Maintaining Table Entries 
The codec associates a three-bit timestamp with the table entries 

and evicts stale entries using Least Recently Used (LRU) replacement 
policy. We picked LRU as it can be easily implemented with minimal 

hardware. During execution, the TUBE codec dynamically maps the 
incoming data value’s bit-pattern to one of the available codes stored in 
the table.  

2.4 Control Signals 
The biggest design challenge that we managed to solve while 

designing the TUBE codec was to accomplish the coding operation 
using just one external control signal. TUBE uses an external control 
signal to indicate the presence of encoded values on the bus. However, 
we need an additional control signal to let the destination know whether 
a code is being sent in the upper segment or if it is being sent in both 
segments. External control signals require the availability of a free pin 
on the chip and are hence, very expensive to provide. Hence, we choose 
to use one of the bus wires as a control signal. For the rest of this paper, 
we will refer to this internal bus wire as an internal control signal. 

We set the internal control signal to high whenever an MSBLSB hit 
is sent on the off-chip data bus. If the encode signal is high and the 
internal control signal is low, then it corresponds to an MSB hit only. 
The silent bit segment and the hot bit segment capture mutually 
exclusive bit positions. Hence, there is a likelihood of simultaneous hit 
in both segments. Since the code spaces of all these segments are 
mutually exclusive, we choose to combine an MSB hit with an LSB hit 
and a silent segment hit with a hot segment hit. Hence, during a 
MSBLSB hit or a silent/hot hit, we will end up searching the MSB, 
LSB, silent and hot bit segments. 

By using two different code-widths instead of one, TUBE sends 
one-hot code for more number of table hits. This also minimizes the 
required number of segment searches. If we used just one code-width, 
the decoder should lookup the incoming code in all of the segments. 
Since two different code-widths are used, a code in the lower portion 
would initiate a decoder lookup only in the LSB and the hot-bit 
segments. This saves the overall decoder energy. 

2.5 Algorithms 
Figure 2 shows the encoder algorithm for the TUBE encoder. Since the 
encoder encodes values of varying widths, the code width is kept 
constant. For every incoming value, the encoder searches its segments to 
see if the data value or its bit positions where encountered before.  In the 
event of a hit, the encoder sends the corresponding code along the upper 
bus wires and raises the external control signal. During a hit in multiple 
segments, the code from the segment with largest number of bit 
positions is chosen by the selection logic. This selected code is 
designated as the upper code. The encoder also searches its lower 
segments to see if the bit positions were encountered in the recent past. 

 
Figure 2 shows the TUBE encoder algorithm. 



During a hit in the lower segment, the hit code (lower_code) forms the 
lower order bits of the encoded bus value. The encoder raises the 
internal control signal to let the destination know that a code is being 
sent in both the upper and lower set of bus wires. During a lower 
segment miss, the lower order bits of the incoming value constitute the 
lower portion of the encoded bus value. When the encoder does not find 
a match in any of its segments, the encoder lowers the external control 
signal and sends the value unencoded. 

Figure 3 shows the decoder algorithm for the TUBE decoder. When 
the external control signal is low, the data is interpreted as-is by the 
decoder.  When the external control signal is high, the decoder searches 
the upper segments. The decoder searches the lower segments when the 
value of the internal control signal is set to 1. When the decoder 
encounters a hit, the data at the hit location is used to obtain the decoded 
data value.  

2.6 Design Parameters 
Code width: Code width of the TUBE table determines the 

maximum number entries stored in the table. While using one-hot and 
two-hot codes of width k, the maximum number of table entries should 
be less than ( (k-1) + (k*(k-1))/2  ). The code width also determines the 
width of the data portion to be encoded. Using codes of width k, data 
portions (m) of width k or higher can be encoded. If not, the unencoded 
portion (32 – m) cannot be sent using the remaining wires (32-k). For 
our experiments, we considered code widths of 14, 16 and 18 bits for the 
upper segment. We used code-widths of 10, 12 and 14 bits for the lower 
segments. We restricted the size of the upper and lower segments 120 
and 45 entries respectively. 

