
Tunable Bus Encoder for Off-Chip Data Buses
Abstract
Off-Chip buses constitute a significant portion of the total system

power in embedded systems. Past research has focused on encoding
contiguous bit positions in data values to reduce the transition activity
in the off-chip data buses. In this paper, we propose TUnable Bus
Encoding (TUBE) scheme to reduce the power consumption in the data
buses, which exploits repetition in contiguous as well as non-contiguous
bit positions in order to encode data values. We also solve the problem
of keeping just one control signal for our codec design.

We compare our results with some of the already existing best
schemes such as Frequent Value encoding (FVE) and FV-MSB-LSB
encoding schemes. We find that our scheme achieves an improvement of
21% on an average and up to 28% on some benchmarks over the FVE
scheme and up to 84% over unencoded data. In comparison to FV-MSB-
LSB encoding scheme, our scheme improves the energy savings by 10%
on an average and up to 21% for some media applications at the
expense of minimal 0.45% performance overhead. We present a
hardware design of our codec and provide a detailed analysis of the
hardware overhead in terms of area, delay and energy consumption. We
find that our codec can be easily implemented in an on-chip memory
controller with small area requirement of 0.0521 mm2.

1. Introduction
Off-chip buses are associated with high capacitance values and

hence, while transmitting bus values, they consume a significant portion
of the total embedded system power. The energy consumed by the off-
chip bus is in direct proportion to the total number of transitions that
take place in the bus. Bus encoding schemes are techniques that reduce
the bus power consumption by encoding and decoding data prior and
subsequent to transmission.

Bus encoding schemes exploit properties of bus values in order to
encode data. It has been shown that a significant portion of the data
values consists of a few values that have a tendency to repeat every few
cycles. By storing recently encountered values, subsequent occurrences
of the same value can be encoded. For a wide range of commonly used
embedded system applications, we measure the number of repeating
occurrences of entire data values and their portions. We find that even
while executing a single program, different bit prefixes tend to repeat
during different portions of the program. Hence, we present an encoder
design capable of encoding repeating values of different width to
achieve better switching reduction. In particular, we present a data bus
encoding scheme that capitalizes on the following three properties of
data streams in order to encode data: 1) partial/entire data value locality
in temporal domain 2) hot bits and 3) silent bits. We will explain each of
these terms in the subsequent paragraphs.

For most of the applications, the transition activity in the off-chip
bus wires is non-uniform: some of the bus wires tend to toggle more
than the rest. We refer to the set of bits that toggle the least as silent bits.
Since silent bits remain steady for longer periods of time, the probability
of silent bits having the same values in different data values is high. The
complementary bit positions of the silent bits incur a lot of transitions
and we refer to these bit positions as hot bits. Figure 1 shows the silent
and hot bit positions in a portion of the data stream. The silent bit
positions in the figure are shown in bold. The silent bits incur fewer
transitions than hot bits. Hot bits and silent bits are complementary to
each other. By encoding both silent and hot bits, the codec can
efficiently encode data.

In this paper, we present a TUnable Bus Encoder (TUBE) that can
encode contiguous (prefixes and full data value) and non-contiguous bit
positions (silent and hot bits) of data values. The TUBE codec encodes
data by storing selective bit positions of data values in its segments.
Each segment is capable of encoding repeating data portions of a fixed
width. TUBE also has non-contiguous segments that encode data by
identifying the silent bits and hot bits in data values.

We explore the design space and evaluate the performance of
different TUBE codec configurations. We run a set of experiments by
executing MediaBench[8], NetBench[13] and SPECINT2000 [16]
benchmarks and we find that our scheme achieves an average energy
reduction of 66% over unencoded data, which is a 21% improvement
over FVE [20]. For some media applications, we achieve as much as
84% reduction in energy over unencoded data. We analyze the impact of
the codec on the overall performance of the system and we find that
TUBE provides significant energy savings with an overhead of as little
as 0.45% of the total execution time. We also present a detailed analysis
of our hardware design and quantify its overhead.

The rest of this paper is organized as follows. We describe our
encoding scheme and its design issues in section 2. We illustrate our
experimental framework in section 3. In section 4, we present the results
obtained using our encoding scheme. We discuss the related work in
section 5 and in section 6, we conclude.