Segment size: For a given upper and lower code width, we 
simulated eight different codec configurations by varying the segment 
size and the width of the data portion captured in the segment. For each 
of these configurations, we had 5 upper segments and 3 lower segments. 
The upper segment consisted of a maximum of 120 entries distributed 

between 32-bit, 24-bit and 16-bit contiguous segments and two silent 
segments of width 16 and 18 bits respectively. Likewise, the lower 
segment consisted of one 12-bit LSB segment, a 14-bit hot segment and 
16-bit hot segment.. Our best configuration had 32, 20, 28,20 and 20 
entry tables in the upper segments and 20, 10 and 15 entries in the lower 
segment. The energy reduction achieved by this configuration will be 
presented in the following sections. We will present the result for this 
configuration only due to space constraints. 

Choice of mask bits: We adopted a two-stage tuning approach. 
During an initial run of the benchmarks, we loaded the codec with 
application-specific masks based on the results from our profiling tool. 
Then we identified the silent and hot bits that are common across a 
given class of applications. Thus for each benchmark suite, we loaded 
the codec with silent and hot bits that were best suited for all the 
applications in that benchmark suite. Based on the profiled results, we 
fixed the masks for a class of applications. Figure 4 shows the silent bit 
position for different SPECINT applications. As shown in the graph, for 
the first, sixth, 30th and many other silent bit positions are the same 
across most of the SPECINT applications. We found that a similar 
correlation existed in applications from the MediaBench suite[8]. 
Likewise, applications from the NetBench suite[13] also had common 
set of silent bits. Hence, we fixed the silent/hot positions for each class 
of applications. We performed experiments to determine the changes in 
silent and hot bit positions due to different data set and we find that top 
20 silent bits almost remain the same with only one or two different 
silent bit positions. 

2.7 Hardware Design 
In this section, we present the 2-stage pipelined tube codec design. 

We use content addressable memories (CAMs) to store and search the 
contiguous and non-contiguous data bus values of different widths. We 
use two CAMs for a segment to store the data field in one CAM and the 
corresponding code field in the other CAM. We refer to the first CAM 
as data-CAM and second CAM as code-CAM. A codec controller 
controls the addition and deletion of new entries to the data-CAM. There 
is a selection logic block to arbitrate among hits in various segments and 
give priority to segment hit with larger bit width. It generates three bit 
multiplexer control signals to select the appropriate 32-bit data bus value 
from the previous stage. The selection logic block is also responsible to 
generate the encode signal and select appropriate value for the internal 
control signal. Our hardware design is symmetric in nature to handle 
both encoding and decoding operations.. 

The encoder operation in our hardware design is shown in Figure 5. 
In this figure, we have shown hardware design for a 4-segment tube 
codec, where three are three segments of contiguous bits (widths are 32, 

 
Figure 3 shows the TUBE Decoder Algorithm. 
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Figure 4 shows silent and hot bits for SPECINT2000 class of applications, where 31st bit is found to be most silent and 0th    
bit is found to be the hottest bit. 



24, 16) and one silent segment of 24 bit width. The encoder operation 
takes two cycles to encode the incoming data bus value. But in most of 
the cases, we transfer multiple words due to a larger cache line and 
hence, there is a large scope of aggressively pipelining the encoding 
operation. In the first stage, data value is fed to the 32-bit pipeline 
register and then fed to the data CAMs after applying the appropriate 
mask for each segment. On a match in data-CAM, the corresponding 
matchline is used to drive the wordline of the code-CAM. All the codes 
corresponding to segment hits, is read into the second pipeline register. 
All the hits are also fed to the second pipeline register to make 
appropriate encoding decision. Selection logic block in the second stage 
utilizes these hit signals from various segments to generate the 3-bit 
multiplexer control signals. The (160 x32) multiplexer selects 32-bits 
from the appropriate segment based on the 3-bit control signals. For 
example, on a 16-bit hit, the MASK-OR component generates the 16-bit 
lower values after applying 16-bit inverse mask and then it is ORed with 
code to get the final 32-bit value. On a silent segment hit, the silent 
mask is applied with the original data bus value to the get the hot bits. 
Then, these bits and silent bits are shifted and ORed together to get the 
32-bit data value and fed to the (160 x 32) multiplexer. Finally, 
multiplexer selects the appropriate 32-bit data bus value and puts it in 
the data bus after correlation. On a valid encoding, select logic block 
asserts the encoding signal. We decode the incoming data bus value in a 
symmetric fashion using the same pipelined hardware design. 