2. TUBE Design
In this section, we present TUBE design and explain various design

parameters, codec algorithm, and hardware design. TUBE uses tables at
the encoder and decoder ends. The table consists of various segments,
where each segment extracts a predefined set of bit positions from the
data values. Each segment consists of a finite set of segment entries and
each segment entry, in turn, comprises of a code field and a data field.
The code field in the segment entry contains an M-hot code. M-hot code
is defined as a value whose binary representation has a high value (logic
‘1’) only in M different bit positions, where M is a small number
(usually one or two). The data field of the segment entry stores selected
bit positions of the incoming data value. For a segment storing codes of
width k-bits, containing up to M-hot codes, the maximum number of
allowable segment entries is given by

!)!*(
!

11 iiK
KM

i

M

i

K

iC −
= ∑∑

==

During the first occurrence of a full or partial bit-pattern, the encoder
stores the bit-pattern in its segments and transmits the data value over
the data bus without encoding. Upon receiving the unencoded value, the
decoder stores the bit-pattern from the data value in its segments. Thus
at the end of every bus cycle, the encoder and decoder’s table contents

Figure 1 shows silent and hot bits in a
data stream. Silent bits are shown in bold.

are exact replicas of each other For subsequent occurrences of the
repeating bit pattern, the codec sends an M-hot code for the repeating
portion. For each unique bit-pattern-width, the codec requires a new
segment. While sending encoded values on the bus, an external control
signal is used to let the destination know that the first k-bits of the data
bus value corresponds to a code. As used in other techniques [20], a pair
of correlator and decorrelator is added to the two ends of the buses.
They are inverse functions of each other and their purpose is to reduce
the correlation between successive values.

2.1 TUBE Segments
TUBE uses two kinds of segments in order to encode data-

contiguous segment and non-contiguous segment. Contiguous segments
exploit repetition in contiguous bit positions across different data values
while non-contiguous segments exploit repetition in non-contiguous bit
positions. Contiguous segments include full-value segment, most
significant bits (MSB) segments, and least significant bits (LSB)
segments, whereas non-contiguous segments include hot bits segment
and silent bit segments. By profiling the applications in advance,
TUBE’s non-contiguous segment is loaded with a mask for the silent
bits and hot bits. However, masks can be changed at runtime in our
hardware design using programmable CAM and complete re-
initialization of the codec. Hot bits tend to have a lot of transitions and
hence, encoding them would yield significant energy savings. Silent bits
are bit positions that incur fewer transitions than the rest. However,
fewer bit patterns tend to repeat in silent bit positions and they can hence
be encoded more often than hot bits.

We find the number of simultaneous MSB and least significant bits
LSB hits to be significantly higher than the hits in LSB segment only
(miss in MSB). Hence, we choose to encode an LSB hit only if it
happens to be an MSBLSB hit. Likewise, a hot segment hit is encoded
only if there is a hit in the silent segment also. TUBE uses codes of two
different widths and these codes are sent in the upper and lower bus
wires of the off-chip data bus. The code for the MSB, entire data portion
and silent bit segment hits are sent on the upper portion of the data bus
while the code for the LSB and hot bits are sent on the lower portion of
the data bus. Hence, during an MSBLSB hit or a silent/hot hit, a code is
sent in both the upper and lower bus wires. For the remainder of this
paper, we will refer to the segments that send code in the upper bus
wires as upper segments. Likewise, lower segments are segments whose
code is sent along the lower set of bus wires. In order to ensure that the
destination can decode data without any ambiguity, the upper segments
and the lower segments do not have any overlapping bus wires for code
transmission. To ensure the integrity of the codec’s operation, all upper
segments use the same code width. Likewise, all the lower segments use
the same code-width.

2.2 Table Codes
In order to facilitate easy decoding of bit positions, the code is of a

fixed width and is always sent in a predetermined set of bus wires. For
example, irrespective of the width of the portion being encoded, the
codec can always choose to send a code of width 12-bits in the upper 12
bus wires. When using codes of width ‘w’, all bit patterns of width w or
greater can be encoded by the codec. If the code-width were to be
greater than the number of bits being encoded, enough bus wires will not
be available to transmit the unencoded bit positions. Hence, in order to
ensure integrity of the encoded data values, a segment’s code-width
should always be smaller than the width of the segment’s data field.

2.3 Maintaining Table Entries
The codec associates a three-bit timestamp with the table entries

and evicts stale entries using Least Recently Used (LRU) replacement
policy. We picked LRU as it can be easily implemented with minimal

hardware. During execution, the TUBE codec dynamically maps the
incoming data value’s bit-pattern to one of the available codes stored in
the table.

2.4 Control Signals
The biggest design challenge that we managed to solve while

designing the TUBE codec was to accomplish the coding operation
using just one external control signal. TUBE uses an external control
signal to indicate the presence of encoded values on the bus. However,
we need an additional control signal to let the destination know whether
a code is being sent in the upper segment or if it is being sent in both
segments. External control signals require the availability of a free pin
on the chip and are hence, very expensive to provide. Hence, we choose
to use one of the bus wires as a control signal. For the rest of this paper,
we will refer to this internal bus wire as an internal control signal.

We set the internal control signal to high whenever an MSBLSB hit
is sent on the off-chip data bus. If the encode signal is high and the
internal control signal is low, then it corresponds to an MSB hit only.
The silent bit segment and the hot bit segment capture mutually
exclusive bit positions. Hence, there is a likelihood of simultaneous hit
in both segments. Since the code spaces of all these segments are
mutually exclusive, we choose to combine an MSB hit with an LSB hit
and a silent segment hit with a hot segment hit. Hence, during a
MSBLSB hit or a silent/hot hit, we will end up searching the MSB,
LSB, silent and hot bit segments.

By using two different code-widths instead of one, TUBE sends
one-hot code for more number of table hits. This also minimizes the
required number of segment searches. If we used just one code-width,
the decoder should lookup the incoming code in all of the segments.
Since two different code-widths are used, a code in the lower portion
would initiate a decoder lookup only in the LSB and the hot-bit
segments. This saves the overall decoder energy.

2.5 Algorithms
Figure 2 shows the encoder algorithm for the TUBE encoder. Since the
encoder encodes values of varying widths, the code width is kept
constant. For every incoming value, the encoder searches its segments to
see if the data value or its bit positions where encountered before. In the
event of a hit, the encoder sends the corresponding code along the upper
bus wires and raises the external control signal. During a hit in multiple
segments, the code from the segment with largest number of bit
positions is chosen by the selection logic. This selected code is
designated as the upper code. The encoder also searches its lower
segments to see if the bit positions were encountered in the recent past.

Figure 2 shows the TUBE encoder algorithm.

During a hit in the lower segment, the hit code (lower_code) forms the
lower order bits of the encoded bus value. The encoder raises the
internal control signal to let the destination know that a code is being
sent in both the upper and lower set of bus wires. During a lower
segment miss, the lower order bits of the incoming value constitute the
lower portion of the encoded bus value. When the encoder does not find
a match in any of its segments, the encoder lowers the external control
signal and sends the value unencoded.

Figure 3 shows the decoder algorithm for the TUBE decoder. When
the external control signal is low, the data is interpreted as-is by the
decoder. When the external control signal is high, the decoder searches
the upper segments. The decoder searches the lower segments when the
value of the internal control signal is set to 1. When the decoder
encounters a hit, the data at the hit location is used to obtain the decoded
data value.

2.6 Design Parameters
Code width: Code width of the TUBE table determines the

maximum number entries stored in the table. While using one-hot and
two-hot codes of width k, the maximum number of table entries should
be less than ((k-1) + (k*(k-1))/2). The code width also determines the
width of the data portion to be encoded. Using codes of width k, data
portions (m) of width k or higher can be encoded. If not, the unencoded
portion (32 – m) cannot be sent using the remaining wires (32-k). For
our experiments, we considered code widths of 14, 16 and 18 bits for the
upper segment. We used code-widths of 10, 12 and 14 bits for the lower
segments. We restricted the size of the upper and lower segments 120
and 45 entries respectively.

Segment size: For a given upper and lower code width, we
simulated eight different codec configurations by varying the segment
size and the width of the data portion captured in the segment. For each
of these configurations, we had 5 upper segments and 3 lower segments.
The upper segment consisted of a maximum of 120 entries distributed

between 32-bit, 24-bit and 16-bit contiguous segments and two silent
segments of width 16 and 18 bits respectively. Likewise, the lower
segment consisted of one 12-bit LSB segment, a 14-bit hot segment and
16-bit hot segment.. Our best configuration had 32, 20, 28,20 and 20
entry tables in the upper segments and 20, 10 and 15 entries in the lower
segment. The energy reduction achieved by this configuration will be
presented in the following sections. We will present the result for this
configuration only due to space constraints.