 
3. Experimental Setup 
We modified the sim-outorder simulator in the Simplescalar toolset 

[4] to incorporate our bus encoding techniques. In order to evaluate the 
effectiveness of our encoding schemes, we used a wide range of 
benchmarks that are representative of both embedded and desktop 
applications. Our test programs consisted of 16 benchmarks from the 

MediaBench [8], NetBench [13]  benchmark suites and four applications 
from SPECINT2000 [16]. 

We modeled two different architectures – an embedded system-like 
architecture with a small L1 cache and a desktop like architecture with 
both L1 and L2 cache sizes. For the embedded system like architecture, 
we evaluated data caches of the following sizes – 1KB, 2KB, 4KB and 
8KB. For the desktop-like architecture, we fixed the L1 and L2 cache 
sizes at 64KB and 512KB respectively. We used the desktop like 
architecture while simulating the SPECINT applications and simulated 
the remaining benchmarks using an embedded system like architecture. 
For each of these cache configurations, we fixed the block size of the 
instruction and data caches at 32 bytes. Both instruction and data caches 
have on chip and off-chip latencies of 1 cycle and 100 cycles 
respectively. The off-chip data bus is 32-bits wide. The off-chip data 
trace consisted of both instruction and data values. 

 
4. Results and Analysis 

In this section, we present our experimental results and analyze the 
effectiveness of our scheme in reducing the off-chip energy 
consumption. We begin by describing our bus power model and then 
estimate the energy consumed by the TUBE codec. We use this result to 
evaluate the energy reduction achieved using our encoding scheme. We 
also measure the area requirements of our codec and illustrate that ours 
is a feasible design in terms of energy, delay and area overheads.  

4.1 Bus Power Model 
We use a bus power model similar to the one discussed by Catthoor 

et. al [5]. In general estimating the energy used in the off-chip 
interconnects is difficult.  We can approximate the capacitance for the 
bus using the formula: 

Cbus = Cmetal * Number of Bus lines 
In this expression Cmetal is the capacitance of the metal interconnect for 
each bus line. Using the numbers given in [5], it is estimated to be 20pF. 
Cbus gives the effective capacitive load to be driven during a bus 
transaction. We calculated the total bus energy per cycle using the 
following formula:  

decoder

2 
Lr

encodertotal  E  
cycles of #

V* C*T  EE ++=  

where,  Tr   =  total number of transitions in the off-chip bus 
CL = Load capacitance of the off-chip bus line. 
V  = Supply voltage 

4.2 Codec Delay and Energy Consumption 
In this subsection, we analyze area overheads of our hardware design 
and quantify the delay and energy consumption. We use Cacti-3.0 [14] 
to model most of hardware components and some previously published 
results for some hardware components. We use 0.18 um CMOS 
technology and we scale various parameters accordingly. Our hardware 
design can be classified into some main components such as Content 
Addressable Memories (CAMs), pipelined registers, 160 x 32 MUX and 
selection logic. Now, we describe how we calculate the various 
performance metrics. 

We take the results of CAM from this paper [10] and we find that 
CAM requires 45.5fJ/bit/search in 0.35 um technology. We estimate the 
area of a CAM cell from the results in [10] and it is found to be 11 um2 
in 0.18um technology. The delay for 32 x 32 CAM is estimated to be 5.6 
ns in 0.18um technology. We estimate the maximum energy 
consumption, maximum delay of area of CAMs by adding the results of 
all the CAM segments in 0.18um technology and it is found to be 95.68 
pJ, 5 ns, and 0.045 mm2 respectively. We model the 32-bit pipelined 
register using Cacti and we find that the maximum delay, energy 

 
Figure 5 shows the operation of a TUBE encoder. 



consumption, and area requirement is 0.173 ns, 0.443 pJ and 0.00164 
mm2 in 0.18um technology respectively. We model the 160 x 32 MUX 
using cacti and found that it requires 0.002120 mm2 and maximum 
energy consumption and delay is found to be 0.78 ns and 4.3 pJ 
respectively. We use the cadence tools layout results for primitive gates 
and estimate the area, maximum energy consumption and delay of 
selection logic block to be 0.000121 mm2, 0.354 pJ and 0.16 ns 
respectively. 