Choice of mask bits: We adopted a two-stage tuning approach.
During an initial run of the benchmarks, we loaded the codec with
application-specific masks based on the results from our profiling tool.
Then we identified the silent and hot bits that are common across a
given class of applications. Thus for each benchmark suite, we loaded
the codec with silent and hot bits that were best suited for all the
applications in that benchmark suite. Based on the profiled results, we
fixed the masks for a class of applications. Figure 4 shows the silent bit
position for different SPECINT applications. As shown in the graph, for
the first, sixth, 30th and many other silent bit positions are the same
across most of the SPECINT applications. We found that a similar
correlation existed in applications from the MediaBench suite[8].
Likewise, applications from the NetBench suite[13] also had common
set of silent bits. Hence, we fixed the silent/hot positions for each class
of applications. We performed experiments to determine the changes in
silent and hot bit positions due to different data set and we find that top
20 silent bits almost remain the same with only one or two different
silent bit positions.

2.7 Hardware Design
In this section, we present the 2-stage pipelined tube codec design.

We use content addressable memories (CAMs) to store and search the
contiguous and non-contiguous data bus values of different widths. We
use two CAMs for a segment to store the data field in one CAM and the
corresponding code field in the other CAM. We refer to the first CAM
as data-CAM and second CAM as code-CAM. A codec controller
controls the addition and deletion of new entries to the data-CAM. There
is a selection logic block to arbitrate among hits in various segments and
give priority to segment hit with larger bit width. It generates three bit
multiplexer control signals to select the appropriate 32-bit data bus value
from the previous stage. The selection logic block is also responsible to
generate the encode signal and select appropriate value for the internal
control signal. Our hardware design is symmetric in nature to handle
both encoding and decoding operations..

The encoder operation in our hardware design is shown in Figure 5.
In this figure, we have shown hardware design for a 4-segment tube
codec, where three are three segments of contiguous bits (widths are 32,

Figure 3 shows the TUBE Decoder Algorithm.

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Most silent bits in decreasing order

B
us

 w
ire

 p
os

iti
on

bzip2 gzip parser mcf vortex TOTAL

Figure 4 shows silent and hot bits for SPECINT2000 class of applications, where 31st bit is found to be most silent and 0th
bit is found to be the hottest bit.

24, 16) and one silent segment of 24 bit width. The encoder operation
takes two cycles to encode the incoming data bus value. But in most of
the cases, we transfer multiple words due to a larger cache line and
hence, there is a large scope of aggressively pipelining the encoding
operation. In the first stage, data value is fed to the 32-bit pipeline
register and then fed to the data CAMs after applying the appropriate
mask for each segment. On a match in data-CAM, the corresponding
matchline is used to drive the wordline of the code-CAM. All the codes
corresponding to segment hits, is read into the second pipeline register.
All the hits are also fed to the second pipeline register to make
appropriate encoding decision. Selection logic block in the second stage
utilizes these hit signals from various segments to generate the 3-bit
multiplexer control signals. The (160 x32) multiplexer selects 32-bits
from the appropriate segment based on the 3-bit control signals. For
example, on a 16-bit hit, the MASK-OR component generates the 16-bit
lower values after applying 16-bit inverse mask and then it is ORed with
code to get the final 32-bit value. On a silent segment hit, the silent
mask is applied with the original data bus value to the get the hot bits.
Then, these bits and silent bits are shifted and ORed together to get the
32-bit data value and fed to the (160 x 32) multiplexer. Finally,
multiplexer selects the appropriate 32-bit data bus value and puts it in
the data bus after correlation. On a valid encoding, select logic block
asserts the encoding signal. We decode the incoming data bus value in a
symmetric fashion using the same pipelined hardware design.

3. Experimental Setup
We modified the sim-outorder simulator in the Simplescalar toolset

[4] to incorporate our bus encoding techniques. In order to evaluate the
effectiveness of our encoding schemes, we used a wide range of
benchmarks that are representative of both embedded and desktop
applications. Our test programs consisted of 16 benchmarks from the

MediaBench [8], NetBench [13] benchmark suites and four applications
from SPECINT2000 [16].