The clock frequency of hardware design is determined by the CAM 
pipeline stage. We calculate the clock frequency based on the CAM 
delay and it is found to be ~175 MHz. It is sufficient for most of the 
embedded SRAM memories. It can be increased further by selecting 
delay-optimized CAMs. The energy consumption for the codec is found 
to be 103.12 pJ and the total area requirement of our codec design is 
found to be 0.0521 mm2.  

4.3 Impact on Performance 
The encoding and decoding operations add extra latency in the 

processor-memory transaction and hence, there is a slight decrease in the 
overall performance. Using the contemporary VLSI technology and the 
proposed pipelined architecture, the codec can be easily implemented 
with a delay of 2 clock cycles, which amounts to a single cycle delay at 
both the encoder and decoder ends. We take the codec delay to be 1 
cycle, 2 cycles, and 4 cycles to evaluate the performance penalty. We 
instrumented the Simplescalar simulator to measure the performance 
penalty for a set of benchmarks and we assumed an off-chip memory 

latency of 70 cycles.  On an average, TUBE incurs 0.29%, and 0.76%, 
performance penalty with codec delay of 2 cycles for MediaBench, and 
NetBench respectively.  

4.4 Off-chip Bus Energy Savings 
We evaluate our proposed scheme for the configuration described in 
section 3. Figure 6 shows the percentage reduction in energy while using 
a L1 cache of size 2KB. We evaluate the energy savings by taking care 
of energy consumption of hardware codec. We simulated FVE [20] and 
FV-MSB-LSB [17] schemes using the same set of tools as used in this 
paper. To evaluate energy consumption for FVE and FV-MSB-LSB we 
used parameter values mentioned in [20]] and [17] respectively. 

 For applications like cjpeg, TUBE outperforms FVE by 28%. Epic 
application has a lot of hits in the partial segments (MSB and silent) and 
hence yields significant energy improvement. We observe a similar 
energy saving trend in spec2000 applications, where parser provides an 
extra energy saving of 18% over FV-MSB-LSB scheme. However, for 
crc application, energy saving is not significantly high, which 
demonstrates less data value locality in crc program. On an average, 
TUBE provides an energy improvement of 21% of FVE and 10% over 
FV-MSB-LSB, and 64% over unencoded data. 

Figure 7 shows the percentage of cases during which the entire and 
partial data are encoded upon a table hit. As shown in the graph, on 
nearly 62% of the encoded cases, TUBE codec encodes either a 32-bit 
contiguous value or it encodes a MSBLSB hit or a silent hot hit. The 
remaining 39% of the cases consists of MSB or silent segment hits 
alone. Since the codec manages to encode entire data on 62% of all the 
encoded values, it yields significant energy savings.  

4.4.1 Effect of various cache configurations 
We execute our embedded applications for different cache sizes to 

study the impact of cache sizes on the overall energy savings. Table 1 
shows the percentage reduction in energy for different cache 
configurations. We find that there is a slight decrease in the percentage 
of energy saving with the increasing cache size. The energy saving for 2 
KB cache size over FVE is 21%, whereas it reduces to 20.4% for 8 KB 
cache. This finding can be attributed to the fact that there is a decrease in 
the off-chip data value locality with increasing cache sizes. 

 
5. Related Work 
Previously proposed bus encoding schemes have targeted both 

address and data streams. Address Bus encoding schemes have exploited 
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Figure 6 shows the percentage reduction in off-chip energy for different data bus encoding schemes. 
Cache size for SPECINT : L1=64KB, L2=512KB; Cache size for other applications : L1=2KB, no L2. 
On an average, TUBE provides an improvement of 21% over FVE and 10% over FV-MSB-LSB. 
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Figure 7 shows the percentage of Entire data Vs partial data 
amongst encoded bus values. On an average, TUBE manages 
to encode all the bit positions in nearly 61% of the encoded 
values.  