We modeled two different architectures – an embedded system-like
architecture with a small L1 cache and a desktop like architecture with
both L1 and L2 cache sizes. For the embedded system like architecture,
we evaluated data caches of the following sizes – 1KB, 2KB, 4KB and
8KB. For the desktop-like architecture, we fixed the L1 and L2 cache
sizes at 64KB and 512KB respectively. We used the desktop like
architecture while simulating the SPECINT applications and simulated
the remaining benchmarks using an embedded system like architecture.
For each of these cache configurations, we fixed the block size of the
instruction and data caches at 32 bytes. Both instruction and data caches
have on chip and off-chip latencies of 1 cycle and 100 cycles
respectively. The off-chip data bus is 32-bits wide. The off-chip data
trace consisted of both instruction and data values.

4. Results and Analysis

In this section, we present our experimental results and analyze the
effectiveness of our scheme in reducing the off-chip energy
consumption. We begin by describing our bus power model and then
estimate the energy consumed by the TUBE codec. We use this result to
evaluate the energy reduction achieved using our encoding scheme. We
also measure the area requirements of our codec and illustrate that ours
is a feasible design in terms of energy, delay and area overheads.

4.1 Bus Power Model
We use a bus power model similar to the one discussed by Catthoor

et. al [5]. In general estimating the energy used in the off-chip
interconnects is difficult. We can approximate the capacitance for the
bus using the formula:

Cbus = Cmetal * Number of Bus lines
In this expression Cmetal is the capacitance of the metal interconnect for
each bus line. Using the numbers given in [5], it is estimated to be 20pF.
Cbus gives the effective capacitive load to be driven during a bus
transaction. We calculated the total bus energy per cycle using the
following formula:

decoder

2
Lr

encodertotal E
cycles of #

V* C*T EE ++=

where, Tr = total number of transitions in the off-chip bus
CL = Load capacitance of the off-chip bus line.
V = Supply voltage

4.2 Codec Delay and Energy Consumption
In this subsection, we analyze area overheads of our hardware design
and quantify the delay and energy consumption. We use Cacti-3.0 [14]
to model most of hardware components and some previously published
results for some hardware components. We use 0.18 um CMOS
technology and we scale various parameters accordingly. Our hardware
design can be classified into some main components such as Content
Addressable Memories (CAMs), pipelined registers, 160 x 32 MUX and
selection logic. Now, we describe how we calculate the various
performance metrics.

We take the results of CAM from this paper [10] and we find that
CAM requires 45.5fJ/bit/search in 0.35 um technology. We estimate the
area of a CAM cell from the results in [10] and it is found to be 11 um2
in 0.18um technology. The delay for 32 x 32 CAM is estimated to be 5.6
ns in 0.18um technology. We estimate the maximum energy
consumption, maximum delay of area of CAMs by adding the results of
all the CAM segments in 0.18um technology and it is found to be 95.68
pJ, 5 ns, and 0.045 mm2 respectively. We model the 32-bit pipelined
register using Cacti and we find that the maximum delay, energy

Figure 5 shows the operation of a TUBE encoder.

consumption, and area requirement is 0.173 ns, 0.443 pJ and 0.00164
mm2 in 0.18um technology respectively. We model the 160 x 32 MUX
using cacti and found that it requires 0.002120 mm2 and maximum
energy consumption and delay is found to be 0.78 ns and 4.3 pJ
respectively. We use the cadence tools layout results for primitive gates
and estimate the area, maximum energy consumption and delay of
selection logic block to be 0.000121 mm2, 0.354 pJ and 0.16 ns
respectively.

The clock frequency of hardware design is determined by the CAM
pipeline stage. We calculate the clock frequency based on the CAM
delay and it is found to be ~175 MHz. It is sufficient for most of the
embedded SRAM memories. It can be increased further by selecting
delay-optimized CAMs. The energy consumption for the codec is found
to be 103.12 pJ and the total area requirement of our codec design is
found to be 0.0521 mm2.