Table 1.   Percentage average energy reduction for             
different cache configurations 
Cache size FVE FV-MSB-LSB TUBE 
1KB 44.94 55.52 66.71 
2KB 42.88 53.78 63.89 
4KB 40.87 51.06 61.84 
8KB 40.62 50.93 61.03 
 



the sequential and strided nature of address streams in order to encode 
bus values. Data streams are often less regular and are hence, more 
difficult to encode. Frequent Value Encoding (FVE) [20] is a data bus 
encoding scheme capable of encoding entire data values. FV-MSB-LSB 
[17] stores the entire data value, Most Significant Bit (MSB) portions 
and Least significant Bit (LSB) portions of values in separate tables. The 
codec sends a one-hot code for subsequent occurrences of the data value 
or its MSB or LSB portions. While encoding MSB or LSB portions 
alone, the remaining portion of the data is sent unencoded. 

Kaul et al.[11] propose a low latency spatial encoder circuits based 
on bus-invert coding. Basu et al. [1] proposed a value cache at both ends 
of the communication channel. During a hit, the index to the cache entry 
is sent instead of the whole word. Bus Expander [6] and Dynamic Base 
Register Caching (DBRC) [7] propose compaction techniques to 
increase the effective bus-width. DBRC uses dynamically allocated base 
registers to cache the higher order bits of address values. Self-organizing 
list-based encoding [12] minimizes the transition activity between the 
codes assigned to the most frequent incoming symbols. Their technique 
efficiently exploits the sequential nature of address streams and the 
locality of addresses in multiplexed address bus values. Working Zone 
Encoding (WZE) [14] keeps track of a few working zones that are 
favored by the application. Whenever possible, the addresses are 
expressed as a working zone offset along with an index to the working 
zone. However, these schemes fail to exploit locality in non-contiguous 
bit positions. 

LV et al. [9] proposed a dictionary based encoding scheme where 
in the upper few lines of the bus wires are kept in a high impedance state 
and the lower bits are encoded. This scheme fails to exploit the 
occurrences of entire data values and consequently, the reduction in 
switching activity is not significantly high. Wen et. al [19] investigate 
the use of value prediction techniques to reduce transition activity on the 
data buses. Sector-based coding [1] is an address bus encoding 
technique that partitions the address space into a number of sectors. 
Each incoming value is then encoded with respect to the sector head. 

TUBE differs from all of the aforementioned works in the 
following aspect. TUBE captures chunks of varying widths from data 
values. These chunks can consist of bits from contiguous and non-
contiguous bit positions of the data value. For subsequent occurrences of 
these bit positions, TUBE sends a code instead of data. Control signals 
require the availability of a free pin on the chip and are hence, very 
expensive to provide. TUBE uses just one external control signal to 
indicate the presence of encoded values on the data bus. 

 
6. Conclusion 
We proposed and evaluated TUBE, a novel bus-encoding scheme 

for reducing the power consumption in off-chip data buses. TUBE is 
capable of exploiting repetition in contiguous as well as non-contiguous 
bit positions in order to encode data values. TUBE requires just one 
external control signal to encode data.  

We performed simulations for 20 workloads covering the 
SPECINT2000 [16] and commonly used embedded system applications 
like the Mediabench [8] and Netbench [13].  On an average, TUBE 
architecture reduces the off-chip bus energy by 64%, which is a 21% 
improvement over FVE [20]. TUBE achieves as much as 84% reduction 
in energy over unencoded data for some embedded system applications.  

 We also estimated the area and performance overhead of the 
TUBE codec. We found that TUBE codec can be implemented with a 
minimal area of 0.0521 mm2 and has a performance overhead as low as 
0.45% of the total execution time.  Hence, TUBE design is feasible in 
terms of energy, performance and delay overhead. TUBE can also be 
effectively extended to other domains like on-chip data value encoding, 
multiprocessor data trace encoding and trace compression.  
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