4.3 Impact on Performance
The encoding and decoding operations add extra latency in the

processor-memory transaction and hence, there is a slight decrease in the
overall performance. Using the contemporary VLSI technology and the
proposed pipelined architecture, the codec can be easily implemented
with a delay of 2 clock cycles, which amounts to a single cycle delay at
both the encoder and decoder ends. We take the codec delay to be 1
cycle, 2 cycles, and 4 cycles to evaluate the performance penalty. We
instrumented the Simplescalar simulator to measure the performance
penalty for a set of benchmarks and we assumed an off-chip memory

latency of 70 cycles. On an average, TUBE incurs 0.29%, and 0.76%,
performance penalty with codec delay of 2 cycles for MediaBench, and
NetBench respectively.

4.4 Off-chip Bus Energy Savings
We evaluate our proposed scheme for the configuration described in
section 3. Figure 6 shows the percentage reduction in energy while using
a L1 cache of size 2KB. We evaluate the energy savings by taking care
of energy consumption of hardware codec. We simulated FVE [20] and
FV-MSB-LSB [17] schemes using the same set of tools as used in this
paper. To evaluate energy consumption for FVE and FV-MSB-LSB we
used parameter values mentioned in [20]] and [17] respectively.

 For applications like cjpeg, TUBE outperforms FVE by 28%. Epic
application has a lot of hits in the partial segments (MSB and silent) and
hence yields significant energy improvement. We observe a similar
energy saving trend in spec2000 applications, where parser provides an
extra energy saving of 18% over FV-MSB-LSB scheme. However, for
crc application, energy saving is not significantly high, which
demonstrates less data value locality in crc program. On an average,
TUBE provides an energy improvement of 21% of FVE and 10% over
FV-MSB-LSB, and 64% over unencoded data.

Figure 7 shows the percentage of cases during which the entire and
partial data are encoded upon a table hit. As shown in the graph, on
nearly 62% of the encoded cases, TUBE codec encodes either a 32-bit
contiguous value or it encodes a MSBLSB hit or a silent hot hit. The
remaining 39% of the cases consists of MSB or silent segment hits
alone. Since the codec manages to encode entire data on 62% of all the
encoded values, it yields significant energy savings.

4.4.1 Effect of various cache configurations
We execute our embedded applications for different cache sizes to

study the impact of cache sizes on the overall energy savings. Table 1
shows the percentage reduction in energy for different cache
configurations. We find that there is a slight decrease in the percentage
of energy saving with the increasing cache size. The energy saving for 2
KB cache size over FVE is 21%, whereas it reduces to 20.4% for 8 KB
cache. This finding can be attributed to the fact that there is a decrease in
the off-chip data value locality with increasing cache sizes.

5. Related Work
Previously proposed bus encoding schemes have targeted both

address and data streams. Address Bus encoding schemes have exploited

0
10
20
30
40
50
60
70
80
90

bz
ip

pa
rs

er zi
p:

vo
rte

x

cj
pe

g

cr
c

de
co

de

dj
pe

g

dr
r

en
co

de

ep
ic

m
d5

m
pe

g2
de

co
de

m
pe

g2
en

co
de

ro
ut

e tl

to
as

t

un
ep

ic

un
to

as
t

ur
l

A
ve

ra
ge

Benchmark

Pe
rc

en
ta

ge
 re

du
ct

io
n

in
 o

ff-
ch

ip
 b

us
 e

ne
rg

y

FV FVMSBLSB TUBE

Figure 6 shows the percentage reduction in off-chip energy for different data bus encoding schemes.
Cache size for SPECINT : L1=64KB, L2=512KB; Cache size for other applications : L1=2KB, no L2.
On an average, TUBE provides an improvement of 21% over FVE and 10% over FV-MSB-LSB.

0%

20%

40%

60%

80%

100%

cr
c

dr
r

m
d5

ro
ut

e tl ur
l

cj
pe

g

de
co

de

dj
pe

g

en
co

de

ep
ic

m
pe

g2
de

c

m
pe

g2
en

c

ra
w

ca
ud

io

ra
w

da
ud

io

un
ep

ic

A
ve

ra
ge

Benchmark

Pe
rc

en
ta

ge
 o

f t
ot

al
 e

nc
od

ed
 v

al
ue

s

Entire data Partial data

Figure 7 shows the percentage of Entire data Vs partial data
amongst encoded bus values. On an average, TUBE manages
to encode all the bit positions in nearly 61% of the encoded
values.

Table 1. Percentage average energy reduction for
different cache configurations
Cache size FVE FV-MSB-LSB TUBE
1KB 44.94 55.52 66.71
2KB 42.88 53.78 63.89
4KB 40.87 51.06 61.84
8KB 40.62 50.93 61.03

the sequential and strided nature of address streams in order to encode
bus values. Data streams are often less regular and are hence, more
difficult to encode. Frequent Value Encoding (FVE) [20] is a data bus
encoding scheme capable of encoding entire data values. FV-MSB-LSB
[17] stores the entire data value, Most Significant Bit (MSB) portions
and Least significant Bit (LSB) portions of values in separate tables. The
codec sends a one-hot code for subsequent occurrences of the data value
or its MSB or LSB portions. While encoding MSB or LSB portions
alone, the remaining portion of the data is sent unencoded.

Kaul et al.[11] propose a low latency spatial encoder circuits based
on bus-invert coding. Basu et al. [1] proposed a value cache at both ends
of the communication channel. During a hit, the index to the cache entry
is sent instead of the whole word. Bus Expander [6] and Dynamic Base
Register Caching (DBRC) [7] propose compaction techniques to
increase the effective bus-width. DBRC uses dynamically allocated base
registers to cache the higher order bits of address values. Self-organizing
list-based encoding [12] minimizes the transition activity between the
codes assigned to the most frequent incoming symbols. Their technique
efficiently exploits the sequential nature of address streams and the
locality of addresses in multiplexed address bus values. Working Zone
Encoding (WZE) [14] keeps track of a few working zones that are
favored by the application. Whenever possible, the addresses are
expressed as a working zone offset along with an index to the working
zone. However, these schemes fail to exploit locality in non-contiguous
bit positions.

LV et al. [9] proposed a dictionary based encoding scheme where
in the upper few lines of the bus wires are kept in a high impedance state
and the lower bits are encoded. This scheme fails to exploit the
occurrences of entire data values and consequently, the reduction in
switching activity is not significantly high. Wen et. al [19] investigate
the use of value prediction techniques to reduce transition activity on the
data buses. Sector-based coding [1] is an address bus encoding
technique that partitions the address space into a number of sectors.
Each incoming value is then encoded with respect to the sector head.

TUBE differs from all of the aforementioned works in the
following aspect. TUBE captures chunks of varying widths from data
values. These chunks can consist of bits from contiguous and non-
contiguous bit positions of the data value. For subsequent occurrences of
these bit positions, TUBE sends a code instead of data. Control signals
require the availability of a free pin on the chip and are hence, very
expensive to provide. TUBE uses just one external control signal to
indicate the presence of encoded values on the data bus.

6. Conclusion
We proposed and evaluated TUBE, a novel bus-encoding scheme

for reducing the power consumption in off-chip data buses. TUBE is
capable of exploiting repetition in contiguous as well as non-contiguous
bit positions in order to encode data values. TUBE requires just one
external control signal to encode data.

We performed simulations for 20 workloads covering the
SPECINT2000 [16] and commonly used embedded system applications
like the Mediabench [8] and Netbench [13]. On an average, TUBE
architecture reduces the off-chip bus energy by 64%, which is a 21%
improvement over FVE [20]. TUBE achieves as much as 84% reduction
in energy over unencoded data for some embedded system applications.

 We also estimated the area and performance overhead of the
TUBE codec. We found that TUBE codec can be implemented with a
minimal area of 0.0521 mm2 and has a performance overhead as low as
0.45% of the total execution time. Hence, TUBE design is feasible in
terms of energy, performance and delay overhead. TUBE can also be
effectively extended to other domains like on-chip data value encoding,
multiprocessor data trace encoding and trace compression.

References

[1] Y. Aghaghiri, M. Pedram, and F. Fallah. ”Reducing Transitions on
Memory Buses Using Sector-based Encoding Technique”, In Proceedings
of the 2002 International Symposium on Low Power Electronics and
Design, pp 190–195, Monterey, California, August 2002.

[2] K. Basu, A. Choudhary, J. Pisharath and M. Kandemir, “Power
protocol: Reducing Power Dissipation on Off-Chip Data Buses”, 35th Annl
IEEE/ACM Symp. on Micro architecture (MICRO-35) , Istanbul, Turkey,
Nov. 2002.

[3] L. Benini, G. De Micheli, E. Macci, D. Scuito and C. Silvano,
“Asymptotic zero-transition activity encoding for address buses in low-power
microprocessor-bases systems”, Great Lakes VLSI Symp., pp 77-82, Urbana
IL, Mar. 1997.
[4] D. Burger and T. Austin, “The SimpleScalar Tool Set, Version 2.0,
Technical Report”, University of Wisconsin-Madison, Computer Science
Department, 1997
[5] F. Catthoor, S. Wuytack, E. De Greef, F. Balasa, L. Nachtergaele and
A. Vandecappelle, “ Exploration of Memory Organization for Embedded
Multimedia System Design”, Kluwer Academic Publishers”, 1998.
[6] D. Citron and L. Rudolph, “Creating a Wider Bus using Caching
Techniques”, Proceedings of the first International Symposium on High
Performance Computer Architecture, pp 90-99, January 1995.
[7] M. Farrens and A. Park, “ Dynamic Base Register Caching: A
technique for Reducing Address Bus width”, In Proceedings of 18th
International Symposium on Computer Architecture (ISCA), pp 128-137,
Toronto, Canada, May 1991.
[8] C. Lee, M. Potkonjak and W. Mangione-Smith, “MediaBench: a tool
for evaluating and synthesizing multimedia and communications systems”,
Intl. Symp. on Microarchitecture, pages 330-335, 1997.
[9] T. Lv, J. Henkel, H. Lekatsas and W. Wolf, “An Adaptive Dictionary
Encoding Scheme for SOC Data Buses”, Design Automation and Test in
Europe, Paris, France, Mar. 2002.
[10] I.Y.L. Hsiao, D.H. Wang, and C.W. Jen, “Power modeling and low-
power design of content addressable memories”. In Proceedings of the IEEE
International Symposium on Circuits and Systems, volume 4, pages 926-929,
2001.
[11] H. Kaul, D. Sylvester, M. Anders and R. Krishnamurthy, “ Spatial
Encoding Circuit Techniques for Peak Pwer Reduction of On-Chip High-
performance Buses”, ACM/IEEE Intl. Symp. on Low Power Electronic
Design”, Pages 194-199, Newport Beach, California, 2004.
[12] M. Mamidipaka, D. Hirschberg and N. Dutt, “Low Power Address
Bus Encoding Using Self-organizing Lists”, Intl. Symp. on Low Power
Electronics and Design, 2001, pp 188-193.
[13] G. Memik, W. H. Mangione Smith and W. Hu, “NetBench : A
Benchmarking Suite for Network Processors”, Intl. Conf. on Computer Aided
Design (ICCAD), pp 39-42,San Jose, California, Nov. 2001
[14] E. Musoll, T. Lang and J. Cortadella, “Working Zone Encoding for
Reducing the Energy in Microprocessor Address Buses”, IEEE Trans. on VLSI
Systems, pp 568-572, Volume 6, Dec. 1998.
[15] P.Shivakumar and N. P. Jouppi, “Cacti 3.0: An Integrated Cache
Timing, Power and Area Model," Western Research Lab (WRL) Research
Report 2001.
[16] SPECINT2000, http://www.specbenh.org/cpu2000
[17] D. C. Suresh, B. Agrawal, J. Yang, W. Najjar and L. Bhuyan, “Power
Efficient Encoding Techniques for Off-Chip Data Buses”, In the Proc. of
Compilers and Architecture and Synthesis for Embedded Systems (CASES),
San Jose, CA, Oct. 2003
[18] M. R Stan and W. P Burleson, “Bus-invert Coding for low power
I/O”, IEEE Trans. on Very Large Scale Integration (VLSI) systems, pages 49-
58, Volume 3, 1995
[19] V. Wen, M. Whitney, Y. Patel and J. D. Kubiatowicz, “Exploiting
Prediction to Reduce Power on Buses”, In Proc. of the 10th Intl. Symp. on High
Performance Computer Architecture, pages 2-13, Madrid, Spain, Feb 2004.
[20] J. Yang and R. Gupta, “FV-Encoding for Low Power Data I/O”,
ACM/IEEE Intl. Symp. on Low Power Electronic Design”, Pages 84-87, 2001.

